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1. Introduction

The concept of an intuitionistic set was introduced by D.Coker in [2]. The
intuitionistic set is the discrete form of intuitionistic fuzzy set. The concept of
extremally disconnected spaces was introduced by C. Duraisamy, M. Dhavamani
and N. Rajesh [3]. The concept of extremally disconnectedness is used to solve
social problems through data structures.

Motivated by these applications, the concepts of intuitionistic cokernel compact
spaces, intuitionistic C-compact set and intuitionistic C-compact continuous function
and intuitionistic R-compact spaces are introduced and studied. In this connection,
some interesting properties and characterizations are established.

2. Preliminaries

Definition 2.1 ([1, 2]). Let X be a nonempty fixed set.An intuitionistic set(IS, for
short) A is an object having the form A = 〈X,A1, A2〉, for all x ∈ X where A1 and
A2 are subsets of X satisfying A1 ∩A2 = φ.The set A1 is called the set of members
of A while A2 is called the set of nonmembers of A.Every crisp set A on a non empty
set X is obviously an intuitionistic set having the form A = 〈x,A,Ac〉.
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Definition 2.2 ([1, 2]). Let X be a nonempty set and the Intuitionistic sets A and
B in the form A = 〈x,A1, A2〉, B = 〈x,B1, B2〉. Then

(i) A ⊆ B iff A1 ⊆ B1 and B2 ⊆ A2;
(ii) A = B iff A ⊆ B and B ⊆ A;

(iii) A ⊆ B iff A1 ∪A2 ⊇ B1 ∪B2;
(iv) A = 〈x,A2, A1〉;
(v) ∪Ai = 〈x,∪Ai1,∩Ai2〉;
(vi) ∩Ai = 〈x,∩Ai1,∪Ai2〉;

(vii) A−B = A ∩B
(viii) φ∼ = 〈x, φ,X〉 and X∼ = 〈x,X, φ〉.

Definition 2.3 ([1, 2]). let X and Y be two nonempty sets and f : X → Y a
function

(i) If B = 〈x,B1, B2〉 is an intuitionistic set in Y , then the preimage of B under
f ,denoted by f−1(B),is the intuitionistic set in X defined by

f−1(B) = 〈x, f−1(B1), f−1(B2)〉.
(ii) If A = 〈x,A1, A2〉 is an intuitionistic set in X, then the image of A under

f ,denoted by f(A),is the intuitionistic set in Y defined by

f(A) = 〈y, f(A1), f−(A2)〉, where f−(A2) = (f(A2c))c.

Definition 2.4 ([2]). An intuitionistic topology(IT , for short)on a nonempty set X
is a family T of ISs in X satisfying the following axioms:

(i) φ∼ and X∼ ∈ τ ,
(ii) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ;
(iii) ∪Gi ∈ τ for any arbitrary family {Gi : i ∈ J} ⊆ τ .

In this case the ordered pair (X,T ) is called an intuitionistic topological space
(ITS, for short) on X and any intuitionistic set in T is known as an intuitionis-
tic open set in X.The complement A of an intuitionistic open set A is called an
intuitionistic closed set(ICS for short) in X.

Definition 2.5 ([1]). Let (X,T ) be an intuitionistic topological space. If a family
{G : G = 〈x,G1, G2〉 : i ∈ J} of IOS’s in X satisfies the condition ∪{G : G =
〈x,G1, G2〉 : i ∈ I} = X∼, then it is called an intuitionistic open cover of X. A finite
subfamily of an intuitionistic open cover {G : G = 〈x,G1, G2〉 : i ∈ J} of X, which
is also an intuitionistic open cover of X, is called a finite intuitionistic subcover of
{G : G = 〈x,G1, G2〉 : i ∈ J}.

Definition 2.6 ([3]). An intuitionistic topological space (X,T ) is said to be intu-
itionistic extremally disconnected if and only if cl(U) ∈ τ for every U ∈ τ .

3. Intuitionistic cokernal compact spaces

Definition 3.1. Let (X,T ) be an intuitionistic topological space. Then A =
〈x,A1, A2〉 ∈ T is said to be intuitionistic C-compact set if every A ⊆ ∪i∈τAci where
Aci is an intuitionistic closed set in (X,T ). The complement of an intuitionistic
C-compact set is an intuitionistic C-cocompact set.
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Definition 3.2. Let (X,T ) be an intuitionistic topological space andA = 〈x,A1, A2〉
be an intuitionistic set in (X,T ). Then the intuitionistic C-compact kernal of A and
intuitionistic C-compact cokernal of A are denoted and defined by

IKC◦(A) = ∪{K = 〈x,K1,K2〉 : K is an intuitionistic C-compact set in (X,T )
and K ⊆ A}

and

ICKC¬(A) = ∩{K = 〈(x,K1,K2〉 : K is an intuitionistic C-co compact set in
(X,T ) and A ⊆ K}.

Remark 3.3. Let (X,T ) be an intuitionistic topological space and A = 〈x,A1, A2〉
be an intuitionistic set of X. Then

(i) ICKC¬(A) = A if and only if A is an intuitionistic C-cocompact set.
(ii) IKC◦(A) = A if and only if A is an intuitionistic C-compact set.

Definition 3.4. An intuitionistic topological space (X,T ) is said to be an intu-
itionistic cokernal compact space if the intuitionistic C-compact cokernal of every
intuitionistic C-compact set is an intuitionistic C-compact set.

Example 3.5. Let X = {a, b, c}. Then the intuitionistic sets A,B, C, D, E, F , G,H
and I of X are defined by A = 〈{a}, {b}〉 , B = 〈{c}, {a, b}〉 , C = 〈{a, b}, {c}〉}, D =
〈{a, c}, {b}〉, E = 〈{a, b}, {φ}〉, F = 〈{φ}, {a, b}〉, G = 〈{b, c}, {a}〉, H = 〈{b}, {a}〉,
and I = 〈{a}, {b, c}〉. Then the family T = {φ∼, X∼, A,B,C,D,E, F,G,H, I} is an
intuitionistic topology on X. Clearly, (X,T ) is an intuitionistic cokernal compact
space.

Proposition 3.6. Let (X,T ) be any intuitionistic topological space. Let A =
〈x,A1, A2〉 be an intuitionistic C-compact set in X. Then the following conditions
hold:

(i) ICKC¬(A) = IKC◦(A).

(ii) IKC◦(A) = ICKC¬(A).

Proof. (i) ICKC¬(A) = ∩{K = 〈x,K1,K2〉 : K is an intuitionistic C-cocompact set
in (X,T ) and K ⊇ A}.
Taking complements on both sides,
ICKC¬(A) = ∪{K : K is an intuitionistic C-compact set in (X,T ) and K ⊆ A}

= IKC◦(A).

(ii) ICKC\(A) = ∪{K = 〈x,K1,K2〉 : K is an intuitionistic C-compact set in (X,T )
and K ⊆ A}.
Taking complements on both sides,

IKC◦(A) = ∩{K : K is an intuitionistic C-cocompact set in (X,T ) and K ⊇ A}
= ICKC¬(A).

�

Proposition 3.7. Let (X,T ) be an intuitionistic topological space. Then the fol-
lowing statements are equivalent:

(i) (X,T ) is an intuitionistic cokernal compact space.
(ii) For each intuitionistic C-cocompact set A, IKC◦(A) is an intuitionistic C-

cocompact set.
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(iii) For each intuitionistic C-compact set A, we have ICKC¬(ICKC¬(A)) = (ICKC¬(A)).
(iv) For every pair of intuitionistic C-compact sets A and B with B = ICKC¬(A),

we have ICKC¬(B) = ICKC¬(A)

Proof. (i)⇒ (ii)
Let A be an intuitionistic C-cocompact set in (X,T ). Then A is an intuitionistic

C-compact set in (X,T ). Then by assumption, ICKC¬(A) is an intuitionistic C-
compact set in (X,T ). Now, ICKC¬(A) = IKC◦(A). Therefore, IKC◦(A) is an
intuitionistic C-cocompact set in (X,T ). Hence, (i)⇒ (ii).
(ii)⇒ (iii)

Let A be an intuitionistic C-compact set in (X,T ). Then A is an intuitionistic

C-cocompact set in (X,T ). By assumption IKC◦(A) = ICKC¬(A) is an intuitionistic
C-cocompact set. Now,
ICKC¬(ICKC¬(A)) = ICKC¬(A). Hence, (ii)⇒ (iii).

(iii)⇒ (iv)
Let A and B be any two intuitionistic C-compact sets in (X,T ) such that

B = ICKC¬(A). By (iii), ICKC¬(ICKC¬(A)) = ICKC¬(A). This implies that

ICKC¬(B) = ICKC¬(A). Hence, (iii)⇒ (iv).
(iv)⇒ (i)
Let A and B be any two intuitionistic C-compact sets in (X,T ) such that B =

ICKC¬(A). By (iv), it follows that, ICKC¬(B) = ICKC¬(A). That is, ICKC¬(A) is
an intuitionistic C-cocompact set in (X,T ).

This implies that ICKC¬(A) is an intuitionistic C-compact set in (X,T ). Thus,
(X,T ) is an intuitionistic C-compact cokernal compact space. Hence, (iv) ⇒ (i).
Hence the proof. �

Proposition 3.8. Let (X,T ) be an intuitionistic topological space. Then (X,T )
is an intuitionistic cokernal compact space if and only if for each intuitionistic C-
compact set A and intuitionistic C-cocompact set B such that A ⊆ B, ICKC¬(A) ⊆
IKC◦(B).

Proof. Let (X,T ) be an intuitionistic cokernal compact space. Let A be an intu-
itionistic C-compact set and B is an intuitionistic C-cocompact set in (X,T ) such
that A ⊆ B.

Then by (ii) of Proposition 3.7, IKC◦(B) is an intuitionistic C-cocompact set in
(X,T ). Therefore,
ICKC¬(IKC◦(B)) = IKC◦(B). Since A is an intuitionistic C-compact set and A ⊆ B,
A ⊆ IKC◦(B).
Now, ICKC¬(A) ⊆ ICKC¬(IKC◦(B)) = IKC◦(B). This implies that, ICKC¬(A)) ⊆
IKC◦(B).

Conversely, let B be an intuitionistic C-cocompact set in (X,T ). Then, IKC◦(B)
is an intuitionistic C-compact set and IKC◦(B) ⊆ B. Then by assumption,
ICKC¬(IKC◦(B)) ⊆ IKC◦(B)). Also, IKC◦(B) ⊆ ICKC¬(IKC◦(B)). This implies
that, IKC◦(B) = ICKC¬(IKC◦(B)).

Therefore, IKC◦(B) is an intuitionistic closed set in (X,T ). By (ii), of Proposition
3.2, (X,T ) is an intuitionistic cokernal compact space.. �
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Definition 3.9. Let (X,T ) and (Y, S) be any two intuitionistic cokernal compact
spaces. A function f : (X,T ) → (Y, S) is called an intuitionistic C-compact open
function if f(A) is an intuitionistic C-compact set in (Y, S), for each intuitionistic
C-compact set A in (X,T ).

Proposition 3.10. Let (X,T ) and (Y, S) be any two intuitionistic cokernal compact
spaces. Let f : (X,T ) → (Y, S) be an intuitionistic C-compact open and surjective
function. Then f−1(ICKC¬(A)) ⊆ ICKC¬(f−1(A)), for each intuitionistic set A in
(Y, S).

Proof. Let A be an intuitionistic set in (Y, S) and B = f−1(A). Then,

IKC◦(f−1(A)) = IKC◦(B) is an intuitionistic C-compact set in (X,T ). Now, IKC◦(B) ⊆
B. Hence, f(IKC◦(B)) ⊆ f(B).

That is, IKC◦(f(IKC◦(B))) ⊆ IKC◦(f(B)). Since f is an intuitionistic C-compact
open function, f(IKC◦(B)) is an intuitionistic C-compact set in (Y, S).
Therefore, f(IKC◦(B))) ⊆ IKC◦(f(B)) = IKC◦(A). Hence
IKC◦(f−1(A)) ⊆ f−1(IKC◦(A)). This implies that,

IKC◦(f−1(A)) ⊇ f−1(IKC◦(A)) implies
ICKC¬(f−1(A)) ⊇ f−1(ICKC¬(A)). Therefore, f−1(ICKC¬(A) ⊆ ICKC¬(f−1(A)).
Hence the proof. �

Definition 3.11. Let (X,T ) and (Y, S) be any two intuitionistic cokernal compact
spaces. A function f : (X,T )→ (Y, S) is called an intuitionistic C-compact continu-
ous function if f−1(A) is intuitionistic C-compact set in (X,T ) for every intuitionistic
C-compact set A in (Y, S).

Remark 3.12. Let (X,T ) and (Y, S) be any two intuitionistic cokernal compact
spaces. Let f : (X,T )→ (Y, S) be any function. Then the following statements are
equivalent:

(i) f : (X,T )→ (Y, S) is an intuitionistic C-compact continuous function.
(ii) ICKC¬(f−1(A)) ⊆ f−1(ICKC¬(A)) for each intuitionistic C-compact set

A = 〈x,A1, A2〉 in (Y, S).

Proof. (i)⇒ (ii)
Given f : (X,T ) → (Y, S) is an intuitionistic C-compact continuous function. Let
A = 〈x,A1, A2〉 be an intuitionistic C-compact set in (Y, S). Let ICKC¬(A) is an
intuitionistic C-cocompact set in (Y, S) and hence f−1(ICKC¬(A)) is an intuitionistic
C-compact set in (X,T ). Therefore, ICKC¬(f−1(ICKC¬(A))) = f−1(ICKC¬(A)).
Since, A ⊆ ICKC¬(A), f−1(A) = f−1(ICKC¬(A)). Therefore,

ICKC¬(f−1(A)) ⊆ ICKC¬(f−1(ICKC¬(A))) = f−1(ICKC¬(A))

That is,ICKC¬(f−1(A)) ⊆ f−1(ICKC¬(A)).
(ii)⇒ (i)
Given that ICKC¬(f−1(A)) ⊆ f−1(ICKC¬(A)), for each intuitionistic C-compact set
in (Y, S). Let A be an intuitionistic C-cocompact set in (Y, S). It is enough to show
that f−1(V ) is an intuitionistic C-compact set in (X,T ). Since V = ICKC¬(A),
f−1(A) = f−1(ICKC¬(A)) but it is given that ICKC¬(f−1(A)) ⊆ f−1(ICKC¬(A)),
hence ICKC¬(f−1(A)) ⊆ f−1(A)) ⊆ f−1(ICKC¬(A)). Thus f−1(A)) = ICKC¬(f−1(A)),
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that is, f−1(A) is an intuitionistic C-cocompact set in (X,T ). This proves that f is
an intuitionistic C-compact continuous function. �

Proposition 3.13. Let (X,T ) and (Y, S) be any two intuitionistic cokernal compact
spaces. Let f : (X,T ) → (Y, S) be a bijective function. Then f is an intuitionistic
C-compact continuous function if for each intuitionistic set A in (X,T ),
f(ICKC¬(A)) ⊆ ICKC¬(f(A)).

Proof. Assume that f is an intuitionistic C-compact continuous function and A be
an intuitionistic set in (X,T ). Hence, f−1(ICKC¬(f(A))) is an intuitionistic C-
cocompact set in (X,T ). By Remark 3.12, ICKC¬(f−1(f(A))) ⊆ f−1(ICKC¬(f(A))).
Since f is an injective function, ICKC¬(A) ⊆ f−1(ICKC¬(f(A))). Taking f on both
sides f(ICKC¬(A)) ⊆ f(f−1(ICKC¬(f(A)))). Since f is a surjective function,
f(ICKC¬(A)) ⊆ ICKC¬(f(A)). �

Proposition 3.14. Let (X,T ) and (Y, S) be any two intuitionistic cokernal compact
spaces. Let f : (X,T ) → (Y, S) be any function. Then the following statements are
equivalent:

(i) f : (X,T )→ (Y, S) is an intuitionistic C-cocompact continuous function.
(ii) ICKC¬(f(A)) ⊆ f(ICKC¬(A)), for each intuitionistic C-compact set A =
〈x,A1, A2〉 in (X,T ).

Proof. (i)⇒ (ii)
Let A = 〈x,A1, A2〉 be an intuitionistic C-compact set in (X,T ). Clearly, ICKC¬(A)
is an intuitionistic C-cocompact set in (X,T ).
Since f is an intuitionistic C-cocompact function, f(ICKC¬(A)) is an intuitionistic
C-cocompact set in (Y, S). Thus

ICKC¬(f(A)) ⊆ ICKC¬(f(ICKC¬(A))) = f(ICKC¬(A))

Hence, (i)⇒ (ii).
(ii)⇒ (i)
Let A be any intuitionistic C-cocompact set in (X,T ). Then A = ICKC¬(A). By
(ii),

ICKC¬(f(A)) ⊆ f(ICKC¬(A))
= f(A) ⊆ ICKC¬(f(A)).

Thus f(A) = ICKC¬(f(A)) and hence f(A) is an intuitionistic C-cocompact set in
(Y, S).
Therefore f is an intuitionistic C-cocompact function. Hence, (ii)⇒ (i). �

Definition 3.15. Let (X,T ) be an intuitionistic topological space. An intuitionistic
set A = 〈x,A1, A2〉 is said to be intuitionistic C-cpt set if it is both intuitionistic
C-compact set and intuitionistic C-cocompact set.

Remark 3.16. Let (X,T ) be an intuitionistic cokernal compact space.
Let {Ai, Bi/i ∈ N} be a collection such that Ai’s are intuitionistic C-compact sets
and Bj ’s are intuitionistic C-cocompact sets. Let A and B be any two intuitionistic
C-cpt sets. If Ai ⊆ A ⊆ Bj and Ai ⊆ B ⊆ Bj for all i, j ∈ N , then there exists an
intuitionistic C-cpt set C such that ICKC¬(Ai) ⊆ C ⊆ IKC◦(Bj) for all i, j ∈ N .
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Proof. By Proposition 3.8, ICKC¬(Ai) ⊆ ICKC¬(A) ∩ IKC◦(B) ⊆ IKC\(Bj) for all
i, j ∈ N .
Therefore, C = ICKC¬∩IKC◦(B) is an intuitionistic C-cpt set satisfying the required
conditions. �

Notation 3.17. ICS denotes the collection of all intuitionistic C-cpt sets

Proposition 3.18. Let (X,T ) be an intuitionistic cokernal compact space. Let
{(Aq)}q∈Q and {(Bq)}q∈Q be monotone increasing collections of intuitionistic C-
compact sets and intuitionistic C-cocompact sets of (X,T ) respectively. Suppose that
Aq1 ⊆ Bq2 whenever q1 < q2 (Q is the set of all rational numbers). Then there
exists a monotone increasing collection {Cq}q∈Q of intuitionistic C-cpt sets such
that ICKC¬(Aq1) ⊆ Cq2 and Cq1 ⊆ IKC

◦(Bq2) whenever q1 ≤ q2.

Proof. Let us arrange all rational numbers into a sequence {qn} (without repeti-
tions). For every n ≥ 2, we shall define inductively a collection
{Cqi | 1 ≤ i ≤ n} ⊆ ICS of intuitionistic C-cpt sets such that

ICKC¬(Aq) ⊆ Cqi if q ≤ qi, Cqi ⊆ IKC
◦(Bq) if qi ≤ q for all i < n.....

(Sn)

.
By Proposition 3.8, the countable collections {ICKC¬(Aq)} and {IKC◦(Bq)} satisfy
ICKC¬(Aq1) ⊆ IKC◦(Bq2) if q1 < q2. By Remark 3.3, there exists an intuitionistic
C-cpt set D1 such that

ICKC¬(Aq1) ⊆ D1 ⊆ IKC◦(Bq2).

Letting Cq1 = D1, we get (S2). Assume that Cqi are already defined for i < n and
satisfy (Sn). Define E = ∪{Cqi | i < n, qi < qn}∪ (Aqn) and F = ∩{Cqj/j < n, qj >
qn} ∩Bqn . Then,

ICKC¬(Cqi) ⊆ ICKC
¬(E) ⊆ IKC◦(Cqj )

and

ICKC¬(Cqi) ⊆ ICKC
¬(F ) ⊆ IKC◦(Cqj ),

whenever qi < qn < qj(i, j < n). Now,

Aq ⊆ ICKC¬(E) ⊆ Bq′ and Aq ⊆ ICKC¬(F ) ⊆ Bq′

whenever qi < qn < q
′
.

This shows that the countable collections,

{Cqi | i < n, qi < qn} ∪ {Aq/q < qn} and {Cqj/j < n, qj < qn} ∪
{Bq/q > qn}

together with E and F fulfill all the conditions of Remark 3.3. Hence there exists
an intuitionistic C-cpt set Dn such that

ICKC¬(Dn) ⊆ (Bq) if qn < q, (Aq) ⊆ IKC◦(Dn) if q < qn

,
ICKC¬(Cqi) ⊆ IKC◦(Dn) if qi < qn, ICKC¬(Dn) ⊆ IKC◦(Cqj ) if qn < qj where
1 ≤ i, j ≤ n− 1.

Now, setting Cqn = Dn we obtain an intuitionistic C-compact sets Cq1 , Cq2 , ..., Cqn
that satisfy (Sn+1). Therefore the collection {Cqi | i = 1, 2, ...} has the required
Property. �
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Definition 3.19. Let (X,T ) and (Y, S)be any two intuitionistic topological spaces.
A function f : (X,T )→ (Y, S) is called an intuitionistic C-compact irresolute func-
tion if f−1(A) is intuitionistic C-compact set in (X,T ), for each intuitionistic C-
compact set in (Y, S).

Proposition 3.20. Let (X,T ) and (Y, S) be any two intuitionistic topological spaces.
A function f : (X,T ) → (Y, S) is an intuitionistic C-compact irresolute function if
and only if f(ICKC¬(A)) ⊆ ICKC¬(f(A)), for every intuitionistic C-compact set in
(X,T ).

Proof. Suppose that f is an intuitionistic C-compact irresolute function and let A
be an intuitionistic C-compact set in (X,T ). Then ICKC¬(f(A)) is an intuitionistic
C-cocompact set in (Y, S). By assumption, f−1(ICKC¬(f(A))) is an intuitionistic
C-cocompact set in (X,T ). Now, A ⊆ f−1(f(A)) ⊆ f−1(ICKC¬(f(A))).
Now,

A ⊆ f−1(ICKC¬(A))

ICKC¬(A)) ⊆ ICKC¬(f−1(ICKC¬(f(A))))

ICKC¬(A)) ⊆ f−1(ICKC¬(f(A))).

That is, f(ICKC¬(A)) ⊆ ICKC¬(f(A)).
Conversely, suppose that A is an intuitionistic C-cocompact set in (Y, S). Then,

ICKC¬(A) = A
Now by assumption,
f(ICKC¬(f−1(A))) ⊆ ICKC¬(f(f−1(A))) = ICKC¬(A) = A.
This implies that,

ICKC¬(f−1(A)) ⊆ f−1(A).

But,

ICKC¬(f−1(A)) ⊇ f−1(A).

Hence

ICKC¬(f−1(A)) = f−1(A).

That is, f−1(A) is an intuitionistic C-cocompact set in (X,T ). Hence, f is an
intuitionistic compact irresolute function. �

4. PROPERTIES OF INTUITIONISTIC R-COMPACT SPACES

Definition 4.1. Let (X,T ) be an intuitionistic cokernal compact space and let
A = 〈x,A1, A2〉 be any intuitionistic set in (X,T ). Then A is said to be an intu-
itionistic RC-compact if A = IKC◦(ICKC¬(A))

Definition 4.2. Let (X,T ) be an intuitionistic cokernal compact space and let
A = 〈x,A1, A2〉 be any intuitionistic set in (X,T ). Then A is said to be an intu-
itionistic RC-cocompact if A = ICKC¬(IKC◦(A))

Remark 4.3. Every intuitionistic RC-compact is an intuitionistic C-compact.
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Proposition 4.4. Let (X,T ) and (Y, S) be any two intuitionistic topological spaces.
If f : (X,T ) → (Y, S) is an intuitionistic C-compact continuous function of (X,T )
into an intuitionistic cokernal compact space (Y, S), and if V = 〈x, V 1, V 2〉 is an
intuitionistic RC-compact in (Y, S), then f−1(V ) is an intuitionistic R-C-compact
in (X,T ).

Proof. Since V is an intuitionistic RC-compact in (Y, S),from Remark 5.2.1, it follows
that V is an intuitionistic C-compact in (Y, S). Since f is intuitionistic continuous,
f−1(V ) is an intuitionistic C-compact in (X,T ). That is,

IKC◦(f−1(V )) = f−1(V )(4.1)

Since (Y, S) is an intuitionistic cokernal compact space and since V is an intuition-
istic RC-compact in (Y, S), V = IKC◦(ICKC¬(V ) = ICKC¬(IKC◦(ICKC¬(V ) =
ICKC¬(V )). That is,

V = ICKC¬(V )(4.2)

ICKC¬(f−1(V )) ⊆ f−1(ICKC¬(V )) because f is an intuitionistic C-compact contin-
uous function. Therefore,

IKC◦(ICKC¬(f−1(V ))) ⊆ IKC◦(f−1(ICKC¬(V ))).

From (4.2), it follows that

IKC◦(f−1(ICKC¬(V ))) = IKC◦(f−1(V ))(4.3)

From (4.1) and (4.3), it follows that

IKC◦(ICKC¬(f−1(V ))) ⊆ f−1(V )(4.4)

Since f−1(V ) ⊆ IKC¬(f−1(V )). Then,

IKC◦(f−1(V )) ⊆ IKC◦(IKC¬(f−1(V ))).

From (4.1), it follows that

f−1(V ) ⊆ IKC◦(ICKC¬(f−1(V )))(4.5)

Therefore, from (4.4) and (4.5) it follows that

f−1(V ) = IKC◦(ICKC¬(f−1(V ))).

Hence, f−1(V ) is an intuitionistic RC-compact in (X,T ). �

Definition 4.5. Let (X,T ) and (Y, S) be any two intuitionistic topological spaces.
If f : (X,T ) → (Y, S) be a function. Then f is said to be intuitionistic C-compact
function if the image of each intuitionistic C-compact set in (X,T ) is an intuitionistic
C-compact set in (Y, S).

Definition 4.6. Let (X,T ) and (Y, S) be any two intuitionistic topological spaces.
If f : (X,T )→ (Y, S) be a function. Then f is said to be intuitionistic C-cocompact
function if the image of each intuitionistic C-cocompact set in (X,T ) is an intuition-
istic C-cocompact set in (Y, S).
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Proposition 4.7. Let (X,T ) and (Y, S) be any two intuitionistic topological spaces.
If f : (X,T ) → (Y, S) is an intuitionistic continuous bijective function of an intu-
itionistic cokernal compact space (X,T ) into a space (Y, S). If V = 〈x, V 1, V 2〉 is an
intuitionistic RC-compact set in (X,T ), then f(V ) is an intuitionistic RC-compact
set in (Y, S).

Proof. Since V is an intuitionistic RC-compact set in (X,T ) and since (X,T ) is an
intuitionistic cokernal compact space,

V = IKC◦(IKC¬(V )) = IKC¬(V ).

That is, V = IKC¬(V ). Since f is an intuitionistic C-compact continuous bijective
function,

f(V ) = f(IKC¬(V )) ⊆ IKC¬(f(V )).

Since f is an intuitionisti continuous function,

f(V ) = IKC◦(f(V )) ⊆ IKC◦(IKC¬(f(V ))).

That is,

f(V ) ⊆ IKC◦(IKC¬(f(V )))(4.6)

Now, IKC◦(IKC¬(f(V ))) ⊆ IKC¬(f(V )). Since f is an intuitionistic C-compact bi-
jective function, f is an intuitionistic C cocompact function. Hence

IKC¬(f(V )) ⊆ f(IKC¬(V ))

= f(V ).

Then,

IKC◦(IKC¬(f(V ))) ⊆ f(V )(4.7)

From (4.5) and (4.6), it follows that IKC◦(IKC¬(f(V ))) = f(V ). That is, f(V ) is
an intuitionistic R-C-compact set in (Y, S).

�

Definition 4.8. Let (X,T ) be an intuitionistic topological space. If a family
{Gi =< x,Gi1 , Gi2 >: j ∈ J} of intuitionistic R-C-compact in (X,T ) satisfies the

condition ∪{Gi : j ∈ J} = X̃, then it is called an intuitionistic RC compact cover of
(X,T ).

Definition 4.9. An intuitionistic topological space (X,T ) is said to be intuitionistic
RC compact space if and only if every intuitionistic RC-compact cover of (X,T ) has
a finite subfamily the intuitionistic C-compact cokernals of whose members cover the
space (X,T ).

Proposition 4.10. Let (X,T ) and (Y, S) be any two intuitionistic topological spaces.
Let f : (X,T ) → (Y, S) be an intuitionistic C-compact function of an intuitionistic
RC-compact space (X,T ) onto an intuitionistic cokernal compact space (Y, S), then
(Y, S) is an intuitionistic R-compact space.
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Proof. Let {Vj = {〈, x, V 1
j , V

2
j 〉} be an intuitionistic RC-compact cover of (Y, S).

Since f is an intuitionistic C-compact continuous function and (Y, S) is an intu-
itionistic cokernal compact space, from Proposition 4.1, {f−1(Vj) : j ∈ J} is an
intuitionistic RC-compact cover of (X,T ). Since (X,T ) is an intuitionistic R-
compact space, there exists a finite subfamily f−1(Vj1), .....f−1(Vjn) such that

X̃ = ∪ni=1IKC
¬(f−1(Vji)))

Thus,

Ỹ = f(∪ni=1IKC
¬(f−1(Vji))) ⊆ ∪ni=1IKC

¬(Vji)

Hence Ỹ = ∪ni=1IKC
¬(Vji).

�

Proposition 4.11. Let (X,T ) and (Y, S) be any two intuitionistic topological spaces.
Let f : (X,T )→ (Y, S) be an intuitionistic C-compact continuous bijective function
of an intuitionistic cokernal compact space (X,T ) onto an intuitionistic R-compact
space (Y, S), then (X,T ) is an intuitionistic R-compact space.

Proof. Let {Vα = {〈, x, V 1
α , V

2
α 〉 : α ∈ J} be an intuitionistic RC-compact cover of

(X,T ). From Proposition 4.7, {f−1(Vα) : j ∈ J} is an intuitionistic RC-compact
cover of (Y, S). Since (Y, S) is an intuitionistic R-compact space, there exists
f−1(Vα1

), .....f−1(Vαn
) such that

Ỹ = ∪ni=1IKC
¬(f−1(Vαi)))

Then, X̃ = f−1(∪ni=1IKC
¬(f(Vαi

))). Since f is an intuitionistic C-cocompact func-
tion, IKC¬(f(Vαi

)) = f(IKC¬(Vαi
)). Thus,

X̃ = ∪ni=1f
−1(f(IKC¬(Vαi

))) = ∪ni=1IKC
¬(Vαi

).

Therefore, (X,T ) is an intuitionistic R-compact space. �

5. Conclusions

In this paper, the concepts of intuitionistic cokernel compact spaces, intuitionistic
C-compact set and intuitionistic C-compact continuous function are introduced and
studied. Some interesting properties are also established.
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