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ABSTRACT. In this paper, we have briefly studied the concepts
of connectednesses and disconnectednesses for QQ-topological spaces with
respect to a class of @Q-topological spaces, motivated by the works of
Preuss, Arhangel’skii and Wiegandt and few others. Also, we have given
some characterization(s) of connectednesses and disconnectednesses for Q-
topological spaces. We have also showed that within the class of stratified
Q-topological spaces, the subclass of To-Q-topological spaces is a discon-
nectedness.
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1. INTRODUCTION

In 2008, Solovyov [9] introduced the notion of Q-topology, where @ is any fixed
member of a variety of Q-algebras, which provides a common framework for fixed-
basis approach to lattice-valued topology (which in turn gives rise to the category
Q-TOP of such spaces). In addition to this, he also introduced (in [9]) @-Sierpinski
space and Tp-ness for Q-topological spaces. In topology (and also in fuzzy topology),
To-ness has been shown to be a kind of ‘disconnectedness’ in the sense of G. Preuss
[4, 5, 6] (a notion, studied also by Arhangel’skii and Wiegandt [2] in considerable
detail). In this paper, we have shown an analogous connection for Tp-@Q-topological
spaces, in addition to giving some characterization(s) of connectednesses and dis-
connectednesses for @-topological spaces. In the later part of the paper, we restrict
to stratified Q-topological spaces to obtain the analogues of some of the above men-
tioned connections, wherein the @-Sierpinski space will also play a role.
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2. PRELIMINARIES

For all undefined category-theoretic notions used in this paper, [I] may be
referred. All subcategories used here are assumed to be full.
We begin by recalling the notions of Q-algebras and their homomorphisms (most
of the definitions in the preliminaries are given in [7, 8] also; we recall these here for
the sake of completeness); for details, cf. [3, 9].

Definition 2.1. Let Q = (ny)xer be a class of cardinal numbers.

e An Q-algebra is a pair (4, (w{)res) consisting of a set A and a family of
maps wi : A™ — A. B C A is called a subalgebra of (A, (w$)res) if
wi((bi)ieny) € B, for every A € I and every (b;)ien, € B™. Given S C A4,
(S) denotes the subalgebra of (A, (wi)xer) ‘generated by S’ i.e., (S) is the
intersection of all subalgebras of (A, (w{!)xes) containing S.

e Given Q-algebras (A, (wi)res) and (B, (wP)rer), amap f: A — B is called
an {2-algebra homomorphism provided that for every A € I, the following

diagram
o
ATL)\ s BTL)\
4] |o#
A———B
comimutes.

Let Alg(Q) denote the category of Q-algebras and -algebra homomor-
phisms (this category has products).

e A variety of Q-algebras is a full subcategory of Alg(f2), which is closed
under the formation of products, subalgebras, and homomorphic images.

Throughout this paper, € = (nx)aer denotes a fixed class of cardinal
numbers, V denotes a fixed variety of (-algebras and @) denotes a fixed
member of V.

Each function f : X — Y between sets X and Y provides two functions
fo2Y » 2% and f7 : 2% — 2Y given by f<(B) = {z € X | f(z) € B}
and f7(A) = {f(z) | = € A}, and also a function f§ : Q¥ — Q¥ given by
fg(@)=aof.

e Given a set X, a subset 7 of Q¥ is called a Q-topology on X if 7 is a
subalgebra of Q¥ in which case the pair (X, 7) is called a Q-topological
space.

e Given two Q-topological spaces (X, 7) and (Y, ), a @-continuous function
from (X, 7) to (Y,n) is a function f : X — Y such that f5 (a) € 7 for every
a €.

e Given a Q-topological space (X, 7) and Y C X, (i) 7 () (= {poi|peT})
is called the ()-subspace topology on Y, where ¢ : Y — X is the inclusion
map. We shall denote the Q-subspace topology on Y as 7y.

540



Sheo Kumar Singh et al. Srivastava /Ann. Fuzzy Math. Inform. 12 (2016), No. 4, 539-546

e A Q-topological space (X, 7) is called Ty if for every distinct z,y € X, there
exists p € 7 such that p(z) # p(y).

The meanings of homeomorphisms, embeddings, and products, etc. for @Q-topological

spaces are on expected lines.
Let Q-TOP denote the category of Q-topological spaces and @-continuous
maps between them.

3. Q—CONNECTEDNESS AND Q—DISCONNECTEDNESS

In what follows, we will frequently deal with the classes of Q-topological spaces.

We assume that all such considered classes are closed under -homeomorphisms.

If A is any class of Q-topological spaces, then we shall refer to its members as
“A-spaces”.

A class A of Q-topological spaces is called

(i) hereditary, if each Q-subspace of each A-space is in A,

(ii) continuously closed, if each @-continuous image of any A-space is in .A.

Further, we define the classes DA and C'A of Q-topological spaces as follows.

DA = {X € obQ-TOP | every Q-continuous map f : Y — X is constant, for
every Y € A} and

CA={X € obQ-TOP | every Q-continuousmap f : X =Y, Y € Ais constant}.

Definition 3.1. The class DA will be called a @-disconnectedness and the class
CA will be called a @-connectedness. The operators D and C are referred to as
@-disconnectedness and @-connectedness operators respectively.

It can be easily observed that every @-disconnectedness and ()-connectedness
contains all trivial Q-topological spaces.

Remark 3.2. In the above definition, without any loss of generality, A can be
chosen to a continuously closed /hereditary class of Q-topological spaces.

Proposition 3.3. Let A be a class of Q-topological spaces. Then
(1) If A is continuously closed, then

DA ={X € 0bQ-TOP | no non-trivial A-space is a Q-subspace of X}.
(2) If A is hereditary, then

CA={X € 0bQ-TOP | X cannot be mapped Q-continuously onto
a non-trivial A-space}.

Proof. For convenience, we denote {X € ob@Q-TOP | no non-trivial A-space is a
Q-subspace of X} by U and {X € 0b@-TOP | X cannot be mapped @Q-continuously
onto a non-trivial A-space} by V.

(1) Let X € DA and Y be a Q-subspace of X. If Y is an A-space, then the
inclusion map i : Y — X, being @-continuous, must be constant but then Y comes
out to a trivial A-space. Thus X € Y. So DA CU. Now if X ¢ DA, then there is an
A-space Y and a non-constant @Q-continuous map f:Y — X. As A is continuously
closed, f(Y) is a non-trivial A-space and also it is a @-subspace of X. Thus X ¢ U.
SoU € DA. Hence DA =U. This proves (1).

(2) Let X € CAand f: X = Y € A be an onto Q-continuous map. Then
f must be constant, whereby Y turns out to a trivial A-space. Thus X € V. So
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CA C V. Now suppose that X ¢ CA. Then there is a non-constant ()-continuous
map f : X —» Y € A, whereby f(X) is a non-trivial Q-subspace of Y. As A is
hereditary, f(X) € A, showing that f maps X Q-continuously onto a non-trivial
A-space, namely, f(X). Hence X ¢ V, and thus, V C CA. Therefore CA=V. O

Proposition 3.4. Let Ay, Ay be any classes of Q-topological spaces. Then
(1) .A1 - AQ = DA1 D D.AQ and C.Al D) CAQ
(2) Al g DCAl and ./41 Q CD.Al.
(3) DCD.Al = D.Al and CDC.Al = C.Al

Proof. (1) Let Ay C As. If X € DAy, then every @Q-continuous map from each
As-space to X is constant. Thus, in particular, every @-continuous map from each
Aj-space to X is constant (as A; C As). So X € DA;. Thus, DA; 2O DAs.
Similarly, it can be shown that C.A; D CAs.

(2) If X ¢ DCA, then there is a non-trivial Y € C'A; and a non-constant Q-
continuous map f : Y — X, which in turn implies that X ¢ A;. Thus A; C DCA,.
Similarly, it can be shown that A; € CDA;.

(3) Suppose that X ¢ DCDA;. Then there is some non-trivial Y € CDA,
and a non-constant Q-continuous map f : Y — X, which in turn implies that
X ¢ DA;. Thus DA; C DCDA;. Next, let X ¢ DA;. Then there is some non-
trivial Y € A; and a non-constant @-continuous map f : Y — X, whereby we are
getting that X ¢ DCDA, (since A1 C CDA,, using (2)). So DCDA; C DA;.
Hence DCDA; = DA;. Similarly, it can be shown that CDCA; = CA;. O

Corollary 3.5. For any classes A, A1 and Az of Q-topological spaces, we have :
(1) If .A1 Q .Ag, then CD.Al Q CD.AQ
(2) If A is a Q-disconnectedness, then DCA = A, and if A is a Q-connectedness,
then CDA = A.

Proposition 3.6. For any class A of Q-topological spaces, DA is hereditary and
CA is continuously closed.

Proof. Let X € DA and Y C X. If possible, suppose that Y ¢ DA (Y has Q-
subspace topology). Then there is some A-space Z and a non-constant Q-continuous
function f : Z — Y, but then we have a non-constant Q)-continuous function, namely,
iof:Z — X (i:Y — X is the inclusion function), showing that X ¢ DA, a
contradiction. Thus Y € DA.

Next, let X € C A and Y be a non-trivial Q-TOP-object which is Q-continuous
image of X, i.e., there is an onto (clearly it is non-constant also) Q-continuous
function f : X — Y. If possible, suppose that Y ¢ CA. Then there is some A-
space Z and a non-constant @)-continuous function g : Y — Z, but then we have a
non-constant @Q-continuous function, namely go f : X — Z, whereby X ¢ CA, a
contradiction. So Y € C'A. O

Proposition 3.7. A class B of Q-topological spaces is a Q-disconnectedness if and
only if B satisfies the condition that X € B if and only if each non-trivial Q-subspace
of X can be mapped Q-continuously onto a non-trivial B-space.

Proof. Let the class B be a Q-disconnectedness. Then B = DA, for some continu-
ously closed class A of Q-topological spaces. We will show that if X ¢ DA, then
542
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there is some non-trivial Q-subspace Y of X which cannot be mapped Q-continuously
onto any non-trivial B-space. Now as X ¢ DA, there exists a non-trivial .A-space
Y and a non-constant @Q-continuous map f : Y — X. Note that f(Y) is also an
A-space and it is a non-trivial @-subspace of X. If possible, suppose that f(Y)
is mapped Q-continuously onto a non-trivial B(= D.A)-space Z, i.e., there is some
non-constant @-continuous map ¢ : f(Y) — Z, showing that Z ¢ DA, a contradic-
tion. Next, let X € B(= DA) and Y be any non-trivial @-subspace of X. Then
Y € B(= DA) (as DA is hereditary). Note that id : Y — Y is an onto Q-continuous
map. In other words, Y can be mapped @-continuously onto a non-trivial B-space,
viz., Y itself.

Conversely, suppose that the class B of Q-topological spaces satisfies the given
condition. We show that B is @-disconnectedness by showing that B = DCB. For
this, it is sufficient to show that DCB C B (as B C DCB by Proposition 3.4(2)).
If X ¢ B, then by hypothesis, there is some non-trivial Q-subspace Y of X which
cannot be mapped Q-continuously onto any non-trivial B(= D.A)-space, whereby
Y € CB (by Proposition 3.3), which in turn implies that X ¢ DCB (again by
Proposition 3.3). Thus DCB C B. O

Remark 3.8. For a hereditary class B of Q-topological spaces, following conditions
are equivalent:

(1) Every non-trivial Q-subspace Y of X € B can be mapped @-continuously onto
a non-trivial B-space.

(2) For every non-trivial @Q-subspace Y of X € B, there is some non-constant
QQ-continuous map from Y to a non-trivial B-space.

Proposition 3.9. A class B of Q-topological spaces is a Q-disconnectedness if and
only if B satisfies the condition that X € B if and only if for every non-trivial Q-
subspace Y of X € B, there is some non-constant Q-continuous map from 'Y to a
non-trivial B-space.

Proof. A proof of the necessary part follows from Proposition 3.7 and Remark 3.8,
and the fact that the class B is hereditary, being a )-disconnectedness.
A proof of the sufficient part is given as follows:

Suppose that the class B of @-topological spaces satisfies the given condition. We
show that B is ()-disconnectedness by showing that B = DCB. For this, we will
only show that DCB C B. If X ¢ B, then by hypothesis, there is some non-
trivial @-subspace Y of X such that every @Q-continuous map f :Y — Z € B is
constant, whereby Y € CB. By using Proposition 3.3, we get that X ¢ DCB. Thus
DCB C B. O

Proposition 3.10. Fvery Q-disconnectedness B is productive.

Proof. Let B be Q-disconnectedness. Then B = DA, for some continuously closed

class A of Q-topological spaces. Let X; € B(= DA), for every j € J (J is some

index set). Let Y € A and f : Y — X is a Q-continuous map, where X is the

product @-topology of Q-topological spaces X;,j € J. Let p; : X — X, be the

jth-projection map. Then pjo f:Y — X; is Q-continuous, for every j € J. Since

for every j € J, X; € B, all p; o f are constant maps, whereby it follows that f is
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a constant map. Thus we get that every Q-continuous map f : Y — X must be
constant, for every Y € A. So X € B. O

Proposition 3.11. A class A of Q-topological spaces is a Q-connectedness if and
only if A satisfies the condition that X € A if and only if every non-trivial Q-
continuous image of X has a non-trivial Q-subspace which is an A-space.

Proof. First, let A be Q-connectedness. Then A = CB, for some hereditary class
B of Q-topological spaces. Note that CB is continuously closed. If X ¢ A(= CB),
then there is a non-trivial Y € B and a non-constant ()-continuous map f: X — Y.
Thus, f(X) (i-e., a Q-continuous image of X) is a non-trivial @-subspace of Y. So
f(X) € B. We claim that no non-trivial A-space is a Q-subspace of f(X). To prove
it, suppose that there is a non-trivial A-space Z which is a Q-subspace of f(X),
then the inclusion map i : Z — f(X) is a non-constant Q-continuous map, which
implies that Z ¢ A, a contradiction.

Next, let X € A(= CB) and Y be a non-trivial Q-continuous image of X, i.e.,
there is an onto Q-continuous map g: X =Y, s0Y € A(= CB) (as CB is continu-
ously closed) and we say that Y has a non-trivial A-space which is a Q-subspace of
Y, viz., Y itself.

Conversely, suppose that the class A satisfies the given condition. We will show
that A is Q-connectedness by showing that A = CDA. Clearly, A C CDA. We
only requires to show that CDA C A. If X ¢ A, then there exists a non-trivial
Q-continuous image Y of X such that no non-trivial A-space is a Q-subspace of Y,
i.e., there is an onto (and hence non-constant) @-continuous map f : X — Y with
the property that no non-trivial A-space is a @-subspace of Y, whereby Y € DA
(by Proposition 3.3), but then X ¢ CDA. So CDA C A. O

4. SOME SPECIAL -DISCONNECTEDNESS AND
(Q-CONNECTEDNESS CLASSES

From now onward in this paper, we shall be dealing only with the stratified
Q-topological spaces (as defined below), so that we can talk about indiscrete Q-
topological spaces and ensure that constant maps are @)-continuous.

Definition 4.1 ([9]). A Q-topological space (X, 7) is said to be stratified if § € 7,
for each q € QQ, where ¢ : X — @ is ¢g-valued constant map.

By D4 we shall denote a fixed two-point indiscrete Q-topological space (i.e., the
one whose Q-topology consists of all constant maps only).

Let Str-Q-TOP and Str-Q-TOPg respectively denote the categories of all strat-
ified Q-topological spaces and stratified Tp-@Q-topological spaces.

The counterpart of the @-Sierpinski space in the category Str-Q-TOP turns
out to be (Q,{({id} U{7 | ¢ € Q})), where id : Q@ — Q is the identity map. We
shall denote it by Qg. It can be then noticed that this Qg also has the property
similar to the general Q-Sierpinski space (introduced in [9], see also [7]), viz., for
any (X, 7) € 0bStr-Q-TOP:

w € 7 if and only if p: (X,7) = Qg is @Q-continuous.
544



Sheo Kumar Singh et al. Srivastava /Ann. Fuzzy Math. Inform. 12 (2016), No. 4, 539-546

Proposition 4.2. If B is a Q-disconnectedness with Dy € B, then B = Str-Q-
TOP.

Proof. As B is a Q-disconnectedness, B = DA, for some continuously closed class
A of Q-topological spaces. To show B = Str-Q-TOP, we will only show that
Str-Q-TOP C B. Let X € obStr-Q-TOP. As Dy € B, for every Y € A, each
Q-continuous function f :Y — D4 must be constant. But then Y consists of only
one element, whereby it follows that any Q-continuous function from Y to X must
be constant. So X € B. Hence B = Str-Q-TOP. O

Proposition 4.3. If C'4 denotes the class of all indiscrete Q-topological spaces, then
Str-Q-TOPy = DC}y.

Proof. Let (X, 7) ¢ 0bStr-Q-TOP,. Then there exists z,y € X, with « # y, such
that u(z) = p(y), for every p € 7. Let Y = {z,y}. Then (Y,7y) is an indiscrete
Q@-subspace of X. Clearly, the inclusion function 7 : ¥ — X is non-constant and
Q-continuous. Thus (X,7) ¢ DCy4. So, DCy C Str-Q-TOP,.

Next, let (X,7) ¢ DC4. Then there exists some Y € Cy4 and a non-constant
@-continuous function f: Y — X. But we have y1,y2 € Y, with y; # ys such that
flyr) # f(y2). Let f(y1) = x1 and f(y2) = x2, so 1 # z2. Note that for any
peT, asY € Ca, f§(u) = po f must be constant. Hence u(f(y1)) = u(f(y2)),
ie., p(z1) = p(ze), for every p € 7. Thus (X, 7) ¢ 0bStr-Q-TOP,. So, Str-Q-
TOP, C DC 4. Hence, we have Str-Q-TOPy = DC4. O

Proposition 4.4. If B is a Q-disconnectedness with Dy ¢ B and Qs € B, then
B = StI‘-Q-TOPQ.

Proof. As B is a QQ-disconnectedness, B = DA, for some continuously closed class A
of (Q-topological spaces.

Let X € B. To show X € 0bStr-Q-TOP,, it will suffices to show that there is no
non-trivial @-subspace of X which is indiscrete. Let Y be a non-trivial Q)-subspace
of X. Then, clearly Y € B by Proposition 3.6. If Y is indiscrete, then the two-point
indiscrete @-topological space D4 is @-homeomorphic to a @-subspace of Y. Thus
D4 € B, a contradiction. So Y cannot be indiscrete. Hence B C Str-Q-TOP,.

Next, let X € 0bStr-Q-TOP,. If possible, suppose that there is some Y €
A and a non-constant @-continuous function f : Y — X. Then f(Y) is a non-
trivial A-space. Also, f(Y) is a non-trivial Q-subspace of X. Thus f(Y) cannot
be indiscrete. So, there is a non-constant Q-continuous function p : f(Y) — Qs.
But Qs ¢ B = DA, a contradiction. Hence X € B and thus, Str-Q-TOP, C B.
Therefore, B = Str-Q-TOP,,. O

Proposition 4.5. The class C4 of all indiscrete Q-topological spaces is a Q-connec-
tedness. In fact, Cy = C(Qs).

Proof. Let (X,7) € Cy4 and (Y, d) be any non-trivial @-continuous image of (X, 7),
i.e., there is an onto @Q-continuous map g : (X,7) — (Y,0). Since for every v € §,
v : (Y,0) = Qg is Q-continuous, vog : (X,7) — Qg is Q-continuous. Then
vog € 7, but then v o g is constant, whereby it follows that v is constant. Thus v
is the indiscrete Q-topology, i.e., (Y,8) € C4. Here (Y, ) itself is a Q-subspace of
(Y,0). So, C4 is a @Q-connectedness by Proposition 3.11.
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Let (X,7) € Ca and f : (X,7) — Qg be any Q-continuous map. Then f € 7.
Thus, f must be constant, whereby X € C(Qg). So C4 C C(Qs). Next, let
(X,7) € C(Qs). Then every Q-continuous map from (X, 7) to Qg must be constant.
Thus, for every u € 7, since p : (X,7) = Qg is Q-continuous, p must be constant,
i.e., 7 contains only constant maps. Hence 7 is the indiscrete Q-topology, i.e.,

(X.7) € Ca. S0 C(Qs) € Ca. Hence Ca = C(Qs). -
5. CONCLUSION

In this paper, we have briefly studied the concepts of connectednesses and dis-
connectednesses for @-topological spaces with respect to a class of @Q-topological
spaces, motivated by the works of G. Preuss, Arhangel’skii and Wiegandt and some
others (cf. e.g., [2, 4, 5, 6, 10]) for topological spaces, uniform spaces, and fuzzy
topological spaces. We have also shown that for Q-topological spaces, Ty-ness is
a disconnectedness in the sense of Preuss, in addition to giving some characteriza-
tion(s) of connectednesses and disconnectednesses for Q-topological spaces.
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