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Abstract. In this paper, we have briefly studied the concepts
of connectednesses and disconnectednesses for Q-topological spaces with
respect to a class of Q-topological spaces, motivated by the works of
Preuss, Arhangel’skii and Wiegandt and few others. Also, we have given
some characterization(s) of connectednesses and disconnectednesses for Q-
topological spaces. We have also showed that within the class of stratified
Q-topological spaces, the subclass of T0-Q-topological spaces is a discon-
nectedness.
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1. Introduction

In 2008, Solovyov [9] introduced the notion of Q-topology, where Q is any fixed
member of a variety of Ω-algebras, which provides a common framework for fixed-
basis approach to lattice-valued topology (which in turn gives rise to the category
Q-TOP of such spaces). In addition to this, he also introduced (in [9]) Q-Sierpinski
space and T0-ness for Q-topological spaces. In topology (and also in fuzzy topology),
T0-ness has been shown to be a kind of ‘disconnectedness’ in the sense of G. Preuss
[4, 5, 6] (a notion, studied also by Arhangel’skii and Wiegandt [2] in considerable
detail). In this paper, we have shown an analogous connection for T0-Q-topological
spaces, in addition to giving some characterization(s) of connectednesses and dis-
connectednesses for Q-topological spaces. In the later part of the paper, we restrict
to stratified Q-topological spaces to obtain the analogues of some of the above men-
tioned connections, wherein the Q-Sierpinski space will also play a role.
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2. Preliminaries

For all undefined category-theoretic notions used in this paper, [1] may be
referred. All subcategories used here are assumed to be full.

We begin by recalling the notions of Ω-algebras and their homomorphisms (most
of the definitions in the preliminaries are given in [7, 8] also; we recall these here for
the sake of completeness); for details, cf. [3, 9].

Definition 2.1. Let Ω = (nλ)λ∈I be a class of cardinal numbers.

• An Ω-algebra is a pair (A, (ωAλ )λ∈I) consisting of a set A and a family of
maps ωAλ : Anλ → A. B ⊆ A is called a subalgebra of (A, (ωAλ )λ∈I) if
ωAλ ((bi)i∈nλ) ∈ B, for every λ ∈ I and every (bi)i∈nλ ∈ Bnλ . Given S ⊆ A,
〈S〉 denotes the subalgebra of (A, (ωAλ )λ∈I) ‘generated by S’, i.e., 〈S〉 is the
intersection of all subalgebras of (A, (ωAλ )λ∈I) containing S.
• Given Ω-algebras (A, (ωAλ )λ∈I) and (B, (ωBλ )λ∈I), a map f : A→ B is called

an Ω-algebra homomorphism provided that for every λ ∈ I, the following
diagram

Anλ

ωAλ
��

fnλ // Bnλ

ωBλ
��

A
f
// B

commutes.
Let Alg(Ω) denote the category of Ω-algebras and Ω-algebra homomor-
phisms (this category has products).
• A variety of Ω-algebras is a full subcategory of Alg(Ω), which is closed

under the formation of products, subalgebras, and homomorphic images.

Throughout this paper, Ω = (nλ)λ∈I denotes a fixed class of cardinal
numbers, V denotes a fixed variety of Ω-algebras and Q denotes a fixed
member of V.

Each function f : X → Y between sets X and Y provides two functions
f← : 2Y → 2X and f→ : 2X → 2Y , given by f←(B) = {x ∈ X | f(x) ∈ B}
and f→(A) = {f(x) | x ∈ A}, and also a function f←Q : QY → QX , given by

f←Q (α) = α ◦ f .

• Given a set X, a subset τ of QX is called a Q-topology on X if τ is a
subalgebra of QX , in which case the pair (X, τ) is called a Q-topological
space.
• Given two Q-topological spaces (X, τ) and (Y, η), a Q-continuous function

from (X, τ) to (Y, η) is a function f : X → Y such that f←Q (α) ∈ τ for every
α ∈ η.
• Given a Q-topological space (X, τ) and Y ⊆ X, (i←Q )→(τ) (= {p◦ i | p ∈ τ})

is called the Q-subspace topology on Y , where i : Y → X is the inclusion
map. We shall denote the Q-subspace topology on Y as τY .
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• A Q-topological space (X, τ) is called T0 if for every distinct x, y ∈ X, there
exists p ∈ τ such that p(x) 6= p(y).

The meanings of homeomorphisms, embeddings, and products, etc. forQ-topological
spaces are on expected lines.

Let Q-TOP denote the category of Q-topological spaces and Q-continuous
maps between them.

3. Q-connectedness and Q-disconnectedness

In what follows, we will frequently deal with the classes of Q-topological spaces.
We assume that all such considered classes are closed under Q-homeomorphisms.

If A is any class of Q-topological spaces, then we shall refer to its members as
“A-spaces”.

A class A of Q-topological spaces is called
(i) hereditary, if each Q-subspace of each A-space is in A,
(ii) continuously closed, if each Q-continuous image of any A-space is in A.
Further, we define the classes DA and CA of Q-topological spaces as follows.
DA = {X ∈ obQ-TOP | every Q-continuous map f : Y → X is constant, for

every Y ∈ A} and
CA = {X ∈ obQ-TOP | every Q-continuous map f : X → Y , Y ∈ A is constant}.

Definition 3.1. The class DA will be called a Q-disconnectedness and the class
CA will be called a Q-connectedness. The operators D and C are referred to as
Q-disconnectedness and Q-connectedness operators respectively.

It can be easily observed that every Q-disconnectedness and Q-connectedness
contains all trivial Q-topological spaces.

Remark 3.2. In the above definition, without any loss of generality, A can be
chosen to a continuously closed/hereditary class of Q-topological spaces.

Proposition 3.3. Let A be a class of Q-topological spaces. Then
(1) If A is continuously closed, then

DA = {X ∈ obQ-TOP | no non-trivial A-space is a Q-subspace of X}.
(2) If A is hereditary, then

CA = {X ∈ obQ-TOP | X cannot be mapped Q-continuously onto
a non-trivial A-space}.

Proof. For convenience, we denote {X ∈ obQ-TOP | no non-trivial A-space is a
Q-subspace of X} by U and {X ∈ obQ-TOP | X cannot be mapped Q-continuously
onto a non-trivial A-space} by V.

(1) Let X ∈ DA and Y be a Q-subspace of X. If Y is an A-space, then the
inclusion map i : Y → X, being Q-continuous, must be constant but then Y comes
out to a trivial A-space. Thus X ∈ U . So DA ⊆ U . Now if X /∈ DA, then there is an
A-space Y and a non-constant Q-continuous map f : Y → X. As A is continuously
closed, f(Y ) is a non-trivial A-space and also it is a Q-subspace of X. Thus X /∈ U .
So U ⊆ DA. Hence DA = U . This proves (1).

(2) Let X ∈ CA and f : X → Y ∈ A be an onto Q-continuous map. Then
f must be constant, whereby Y turns out to a trivial A-space. Thus X ∈ V. So
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CA ⊆ V. Now suppose that X /∈ CA. Then there is a non-constant Q-continuous
map f : X → Y ∈ A, whereby f(X) is a non-trivial Q-subspace of Y . As A is
hereditary, f(X) ∈ A, showing that f maps X Q-continuously onto a non-trivial
A-space, namely, f(X). Hence X /∈ V, and thus, V ⊆ CA. Therefore CA = V. �

Proposition 3.4. Let A1,A2 be any classes of Q-topological spaces. Then
(1) A1 ⊆ A2 ⇒ DA1 ⊇ DA2 and CA1 ⊇ CA2.
(2) A1 ⊆ DCA1 and A1 ⊆ CDA1.
(3) DCDA1 = DA1 and CDCA1 = CA1.

Proof. (1) Let A1 ⊆ A2. If X ∈ DA2, then every Q-continuous map from each
A2-space to X is constant. Thus, in particular, every Q-continuous map from each
A1-space to X is constant (as A1 ⊆ A2). So X ∈ DA1. Thus, DA1 ⊇ DA2.
Similarly, it can be shown that CA1 ⊇ CA2.

(2) If X /∈ DCA1, then there is a non-trivial Y ∈ CA1 and a non-constant Q-
continuous map f : Y → X, which in turn implies that X /∈ A1. Thus A1 ⊆ DCA1.
Similarly, it can be shown that A1 ⊆ CDA1.

(3) Suppose that X /∈ DCDA1. Then there is some non-trivial Y ∈ CDA1

and a non-constant Q-continuous map f : Y → X, which in turn implies that
X /∈ DA1. Thus DA1 ⊆ DCDA1. Next, let X /∈ DA1. Then there is some non-
trivial Y ∈ A1 and a non-constant Q-continuous map f : Y → X, whereby we are
getting that X /∈ DCDA1 (since A1 ⊆ CDA1, using (2)). So DCDA1 ⊆ DA1.
Hence DCDA1 = DA1. Similarly, it can be shown that CDCA1 = CA1. �

Corollary 3.5. For any classes A,A1 and A2 of Q-topological spaces, we have :
(1) If A1 ⊆ A2, then CDA1 ⊆ CDA2.
(2) If A is a Q-disconnectedness, then DCA = A, and if A is a Q-connectedness,

then CDA = A.

Proposition 3.6. For any class A of Q-topological spaces, DA is hereditary and
CA is continuously closed.

Proof. Let X ∈ DA and Y ⊆ X. If possible, suppose that Y /∈ DA (Y has Q-
subspace topology). Then there is some A-space Z and a non-constant Q-continuous
function f : Z → Y , but then we have a non-constantQ-continuous function, namely,
i ◦ f : Z → X (i : Y → X is the inclusion function), showing that X /∈ DA, a
contradiction. Thus Y ∈ DA.

Next, let X ∈ CA and Y be a non-trivial Q-TOP-object which is Q-continuous
image of X, i.e., there is an onto (clearly it is non-constant also) Q-continuous
function f : X → Y . If possible, suppose that Y /∈ CA. Then there is some A-
space Z and a non-constant Q-continuous function g : Y → Z, but then we have a
non-constant Q-continuous function, namely g ◦ f : X → Z, whereby X /∈ CA, a
contradiction. So Y ∈ CA. �

Proposition 3.7. A class B of Q-topological spaces is a Q-disconnectedness if and
only if B satisfies the condition that X ∈ B if and only if each non-trivial Q-subspace
of X can be mapped Q-continuously onto a non-trivial B-space.

Proof. Let the class B be a Q-disconnectedness. Then B = DA, for some continu-
ously closed class A of Q-topological spaces. We will show that if X /∈ DA, then
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there is some non-trivialQ-subspace Y ofX which cannot be mappedQ-continuously
onto any non-trivial B-space. Now as X /∈ DA, there exists a non-trivial A-space
Y and a non-constant Q-continuous map f : Y → X. Note that f(Y ) is also an
A-space and it is a non-trivial Q-subspace of X. If possible, suppose that f(Y )
is mapped Q-continuously onto a non-trivial B(= DA)-space Z, i.e., there is some
non-constant Q-continuous map g : f(Y )→ Z, showing that Z /∈ DA, a contradic-
tion. Next, let X ∈ B(= DA) and Y be any non-trivial Q-subspace of X. Then
Y ∈ B(= DA) (as DA is hereditary). Note that id : Y → Y is an onto Q-continuous
map. In other words, Y can be mapped Q-continuously onto a non-trivial B-space,
viz., Y itself.

Conversely, suppose that the class B of Q-topological spaces satisfies the given
condition. We show that B is Q-disconnectedness by showing that B = DCB. For
this, it is sufficient to show that DCB ⊆ B (as B ⊆ DCB by Proposition 3.4(2)).
If X /∈ B, then by hypothesis, there is some non-trivial Q-subspace Y of X which
cannot be mapped Q-continuously onto any non-trivial B(= DA)-space, whereby
Y ∈ CB (by Proposition 3.3), which in turn implies that X /∈ DCB (again by
Proposition 3.3). Thus DCB ⊆ B. �

Remark 3.8. For a hereditary class B of Q-topological spaces, following conditions
are equivalent:

(1) Every non-trivial Q-subspace Y of X ∈ B can be mapped Q-continuously onto
a non-trivial B-space.

(2) For every non-trivial Q-subspace Y of X ∈ B, there is some non-constant
Q-continuous map from Y to a non-trivial B-space.

Proposition 3.9. A class B of Q-topological spaces is a Q-disconnectedness if and
only if B satisfies the condition that X ∈ B if and only if for every non-trivial Q-
subspace Y of X ∈ B, there is some non-constant Q-continuous map from Y to a
non-trivial B-space.

Proof. A proof of the necessary part follows from Proposition 3.7 and Remark 3.8,
and the fact that the class B is hereditary, being a Q-disconnectedness.

A proof of the sufficient part is given as follows:
Suppose that the class B of Q-topological spaces satisfies the given condition. We
show that B is Q-disconnectedness by showing that B = DCB. For this, we will
only show that DCB ⊆ B. If X /∈ B, then by hypothesis, there is some non-
trivial Q-subspace Y of X such that every Q-continuous map f : Y → Z ∈ B is
constant, whereby Y ∈ CB. By using Proposition 3.3, we get that X /∈ DCB. Thus
DCB ⊆ B. �

Proposition 3.10. Every Q-disconnectedness B is productive.

Proof. Let B be Q-disconnectedness. Then B = DA, for some continuously closed
class A of Q-topological spaces. Let Xj ∈ B(= DA), for every j ∈ J (J is some
index set). Let Y ∈ A and f : Y → X is a Q-continuous map, where X is the
product Q-topology of Q-topological spaces Xj , j ∈ J . Let pj : X → Xj be the
jth-projection map. Then pj ◦ f : Y → Xj is Q-continuous, for every j ∈ J . Since
for every j ∈ J , Xj ∈ B, all pj ◦ f are constant maps, whereby it follows that f is

543



Sheo Kumar Singh et al. Srivastava /Ann. Fuzzy Math. Inform. 12 (2016), No. 4, 539–546

a constant map. Thus we get that every Q-continuous map f : Y → X must be
constant, for every Y ∈ A. So X ∈ B. �

Proposition 3.11. A class A of Q-topological spaces is a Q-connectedness if and
only if A satisfies the condition that X ∈ A if and only if every non-trivial Q-
continuous image of X has a non-trivial Q-subspace which is an A-space.

Proof. First, let A be Q-connectedness. Then A = CB, for some hereditary class
B of Q-topological spaces. Note that CB is continuously closed. If X /∈ A(= CB),
then there is a non-trivial Y ∈ B and a non-constant Q-continuous map f : X → Y .
Thus, f(X) (i.e., a Q-continuous image of X) is a non-trivial Q-subspace of Y . So
f(X) ∈ B. We claim that no non-trivial A-space is a Q-subspace of f(X). To prove
it, suppose that there is a non-trivial A-space Z which is a Q-subspace of f(X),
then the inclusion map i : Z → f(X) is a non-constant Q-continuous map, which
implies that Z /∈ A, a contradiction.

Next, let X ∈ A(= CB) and Y be a non-trivial Q-continuous image of X, i.e.,
there is an onto Q-continuous map g : X → Y , so Y ∈ A(= CB) (as CB is continu-
ously closed) and we say that Y has a non-trivial A-space which is a Q-subspace of
Y , viz., Y itself.

Conversely, suppose that the class A satisfies the given condition. We will show
that A is Q-connectedness by showing that A = CDA. Clearly, A ⊆ CDA. We
only requires to show that CDA ⊆ A. If X /∈ A, then there exists a non-trivial
Q-continuous image Y of X such that no non-trivial A-space is a Q-subspace of Y ,
i.e., there is an onto (and hence non-constant) Q-continuous map f : X → Y with
the property that no non-trivial A-space is a Q-subspace of Y , whereby Y ∈ DA
(by Proposition 3.3), but then X /∈ CDA. So CDA ⊆ A. �

4. Some special Q-disconnectedness and
Q-connectedness classes

From now onward in this paper, we shall be dealing only with the stratified
Q-topological spaces (as defined below), so that we can talk about indiscrete Q-
topological spaces and ensure that constant maps are Q-continuous.

Definition 4.1 ([9]). A Q-topological space (X, τ) is said to be stratified if q̄ ∈ τ ,
for each q ∈ Q, where q̄ : X → Q is q-valued constant map.

By DA we shall denote a fixed two-point indiscrete Q-topological space (i.e., the
one whose Q-topology consists of all constant maps only).

Let Str-Q-TOP and Str-Q-TOP0 respectively denote the categories of all strat-
ified Q-topological spaces and stratified T0-Q-topological spaces.

The counterpart of the Q-Sierpinski space in the category Str-Q-TOP turns
out to be (Q, 〈{id} ∪ {q̄ | q ∈ Q}〉), where id : Q → Q is the identity map. We
shall denote it by QS . It can be then noticed that this QS also has the property
similar to the general Q-Sierpinski space (introduced in [9], see also [7]), viz., for
any (X, τ) ∈ obStr-Q-TOP:

µ ∈ τ if and only if µ : (X, τ)→ QS is Q-continuous.
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Proposition 4.2. If B is a Q-disconnectedness with DA ∈ B, then B = Str-Q-
TOP.

Proof. As B is a Q-disconnectedness, B = DA, for some continuously closed class
A of Q-topological spaces. To show B = Str-Q-TOP, we will only show that
Str-Q-TOP ⊆ B. Let X ∈ obStr-Q-TOP. As DA ∈ B, for every Y ∈ A, each
Q-continuous function f : Y → DA must be constant. But then Y consists of only
one element, whereby it follows that any Q-continuous function from Y to X must
be constant. So X ∈ B. Hence B = Str-Q-TOP. �

Proposition 4.3. If CA denotes the class of all indiscrete Q-topological spaces, then
Str-Q-TOP0 = DCA.

Proof. Let (X, τ) /∈ obStr-Q-TOP0. Then there exists x, y ∈ X, with x 6= y, such
that µ(x) = µ(y), for every µ ∈ τ . Let Y = {x, y}. Then (Y, τY ) is an indiscrete
Q-subspace of X. Clearly, the inclusion function i : Y → X is non-constant and
Q-continuous. Thus (X, τ) /∈ DCA. So, DCA ⊆ Str-Q-TOP0.

Next, let (X, τ) /∈ DCA. Then there exists some Y ∈ CA and a non-constant
Q-continuous function f : Y → X. But we have y1, y2 ∈ Y , with y1 6= y2 such that
f(y1) 6= f(y2). Let f(y1) = x1 and f(y2) = x2, so x1 6= x2. Note that for any
µ ∈ τ , as Y ∈ CA, f←Q (µ) = µ ◦ f must be constant. Hence µ(f(y1)) = µ(f(y2)),

i.e., µ(x1) = µ(x2), for every µ ∈ τ . Thus (X, τ) /∈ obStr-Q-TOP0. So, Str-Q-
TOP0 ⊆ DCA. Hence, we have Str-Q-TOP0 = DCA. �

Proposition 4.4. If B is a Q-disconnectedness with DA /∈ B and QS ∈ B, then
B = Str-Q-TOP0.

Proof. As B is a Q-disconnectedness, B = DA, for some continuously closed class A
of Q-topological spaces.

Let X ∈ B. To show X ∈ obStr-Q-TOP0, it will suffices to show that there is no
non-trivial Q-subspace of X which is indiscrete. Let Y be a non-trivial Q-subspace
of X. Then, clearly Y ∈ B by Proposition 3.6. If Y is indiscrete, then the two-point
indiscrete Q-topological space DA is Q-homeomorphic to a Q-subspace of Y . Thus
DA ∈ B, a contradiction. So Y cannot be indiscrete. Hence B ⊆ Str-Q-TOP0.

Next, let X ∈ obStr-Q-TOP0. If possible, suppose that there is some Y ∈
A and a non-constant Q-continuous function f : Y → X. Then f(Y ) is a non-
trivial A-space. Also, f(Y ) is a non-trivial Q-subspace of X. Thus f(Y ) cannot
be indiscrete. So, there is a non-constant Q-continuous function µ : f(Y ) → QS .
But QS /∈ B = DA, a contradiction. Hence X ∈ B and thus, Str-Q-TOP0 ⊆ B.
Therefore, B = Str-Q-TOP0. �

Proposition 4.5. The class CA of all indiscrete Q-topological spaces is a Q-connec-
tedness. In fact, CA = C(QS).

Proof. Let (X, τ) ∈ CA and (Y, δ) be any non-trivial Q-continuous image of (X, τ),
i.e., there is an onto Q-continuous map g : (X, τ) → (Y, δ). Since for every ν ∈ δ,
ν : (Y, δ) → QS is Q-continuous, ν ◦ g : (X, τ) → QS is Q-continuous. Then
ν ◦ g ∈ τ , but then ν ◦ g is constant, whereby it follows that ν is constant. Thus ν
is the indiscrete Q-topology, i.e., (Y, δ) ∈ CA. Here (Y, δ) itself is a Q-subspace of
(Y, δ). So, CA is a Q-connectedness by Proposition 3.11.
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Let (X, τ) ∈ CA and f : (X, τ) → QS be any Q-continuous map. Then f ∈ τ .
Thus, f must be constant, whereby X ∈ C(QS). So CA ⊆ C(QS). Next, let
(X, τ) ∈ C(QS). Then every Q-continuous map from (X, τ) to QS must be constant.
Thus, for every µ ∈ τ , since µ : (X, τ) → QS is Q-continuous, µ must be constant,
i.e., τ contains only constant maps. Hence τ is the indiscrete Q-topology, i.e.,
(X, τ) ∈ CA. So C(QS) ⊆ CA. Hence CA = C(QS). �

5. Conclusion

In this paper, we have briefly studied the concepts of connectednesses and dis-
connectednesses for Q-topological spaces with respect to a class of Q-topological
spaces, motivated by the works of G. Preuss, Arhangel’skii and Wiegandt and some
others (cf. e.g., [2, 4, 5, 6, 10]) for topological spaces, uniform spaces, and fuzzy
topological spaces. We have also shown that for Q-topological spaces, T0-ness is
a disconnectedness in the sense of Preuss, in addition to giving some characteriza-
tion(s) of connectednesses and disconnectednesses for Q-topological spaces.
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