Annals of Fuzzy Mathematics and Informatics Volume 12, No. 4, (October 2016), pp. 527–538 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Prime \cdot -ideals and fuzzy prime \cdot -ideals in *PMV*-algebras

S. SAIDI GORAGHANI, R. A. BORZOOEI

Received 4 March 2016; Revised 19 March 2016; Accepted 12 April 2016

ABSTRACT. In the present paper, by considering the notion of PMV-algebras, we present definition of prime \cdot -ideals in PMV-algebras and obtain some results on them. In addition, we introduce the notions of fuzzy \cdot -ideals and fuzzy prime \cdot -ideals in PMV-algebras. Then by proving some theorems, we state some conditions to obtain fuzzy prime \cdot -ideals.

2010 AMS Classification: 06D35, 08A72

Keywords: PMV-algebra, Prime --ideal, Fuzzy prime --ideal.

Corresponding Author: S. Saidi Goraghani (siminsaidi@yahoo.com)

1. INTRODUCTION

M V-algebras were defined by C. C. Chang [2, 3] as algebras corresponding to the Lukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: CN-algebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. It is discovered that MV-algebras are naturally related to the Murray-von Neumann order of projections in operator algebras on Hilbert spaces and that they play an interesting role as invariants of approximately finite-dimensional C^* -algebras. They are also naturally related to Ulam's searching games with lies. MV-algebras admit a natural lattice reduct and hence a natural order structure. Many important properties can be derived from the fact, established by Chang that nontrivial MV-algebras. To prove this fundamental result, Chang introduced the notion of prime ideal in an MV-algebra.

A product MV-algebra (or PMV-algebra, for short) is an MV-algebra which has an associative binary operation ".". It satisfies an extra property which will be explained in Preliminaries. PMV-algebras were introduced by A. Di Nola and A. Dvurečenskij in [5]. They also introduced --ideals in PMV-algebras. During the last years, PMV-algebras were considered and their equivalence with a certain class of l-rings with strong unit was proved. In 2014, F. Forouzesh, E. Eslami and A. Borumand Saeid defined \cdot -prime ideals in *PMV*-algebras [8].

The concept of fuzzy sets was introduced by Zadeh for the first time [11]. Since then, many studies were performed about this subject and many researchers started working on the fuzzy algebraic structures. Recently, many papers were writed, too. For example, see [1, 10].

In this paper, we introduce the notions of prime \cdot -ideals and fuzzy prime \cdot -ideals in PMV-algebras and prove some results on them. In fact, we open new fields to anyone that is interested to studying and development of fuzzy ideals in PMV-algebras.

2. Preliminaries

In this section, we review related lemmas and theorems that we use in the next sections.

Definition 2.1 ([4]). An *MV*-algebra is a structure $M = (M, \oplus, ', 0)$ of type (2, 1, 0) such that:

(MV1) $(M, \oplus, 0)$ is an Abelian monoid,

 $(MV2) \ (a')' = a,$

 $(MV3) \ 0' \oplus a = 0',$

 $(MV4) \ (a' \oplus b)' \oplus b = (b' \oplus a)' \oplus a.$

If we define the constant 1 = 0' and operations \odot and \ominus by $a \odot b = (a' \oplus b')'$, $a \ominus b = a \odot b'$, then

 $(MV5) (a \oplus b) = (a' \odot b')',$ (MV6) $x \oplus 1 = 1,$

$$(MV7) (a \ominus b) \oplus b = (b \ominus a) \oplus a,$$

$$(MV8) \ a \oplus a' = 1$$

for every $a, b \in A$.

It is clear that $(M, \odot, 1)$ is an abelian monoid. Now, if we define auxiliary operations \lor and \land on M by $a \lor b = (a \odot b') \oplus b$ and $a \land b = a \odot (a' \oplus b)$, for every $a, b \in M$, then $(M, \lor, \land, 0)$ is a bounded distributive lattice.

In MV-algebra M, the following conditions are equivalent: for every $a, b, c \in M$, (i) $a' \oplus b = 1$.

(ii) $a \odot b' = 0$.

(iii) $b = a \oplus (b \ominus a)$.

(iv) $\exists c \in A$ such that $a \oplus c = b$.

For any two elements a, b of MV-algebra $M, a \leq b$ if and only if a, b satisfy in the above equivalent conditions (i)-(iv).

An ideal of MV-algebra M is a subset I of M, satisfying the following condition: for every $x, y \in I$,

(I1) $0 \in I$,

(I2) $x \leq y$ and $y \in I$ implies that $x \in I$,

(I3) $x \oplus y \in I$.

A proper ideal I of M is a prime ideal if and only if $x \ominus y \in I$ or $y \ominus x \in I$ (or $x \land y \in I$ implies that $x \in I$ or $y \in I$), for every $x, y \in M$.

In *MV*-algebra *M*, the distance function $d: M \times M \to M$ is defined by $d(x, y) = (x \ominus y) \oplus (y \ominus x)$ which satisfies

(i) d(x, y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), (iii) $d(x, z) \le d(x, y) \oplus d(y, z)$, (iv) d(x, y) = d(x', y'), (v) $d(x \oplus z, y \oplus t) \le d(x, y) \oplus d(z, t)$,

for every $x, y, z, t \in M$.

Let *I* be an ideal of *MV*-algebra *M*. Then we denote $x \sim y$ ($x \equiv_I y$) if and only if $d(x, y) \in I$, for every $x, y \in M$. Thus \sim is a congruence relation on *M*. Denote the equivalence class containing x by $\frac{x}{I}$ and $\frac{M}{I} = \{\frac{x}{I} : x \in M\}$. Then $(\frac{M}{I}, \oplus, ', \frac{0}{I})$ is an *MV*-algebra, where $(\frac{x}{I})' = \frac{x'}{I}$ and $\frac{x}{I} \oplus \frac{y}{I} = \frac{x \oplus y}{I}$, for all $x, y \in M$.

Let M and K be two $MV\text{-algebras}. A mapping <math display="inline">f:M\to K$ is called an MV- homomorphism if

(H1)
$$f(0) = 0$$
,

(H2) $f(x \oplus y) = f(x) \oplus f(y)$,

(H3)
$$f(x') = (f(x))'$$

for every $x, y \in M$.

If f is one to one (onto), then f is called an MV-monomorphism (epimorphism) and if f is onto and one to one, then f is called an MV-isomorphism(see [6]).

Proposition 2.2 ([4]). Let M be an MV-algebra and $W \subseteq M$. Then the principal ideal generated by W is denoted by $\prec W \succ$ and $\prec W \succ = \{x \in M : x \leq w_1 \oplus w_2 \oplus \cdots \oplus w_n, \text{ for some } w_1, \cdots, w_n \in W\}$. Further, for every ideal J of M, $\prec J \cup \{z\} \succ = \{x \in M : nz \oplus a \geq x, \text{ for some } n \in \mathbb{N} \text{ and } a \in J\}.$

Lemma 2.3 ([4]). Let M, N be two MV-algebras and $f : M \to N$ be an MV-homomorphism. Then the following properties hold:

(i) Ker(f) is an ideal of M.

- (ii) If f is an MV-epimorphism, then $\frac{M}{Kerf} \cong N$.
- (iii) $f(x) \le f(y)$ iff $x \ominus y \in Ker(f)$.
- (iv) f is injective iff $Ker(f) = \{0\}$.

Lemma 2.4 ([4]). In every MV-algebra M, the natural order " \leq " has the following properties: for every $x, x', y, y', z \in M$,

- (i) $x \leq y$ if and only if $y' \leq x'$.
- (ii) If $x \leq y$, then $x \oplus z \leq y \oplus z$.
- (iii) If $x \leq y$, then $x \odot z \leq y \odot z$.
- **Proposition 2.5** ([4]). The following equatoins hold in every MV-algebra: (i) $x \odot (y \lor z) = (x \odot y) \lor (x \odot z)$. (ii) $x \oplus (y \land z) = (x \oplus y) \land (x \oplus z)$.

Definition 2.6 ([6]). In MV-algebra M, a partial addition is defined as following: x + y is defined if and only if $x \le y'$ and in this case, $x + y = x \oplus y$, for any $x, y \in M$.

Lemma 2.7 ([6]). Let M be an MV-algebra and let + is the partial addition on M. Then for every $x, y, z \in M$,

⁽c) $x \lor y = x + (x' \odot y)$.

- (d) If x + y and (x + y) + z are defined, then y + z and x + (y + z) are defined and (x + y) + z = x + (y + z).
- (e) x + y = 1 if and only if y = x'.
- (f) If $z + x \le z + y$, then $x \le y$.
- (g) If x + y = z, then $y = x' \odot z$.
- (h) If z + x = z + y, then x = y.

Definition 2.8 ([5]). A product MV-algebra (or PMV-algebra, for short) is a structure $(A, \oplus, ., ', 0)$, where $(A, \oplus, ', 0)$ is an MV-algebra and \cdot is a binary associative operation on A such that the following property is satisfied: if x + y is defined, then $x \cdot z + y \cdot z$ and $z \cdot x + z \cdot y$ are defined and $(x+y) \cdot z = x \cdot z + y \cdot z$, $z \cdot (x+y) = z \cdot x + z \cdot y$, where + is a partial addition on A.

If A is a PMV-algebra, then a unity for the product is an element $e \in A$ such that $e \cdot x = x \cdot e = x$, for every $x \in A$.

A PMV-algebra that has unity for the product will be called unital.

A ·-ideal of a *PMV*-algebra A is an ideal I of *MV*-algebra A such that if $a \in I$ and $b \in A$, then $a \cdot b \in I$ and $b \cdot a \in I$.

Lemma 2.9 ([6]). If A is a unital PMV-algebra, then

(i) The unity for the product is e = 1.

(ii) $x \cdot y \leq x \wedge y$, for every $x, y \in A$.

Definition 2.10 ([6]). Let X and Y be *PMV*-algebras. An *MV*-homomorphism $f: X \to Y$ is called a homomorphism of *PMV*-algebras (or *PMV*-homomorphism) if and only if $f(x \cdot y) = f(x) \cdot f(y)$.

Lemma 2.11 ([5]). Let A be a PMV-algebra. Then 1.a = a and $a \le b$ implies that $a.c \le b.c$ and $c.a \le c.b$, for every $a, b, c \in A$.

Definition 2.12 ([6]). Let $A = (A, \oplus, ., ', 0)$ be a *PMV*-algebra, $M = (M, \oplus, ', 0)$ be an *MV*-algebra and the operation $\Phi : A \times M \longrightarrow M$ be defined by $\Phi(a, m) = am$, which satisfies the following axioms:

(AM1) If x+y is defined in M, then ax+ay is defined in M and a(x+y) = ax+ay. (AM2) If a+b is defined in A, then ax+bx is defined in M and (a+b)x = ax+bx. (AM3) (a.b)x = a(bx), for every $a, b \in A$ and $x, y \in M$.

Then M is called a (left) MV-module over A or briefly an A-module.

We say that M is a unitary MV-module if A has a unity 1_A for the product, i.e., (AM4) $1_A x = x$, for every $x \in M$.

Lemma 2.13 ([6]). Let A be a PMV-algebra and M be an A-module. Then for every $a, b \in A$ and $x, y \in M$,

(a) 0x = 0. (b) a0 = 0. (c) $ax' \le (ax)'$. (d) $a'x \le (ax)'$. (e) (ax)' = a'x + (1x)'. (f) $x \le y$ implies $ax \le ay$. (g) $a \le b$ implies $ax \le bx$. (h) $a(x \oplus y) \le ax \oplus ay$. (i) $d(ax, ay) \le ad(x, y)$. **Definition 2.14** ([11]). A fuzzy set in set of A is a mapping $\mu : A \to [0, 1]$. Let μ be a fuzzy set in A and $t \in [0, 1]$. Then $\mu_t = \{x \in A : \mu(x) \ge t\}$ is called a level subset of μ .

Definition 2.15 ([9]). If A is an MV-algebra, then a fuzzy set μ in A is a fuzzy ideal of A, if it satisfies

(FI1) $\mu(0) \ge \mu(x)$, for all $x \in A$, (FI2) $\mu(y) \ge \mu(x) \land \mu(y \odot x')$, for all $x, y \in A$.

Theorem 2.16 ([9]). Let μ be a fuzzy ideal in A. Then for every $x, y \in A$,

- (i) $\mu(x \oplus y) = \mu(x) \land \mu(y)$.
- (ii) $\mu(x \lor y) = \mu(x) \land \mu(y)$
- (iii) $\mu(x \wedge y) \ge \mu(x) \lor \mu(y)$.

Lemma 2.17 ([7]). Let A be an MV-algebra and $\mu : A \rightarrow [0,1]$ be a fuzzy set on A. Then μ is a fuzzy ideal on A if and only if

(i) $\mu(x) \leq \mu(0)$, (ii) $\mu(x \oplus y) \geq \mu(x) \wedge \mu(y)$, (iii) If $x \leq y$, then $\mu(x) \geq \mu(y)$, for all $x, y \in A$.

Theorem 2.18 ([7]). Let μ be a fuzzy set in A. μ is a fuzzy ideal in A if and only if for all $t \in [0, 1]$, μ_t is either empty or an ideal of A.

Corollary 2.19 ([7]). *I* is an ideal of *A* if and only if χ_I is a fuzzy ideal of *A*, where χ_I is characteristic function of *I*.

3. Prime --ideals in PMV-algebras

Note: From now on, in this paper, A is a PMV-algebra. In this section, we introduce prime \cdot -ideals in PMV-algebras and state some conditions to obtain them.

Definition 3.1. Let P be a \cdot -ideal of A. If P is a prime ideal of MV-algebra A, then P is called a prime \cdot -ideal of A.

Example 3.2. Let $A = \{0, 1, 2, 3\}$ and the operations " \oplus " and "." on A be defined as follows:

\oplus	0	1	2	3	•	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	1	3	3	1	0	1	0	1
2	2	3	2	3	2	0	0	2	2
3	3	3	3	3	3	0	1	2	3

Consider 0' = 3, 1' = 2, 2' = 1 and 3' = 0. Then it is easy to show that $(A, \oplus, ', .., 0)$ is a *PMV*-algebra, $J = \{0, 2\}$ and $I = \{0, 1\}$ are prime \cdot -ideals of A. Also, $\{0\}$ is not a prime \cdot -ideal of A.

Lemma 3.3. Let A be an MV algebra and $I \subseteq A$. Then I is an ideal of A if and only if

- (i) $0 \in I$,
- (ii) x ⊕ y ∈ I, for every x, y ∈ I,
 (iii) if x ⊖ y, y ∈ I, then x ∈ I, for any x, y ∈ A.

Proof. (\Rightarrow) Let *I* be an ideal of *A*. Then (i) and (ii) are clear. Now, let $x \ominus y, y \in I$. Then by (ii) and (*MV7*), $(y \ominus x) \oplus x = (x \ominus y) \oplus y \in I$. Since $x \leq (y \ominus x) \oplus x \in I$, $x \in I$.

(\Leftarrow) Let (i), (ii) and (iii) be true. If $x \leq y$ and $y \in I$, then $x \ominus y = x \odot y' = 0 \in I$. Thus by (iii), $x \in I$. So I is an ideal of A.

Theorem 3.4. Let A, B be PMV-algebras and $f : A \longrightarrow B$ be a PMV-homomorphism. Then

(i) If P is a prime \cdot -ideal of B, then $f^{-1}(P)$ is a prime \cdot -ideal of A.

(ii) If f is onto, P is a prime \cdot -ideal of A and $Ker(f) \subseteq P$, then f(P) is a prime \cdot -ideal of B.

Proof. (i) The proof is routine.

(ii) The first we show that f(P) is an ideal of B. The proofs of (I_1) and (I_3) are easy. We show that f(P) satisfies in (I_2) . Let $a \leq b \in f(P)$, for some $a, b \in B$. Since f is onto, there are $x \in A$ and $y \in P$ such that a = f(x) and b = f(y). Since $f(x) \leq f(y)$, by Lemma 2.3 (iii), $x \ominus y \in P$. Thus by Lemma 3.3, $x \in P$. It means that $a = f(x) \in f(P)$. So f(P) is an ideal of B. It is routine to see that f(P) is a \cdot -ideal of B.

Now, let $a \wedge b \in f(P)$, for $a, b \in B$. Then there are $x, y \in A$ such that a = f(x) and b = f(y). We have

$$a \wedge b = f(x) \wedge f(y) = f(x \wedge y) \in f(P) \quad \Rightarrow \quad f(x \wedge y) = f(t), \ t \in P$$
$$\Rightarrow \quad x \wedge y \odot t' \in P, \ t \in P$$
$$\Rightarrow \quad x \wedge y \in P.$$

Thus $x \in P$ or $y \in P$. So $a = f(x) \in f(P)$ or $b = f(y) \in f(P)$. Hence f(P) is a prime ideal of B and thus it is a prime \cdot -ideal of B.

Lemma 3.5. In PMV-algebra A, $(\alpha \oplus \beta)a \leq \alpha a \oplus \beta a$, for every $\alpha, \beta, a \in A$.

Proof. Since $\beta a \leq (\alpha a)' \oplus \beta a$, by Lemma 2.4 (i), $(\alpha a) \odot (\beta a)' = ((\alpha a)' \oplus \beta a)' \leq (\beta a)'$. Then $(\alpha a) \odot (\beta a)' + \beta a$ is defined, where "+" is the partial addition on A. Similarly, $\alpha \odot \beta' + \beta$ is defined, too.

Consider A as A-module, where ab = a.b, for every $a, b \in A$. Then by Lemma 2.13 (d) and (g), since $\alpha \odot \beta' \leq \beta'$, $(\alpha \odot \beta')a \leq \beta'a \leq (\beta a)'$. Thus $(\alpha \odot \beta')a + \beta a$ is defined. Now, $\alpha \leq \alpha \lor \beta$ implies that $\alpha a \leq (\alpha \lor \beta)a$ and similarly, $\beta a \leq (\alpha \lor \beta)a$. So $\alpha a \lor \beta a \leq (\alpha \lor \beta)a$. Hence by Lemma 2.7 (c),

$$(\alpha a) \odot (\beta a)' + \beta a = \alpha a \lor \beta a \le (\alpha \lor \beta)a = (\alpha \odot \beta' \oplus \beta)a = (\alpha \odot \beta' + \beta)a = (\alpha \odot \beta')a + \beta a.$$

Now, by Lemma 2.7(f), $\alpha a \odot (\beta a)' \leq (\alpha \odot \beta')a$. If we set $\alpha \oplus \beta$ instead of α , then by Lemma 2.13 (g), we have $(\alpha \oplus \beta)a \odot (\beta a)' \leq ((\alpha \oplus \beta) \odot \beta')a = (\alpha \land \beta')a \leq \alpha a$. Thus

$$(\alpha \oplus \beta)a = (\alpha \oplus \beta)a \lor \beta a = (\alpha \oplus \beta)a \odot (\beta a)' \oplus \beta a \le \alpha a \oplus \beta a.$$

Lemma 3.6. Let I be an ideal of A and $c \in I$. Then $a.c \in I$, for every $a \in A$.

Proof. The proof is easy.

Definition 3.7. $S \subseteq A$ is called a \cdot -closed subset of A, if $x.y \in S$, for every $x, y \in S$.

Example 3.8. In Example 3.2, $S = \{1, 3\}$ is a \cdot -closed subset of A.

Theorem 3.9. Let A be unital, I be a \cdot -ideal of A and S be a \cdot -closed subset of A such that $I \cap S = \emptyset$. Then there exists a prime \cdot -ideal P of A such that $I \subseteq P$ and $P \cap S = \emptyset$.

Proof. Let $T = \{J : J \text{ is } a \ -ideal \text{ of } A, I \subseteq J \text{ and } J \cap S = \emptyset\}$. Since $I \in T$, $T \neq \emptyset$. By Zorn's Lemma, T has a maximal element P. We show that P is a prime \cdot -ideal of A. Let $x \land y \in P$ and $x, y \notin P$. Consider $\prec P \cup \{x\} \succ$ and $\prec P \cup \{y\} \succ$. By maximality $P, \prec P \cup \{x\} \succ \cap S \neq \emptyset$ and $\prec P \cup \{y\} \succ \cap S \neq \emptyset$ and so there exist $\alpha \in \prec P \cup \{x\} \succ \cap S$ and $\beta \in \prec P \cup \{y\} \succ \cap S$. Then by Proposition 2.2, there exist $a, b \in P$ and $n, m \in \mathbb{N} \cup \{0\}$ such that $\alpha \leq nx \oplus a$ and $\beta \leq my \oplus b$. By Proposition 2.13 (f),(g), $\alpha.\beta \leq (nx \oplus a).(my \oplus b)$. If we consider A as A-module, where xy = x.y, for every $x, y \in A$, then by Lemmas 3.5, 3.6 and 2.13 (h),

$$\begin{array}{lll} \alpha.\beta & \leq & (nx \oplus a).my \oplus (nx \oplus a).b \leq nx.my \oplus a.my \oplus nx.b \oplus a.b \\ & \leq & \underbrace{x.y \oplus \cdots \oplus x.y}_{mn \ times} \oplus \underbrace{a.y \oplus \cdots \oplus a.y}_{m \ times} \oplus \underbrace{x.b \oplus \cdots \oplus}_{n \ times} \oplus a.b \in P. \end{array}$$

So $\alpha.\beta \in P$. Since S is a \cdot -closed subset of A, $\alpha.\beta \in P \cap S$, which is a contradiction. Hence P is a prime \cdot -ideal of A.

Lemma 3.10. Let A be unital, I be an ideal of A and r(I) be the intersection of all prime \cdot -ideals of A containing I. Then

$$r(I) = \{ x \in A : x^n = \underbrace{x.x.\cdots.x}_{n \ times} \in I, for \ some \ n \in \mathbb{N} \}.$$

Proof. Let $T = \{x \in A : x^n = \underbrace{x.x.\dots.x}_{n \text{ times}} \in I, \text{ for some } n \in \mathbb{N}\}$. It is easy to show

that $T \subseteq r(I)$. Let $x \in r(I)$. If $x \notin T$, then $x^n \notin I$, for every $n \in \mathbb{N}$. Consider $S = \{x^n \oplus a : n \in \mathbb{N} \cup \{0\}, a \in I \text{ and } x^n \leq a'\}$. Let $x^n \oplus a, x^m \oplus b \in S$, for $a, b \in I$ and $n, m \in \mathbb{N}$. Since $x^n \leq a'$ and $x^m \leq a', x^n + a$ and $x^m + a$ are defined in A. Thus

$$(x^{n} \oplus a).(x^{m} \oplus b) = (x^{n} + a).(x^{m} + b) = x^{m+n} + a.x^{m} + x^{n}.b + a.b = x^{n+m} \oplus t \in S,$$

where by Lemma 3.6, $t \in I$. It results that S is a \cdot -closed subset of A. It is easy to see that $S \cap I = \emptyset$. So by Theorem 3.9, there is a prime \cdot -ideal P of A such that $I \subseteq P$ and $S \cap P = \emptyset$. Now, since $x \in r(I)$ and $x = x^1 \oplus 0 \in S$, $x \in P \cap S$, which is a contradiction. Hence $x \in T$. Therefore T = r(I).

Theorem 3.11. Let P be a \cdot -ideal of A. P = r(P) if and only if $\frac{A}{P}$ has no nilpotent elements.

Proof. (\Rightarrow) Let P = r(P) and $\frac{0}{P} \neq \frac{x}{P}$ be an element of $\frac{A}{P}$. If $(\frac{x}{P})^n = \frac{0}{P}$, for $n \in \mathbb{N}$, then $\frac{x^n}{P} = \frac{0}{P}$. Thus $x^n \in P$. So by Lemma 3.10, $x \in r(P) = P$ and thus $\frac{x}{P} = \frac{0}{P}$, which is a contradiction. Hence $\frac{A}{P}$ has no nilpotent elements.

(⇐) Let $\frac{A}{P}$ has no nilpotent elements. It is clear that $P \subseteq r(P)$. Let $x \in r(P)$. Then by Lemma 3.10, $x^n \in P$. Thus $\frac{x^n}{P} = \frac{0}{P}$, for $n \in \mathbb{N}$. Since $\frac{x}{P}$ has no nilpotent elements, $\frac{x}{P} = \frac{0}{P}$. Sand so $x \in P$. Hence r(P) = P.

4. Fuzzy prime \cdot -ideals in *PMV*-algebras

In this section, we introduce fuzzy \cdot -ideals, fuzzy prime \cdot -ideals in PMV-algebras and obtain some results on them.

Definition 4.1. Let μ be a fuzzy ideal in A. Then

(i) μ is called a fuzzy --ideal in A if and only if $\mu(x.y) \wedge \mu(y.x) \geq \mu(x)$, for every $x, y \in A$.

(ii) μ is called a fuzzy prime \cdot -ideal in A if and only if $\mu_t = A$ or μ_t is a prime \cdot -ideal of A.

Example 4.2. (i) Let $A = \{0, 1, 2, 3\}$ and the operations " \oplus " and "." be defined on A as follows:

\oplus	0	1	2	3		0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	1	2	3	1	0	1	1	1
2	2	2	2	3	2	0	1	2	2
3	3	3	3	3	3	0	1	2	3

Consider 0' = 3, 1' = 2, 2' = 1 and 3' = 0. Then it is easy to show that $(A, \oplus, ', ., 0)$ is a *PMV*-algebra Now, let $\mu(0) = 0.8$ and $\mu(2) = \mu(1) = \mu(3) = 0.5$. Then μ is a fuzzy \cdot -ideal of A.

(ii) Let $A = \{0, 1\}$ and the operations " \oplus " and "." on A be defined as follows:

\oplus	0	1		0	1
0	0	1	0	0	0
1	1	1	1	1	1

Then it is easy to show that $(A, \oplus, ', \cdot, 0)$ is a *PMV*-algebra. Now, let $\mu(0) = 0.8$ and $\mu(1) = 0.5$. Then μ is a fuzzy prime \cdot -ideal of A.

Corollary 4.3. Let μ be a fuzzy \cdot -ideal in A such that $\mu(0) \neq \mu(1)$. μ is a fuzzy prime \cdot -ideal in A if and only if $\mu_{\mu(0)}$ is a prime \cdot -ideal of A.

Proof. The proof is clear.

Theorem 4.4. Let μ be a fuzzy \cdot -ideal in A such that $\mu(0) \neq \mu(1)$. μ is a fuzzy prime \cdot -ideal in A if and only if $\mu(x) \lor \mu(y) \ge \mu(x \land y)$, for every $x, y \in A$.

Proof. (\Rightarrow) Let μ be a fuzzy prime \cdot -ideal in A. Then μ_t is a prime \cdot -ideal of A. Let $x, y \in A$. Consider $t = \mu(x \land y)$. Then $\mu(x \land y) \ge t$. Thus $x \land y \in \mu_t$. So $x \in \mu_t$ or $y \in \mu_t$ and thus $\mu(x) \ge t$ or $\mu(y) \ge t$. Hence $\mu(x) \lor \mu(y) \ge t$. Therefore $\mu(x) \lor \mu(y) \ge \mu(x \land y)$.

 $(\Leftarrow) \text{ Let } \mu(x) \lor \mu(y) \ge \mu(x \land y), \text{ for every } x, y \in A \text{ and } \mu_t \ne A, \text{ for } t \in [0, 1]. \text{ The first, we show that } \mu_t \text{ is a } \text{-ideal of } A. \text{ Let } x \in \mu_t \text{ and } y \in A. \text{ Since } \mu \text{ is a fuzzy } \text{-ideal of } A, \ \mu(x.y) \land \mu(y.x) \ge \mu(x) \ge t. \text{ Then } \mu(x.y) \ge t \text{ and } \mu(y.x) \ge t. \text{ Thus } x.y, \ y.x \in \mu_t. \text{ If } x \land y \in \mu_t, \text{ then } \mu(x \land y) \ge t. \text{ Thus } \mu(x) \lor \mu(y) \ge t. \text{ So } \mu(x) \ge t \text{ or } \mu(y) \ge t. \text{ Hence } x \in \mu_t \text{ or } y \in \mu_t. \square$

Corollary 4.5. Let A be unital and μ be a fuzzy \cdot -ideal in A such that $\mu(0) \neq \mu(1)$. μ is a fuzzy prime \cdot -ideal in A if and only if $\mu(x) \lor \mu(y) = \mu(x \land y)$, for every $x, y \in A$. *Proof.* (\Rightarrow) Let μ be a fuzzy prime --ideal in A. By Lemma 2.16 ,(iii), $\alpha.\beta \leq (nx \oplus a).(my \oplus b)$. If we consider A as A-mo, $\mu(x \wedge y) \geq \mu(x) \vee \mu(y)$. Then by Theorem 4.4, $\mu(x) \vee \mu(y) = \mu(x \wedge y)$.

 (\Leftarrow) By Theorem 4.4, it is clear.

Corollary 4.6. Let I be a \cdot -ideal in A. I is a prime \cdot -ideal in A if and only if χ_I is a fuzzy prime \cdot -ideal of A.

Proof. (\Rightarrow) Let I be a prime \cdot -ideal in A. We have $(\chi_I)_t = \{x : \chi_I(x) \ge t\} = I$, for every $t \in [0, 1]$. Then $(\chi_I)_t$ is a prime \cdot -ideal in A. Thus χ_I is a fuzzy prime \cdot -ideal of A.

(⇐) Let χ_I be a fuzzy prime \cdot -ideal of A. Then by Corollary 4.3, $I = \{x \in A : \chi(x) \ge 1\} = (\chi_I)_{\chi_I(0)}$ is a prime \cdot -ideal of A.

Theorem 4.7. Let μ be a fuzzy set of A such that $\mu(0) \neq \mu(1)$. μ is a fuzzy prime \cdot -ideal in A if and only if

- (i) $\mu(x \cdot y) = \mu(y \cdot x) = \mu(0)$, for every $x \in \mu_{\mu(0)}$ and $y \in A$.
- (ii) $\mu(x \ominus y) = \mu(0)$ or $\mu(y \ominus x) = \mu(0)$, for every $x, y \in A$.

Proof. (\Rightarrow) Let μ be a fuzzy prime --ideal in A. Then by Corollary 4.3, $\mu_{\mu(0)}$ is a prime --ideal of A. Since $\mu_{\mu(0)}$ is a --ideal of A, $x \cdot y$, $y \cdot y \in \mu_{\mu(0)}$. Thus $\mu(x \cdot y) = \mu(y \cdot x) = \mu(0)$, for every $x \in \mu_{\mu(0)}$ and $y \in A$. Since $\mu_{\mu(0)}$ is a prime ideal of A, $x \ominus y \in \mu_{\mu(0)}$ or $y \ominus x \in \mu_{\mu(0)}$). So $\mu(x \ominus y) \ge \mu(0)$ or $\mu(y \ominus x) \ge \mu(0)$. Hence $\mu(x \ominus y) = \mu(0)$ or $\mu(y \ominus x) = \mu(0)$.

(\Leftarrow) Let (i) and (ii) be true. Then it is easy to see that μ is a fuzzy --ideal and $\mu_{\mu(0)}$ is a prime --ideal of A. Thus by Corollary 4.3, μ is a fuzzy prime --ideal in A.

Theorem 4.8. Let μ be a fuzzy \cdot -ideal and ν be a \cdot -ideal in A such that $\nu(0) \neq \nu(1)$. If $\mu \leq \nu$ and $\mu(0) = \nu(0)$, then ν is a fuzzy prime \cdot -ideal in A, too.

Proof. Since μ is a fuzzy prime \cdot -ideal in A, by Theorem 4.7, $\mu(x \ominus y) = \mu(0)$ or $\mu(y \ominus x) = \mu(0)$, for every $x, y \in A$. Let $\mu(x \ominus y) = \mu(0)$. Since $\mu \leq \nu$, $\mu(x \ominus y) \leq \nu(x \ominus y)$. Then $\mu(0) \leq \nu(x \ominus y)$. Since $\mu(0) = \nu(0), \nu(0) \leq \nu(x \ominus y)$. Thus $\nu(0) = \nu(x \ominus y)$. Simillarly, if $\mu(y \ominus x) = \mu(0)$, then $\nu(y \ominus x) = \nu(0)$. Also, it is easy to see that $\nu(x \cdot y) = \nu(y \cdot x) = \nu(0)$, for every for every $x \in \nu_{\nu(0)}$ and $y \in A$. So by Theorem 4.7, ν is a fuzzy prime \cdot -ideal in A.

Theorem 4.9. If A be unital and μ be a fuzzy \cdot -ideal of A such that $\mu(0) \neq \mu(1)$, then the following are equivalent:

(i) μ is a fuzzy prime \cdot -ideal of A.

- (ii) $\mu_{\mu(0)}$ is a prime \cdot -ideal of A.
- (iii) $\mu(x) \lor \mu(y) \ge \mu(x \cdot y).$

Proof. By Corollary 4.3, (i) and (ii) are equivalent. We prove that (ii) and (iii) are equivalent, too.

(ii) \Rightarrow (iii): Let $\mu_{\mu(0)}$ be a prime \cdot -ideal of A. Then $\mu_{\mu(0)}$ is a prime ideal of A. Thus $x \ominus y \in \mu_{\mu(0)}$ or $y \ominus x \in \mu_{\mu(0)}$, for every $x, y \in A$. If $x \ominus y \in \mu_{\mu(0)}$, then since $x.y \leq x \wedge y \leq x \vee y$, by Lemma 2.4 (iii) and Proposition 2.5 (i),

$$x.y \ominus y \le (x \lor y) \ominus y = (x \lor y) \odot y' = (x \odot y') \lor (y \odot y') = x \ominus y \in \mu_{\mu(0)}.$$
535

Thus $x.y \ominus y \in \mu_{\mu(0)}$.

Similarly, if $y \ominus x \in \mu_{\mu(0)}$, then $x.y \ominus x \in \mu_{\mu(0)}$. Thus $\mu(x.y \ominus y) = \mu(0)$ or $\mu(x.y \ominus x) = \mu(0)$. So $\mu(y) \ge \mu(x.y \ominus y) \land \mu(x.y) = \mu(x.y)$ or $\mu(x) \ge \mu(x.y \ominus x) \land \mu(x.y) = \mu(x.y)$. It results that $\mu(x) \lor \mu(y) \ge \mu(x.y)$.

(iii) \Rightarrow (ii): Let $\mu(x) \lor \mu(y) \ge \mu(x \cdot y)$, for every $x, y \in A$. Then by Lemma 2.9 (ii) and Theorem 2.16 (ii), $\mu(x) \lor \mu(y) \ge \mu(x \land y)$. Thus by Theorem 4.4, μ is a fuzzy prime \cdot -ideal in A. So μ_t is a prime \cdot -ideal of A, for every $t \in [0, 1]$. Hence $\mu_{\mu(0)}$ is a prime \cdot -ideal of A. Note that, since $\mu(1) < \mu(0)$, $1 \notin \mu_{\mu(o)}$ and thus $\mu_{\mu(o)}$ is a proper \cdot -ideal of A.

Lemma 4.10. Let μ be a fuzzy set in A.

(i) μ is a fuzzy ideal in A if and only if $(z \ominus y) \ominus x = 0$ implies that $\mu(z) \ge \mu(x) \wedge \mu(y)$.

(ii) μ is a fuzzy ideal in A if and only if $(x \ominus y) \leq z$ implies that $\mu(x) \geq \mu(z) \wedge \mu(y)$, for all $x, y, z \in A$.

Proof. (i) (\Rightarrow) Let μ be a fuzzy ideal in A and $(z \ominus y) \ominus x = 0$, for all $x, y, z \in A$. Then $\mu(z) \ge \mu(y) \land \mu(z \ominus y)$ and $\mu(z \ominus y) \ge \mu(x) \land \mu((z \ominus y) \ominus x) = \mu(x) \land \mu(0) = \mu(x)$. Thus $\mu(z) \ge \mu(x) \land \mu(y)$, for all $x, y, z \in A$.

(\Leftarrow) Suppose $(z \ominus y) \ominus x = 0$ implies that $\mu(z) \ge \mu(x) \land \mu(y)$, for all $x, y, z \in A$. Since $(0 \ominus x) \ominus x = 0$, $\mu(0) \ge \mu(x) \land \mu(x) = \mu(x)$. Also, since $(x \ominus y) \ominus (x \ominus y) = 0$, $\mu(x) \ge \mu(y) \land \mu(x \ominus y)$. Thus μ is a fuzzy ideal of A.

(ii) By (i), the proof is clear.

Theorem 4.11. Let μ be a fuzzy prime \cdot -ideal in A. Then $\mu \oplus \alpha$ is also a fuzzy prime \cdot -ideal in A, where $(\mu \oplus \alpha)(x) = \mu(x) \oplus \alpha$ and $\alpha \oplus \beta = Min\{\mu(0), \alpha + \beta\}$, for all $x \in A$ and $\alpha, \beta \in [0, \mu(0))$.

Proof. The first we show that $\mu \oplus \alpha$ is a fuzzy --ideal of A. Let $(x \ominus y) \leq z$, for $x, y, z \in A$. Since μ is a fuzzy ideal of A, $\mu(x) \geq \mu(z) \land \mu(y)$. Consider MV-algebra [0, 1]. Then by Proposition 2.5 (ii), $\mu(x) \oplus \alpha \geq (\mu(z) \land \mu(y)) \oplus \alpha = (\mu \oplus \alpha)(z) \land (\mu \oplus \alpha)(y)$. Thus $(\mu \oplus \alpha)(x) \geq (\mu \oplus \alpha)(z) \land (\mu \oplus \alpha)(y)$. So by Lemma 4.10 (ii), $\mu \oplus \alpha$ is a fuzzy ideal of A. Since μ is a fuzzy prime --ideal of A, $\mu(x) \lor \mu(y) \geq \mu(x \land y)$. Hence $(\mu(x) \lor \mu(y)) \oplus \alpha \geq \mu(x \land y) \oplus \alpha$, for every $x, y \in A$. It results that $(\mu(x) \oplus \alpha) \lor (\mu(y)) \oplus \alpha \geq \mu(x \land y) \oplus \alpha$ and thus $(\mu \oplus \alpha)(x) \lor (\mu \oplus \alpha)(y) \geq (\mu \oplus \alpha)(x \land y)$. Now, since $(\mu \oplus \alpha)(0) = \mu(0) \oplus \alpha \neq \mu(1) \oplus \alpha = (\mu \oplus \alpha)(1)$ and $\mu \leq \mu \oplus \alpha$, by Theorem 4.8, $\mu \oplus \alpha$ is a fuzzy prime --ideal of A.

Lemma 4.12. Let A be unital and J be a proper \cdot -ideal of A. Then there is a prime \cdot -ideal P of A such that $J \subseteq P$.

Proof. A routine application of Zorn's Lemma shows that there is a proper --ideal I of A which is maximal with respect to the property $J \subseteq I$. We show that I is a prime ideal of A. Let $x \land y \in I$ and $x, y \notin I$, for $x, y \in A$. Consider $\prec I \cup \{x\} \succ$ and $\prec I \cup \{y\} \succ$. By maximality I, we have $1 \in \prec I \cup \{x\} \succ$ and $1 \in \prec I \cup \{y\} \succ$. Then by Proposition 2.2, there are $m, n \in \mathbb{N}$ and $a, b \in I$ such that $1 = nx \oplus a$ and $1 = my \oplus b$. Now, let $u = a \oplus b$ and $k = max\{m, n\}$. Then $1 = kx \oplus u$ and $1 = ky \oplus u$. By Lemma 3.5 and Proposition 2.13 (h), we have $1.1 = (kx \oplus u).(ky \oplus u) = (kx \oplus u).ky \oplus (kx \oplus u).u \leq (kx).(ky) \oplus u.ky \oplus (kx).u \oplus u.u \in I$. Thus $1 = 1.1 \in I$,

which is a contradiction. So I is a prime ideal of A. Hence I is a prime \cdot -idael of A.

Theorem 4.13. Let μ be a fuzzy \cdot -ideal in A such that $1 \neq \mu(0) \neq \mu(1)$. Then there is a fuzzy prime \cdot -ideal ν such that $\mu \leq \nu$.

Proof. Consider $\mu_{\mu(0)} = \{x \in A : \mu(x) = \mu(0)\}$ that is a proper --ideal of A. By Lemma 4.12, there is a prime --ideal P of A such that $\mu_{\mu(0)} \subseteq P$. By Corollary 4.6, χ_P is a fuzzy prime --ideal of A. Now, let $\nu = \chi_P \oplus \alpha$, where $\alpha = \bigvee_{x \in A - P} \mu(x)$. Then $\alpha \leq \mu(0) < 1$. Thus by Theorem 4.11, ν is a fuzzy prime --ideal of A.

Theorem 4.14. Let A be unital, μ and ν be fuzzy \cdot -ideals in A and $\mu \wedge \nu \leq \alpha$, for $\alpha \in [0, \mu(0))$. Then there is a fuzzy prime \cdot -ideal h in A such that $\mu \leq h$ and $\nu \wedge h \leq \alpha$.

Proof. Let $T = \{x \in A : \mu(x) > \alpha\}$ and $S = \{x \in A : \nu(x) > \alpha\}$. If $a, b \in S$, then $\nu(a) > \alpha$ and $\nu(b) > \alpha$. Thus by Lemma 2.9 (ii) and Theorem 2.16 (iii), $\nu(a,b) > \nu(a \land b) > \nu(a) \lor \nu(b) > \alpha$. It results that $a,b \in S$ and thus S is .-closed. We must show that T is a \cdot -ideal of A. Since $\alpha \in [0, \mu(0)), 0 \in T$. Let $x, y \ominus x \in T$, for $x, y \in A$. Then $\mu(x) > \alpha$, $\mu(y \ominus x) > \alpha$. Thus $\mu(x) \wedge \mu(y \ominus x) > \alpha$. Since $\mu(y) \ge \mu(x) \land \mu(y \ominus x), \ \mu(y) > \alpha$. So $y \in T$. Also, since $\mu(x \oplus y) \ge \mu(x), \ x \oplus y \in T$, for every $x, y \in T$. Hence by Lemma 3.3, T is an ideal of A. Now, let $x \in T$ and $y \in A$. Then $\mu(x) > \alpha$. Since $x \cdot y \leq x \land y \leq x$, $\mu(x \cdot y) \geq \mu(x) > \alpha$. Thus $x \cdot y \in T$. So T is a --ideal of A. Let $T \cap S \neq \emptyset$. Then there is $x \in T \cap S$. Thus $\mu(x) > \alpha$ and $\nu(x) > \alpha$. It results that $(\nu \wedge \mu)(x) = \nu(x) \wedge \mu(x) > \alpha$, which is a contradiction. Hence, by Theorem 3.9, there exists a prime \cdot -ideal P of A such that $S \cap P = \emptyset$ and $T \subseteq P$. Consider $h = \chi_P \oplus \alpha$. Then by Corollary 4.6 and Theorem 4.11, h is a fuzzy prime --ideal of A. Now, we show that $\mu \leq h$. If $x \in P$, then $\chi_P(x) = 1$ and so $h(x) = 1 \oplus \alpha$. It results that $\mu \leq h$. If $x \notin P$, then $x \notin T$ and so $\mu(x) \leq \alpha$. On the other hand, $h(x) = \chi_P(x) \oplus \alpha = \alpha$. Therefore $\mu(x) \leq h(x)$. It is easy to show that $\nu \wedge h \leq \alpha$.

5. Conclusions

Prime ideals, --ideals and --prime ideals had been defined in MV-algebras [4, 5, 8]. Lately, ideals in PMV-algebras were considered and some researchers have been interested to them. We defined prime --ideals in PMV-algebras and stated some conditions to have them. They are --ideals that are prime ideals, too. Also, we defined fuzzy prime --ideals in PMV-algebras and obtained some results on them. In fact, we opened new fields to anyone that is interested to studying and development of ideals in MV-algebras.

Acknowledgements. The authors would like to thank referee for some very helpful comments in improving several aspects of this paper.

References

S. Abdullah, M. Aslam and Bijan Davvaz, Semigroups characterized by the properties of fuzzy ideals, Ann. Fuzzy Math. Inform. 9 (1) (2015) 43–63.

^[2] C. C. Chang, Algebric analysis of many-valued logic, Trans. Amer. Math. Soc. 88 (1958) 467–490.

- [3] C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959) 74–80.
- [4] R. Cignoli, M. L. D'Ottaviano and D. Mundici, Algebric Foundation of Many-valued Reasoning, Kluwer Academic, Dordrecht 2000.
- [5] A. Di Nola and A. Dvurečenskij, Product MV-algebras, Multiple-Valued Logics 6 (2001) 193– 215.
- [6] A. Di Nola, P. Flondor and I. Leustean, MV-modules, Journal of Algebra 267 (2003) 21-40.
- [7] G. Dymek, Fuzzy prime ideals of Pseudo-MV-algebras, Soft comput. 12 (2008) 365–372.
- [8] F. Forouzesh, E. Eslami and A. Borumand, On Prime A-ideals in MV-modules, Politehn. Univ. Bucharest Sci. Bull. 76 (2014) 181–198.
- [9] C. S. Hoo, Fuzzy ideals of BCI and MV-algebras, Fuzzy Sets and Systems 62 (1994) 111–114.
 [10] H. Rashmanlou, Y. Bae Jun and R. A. Borzooei, More results on highly irregular bipolar fuzzy
- graphs, Ann. Fuzzy Math. Inform. 8 (1) (2014) 149–168.
- [11] A. Zadeh, Fuzzy set, Information and Control 8 (1965) 338–353.

<u>SIMIN SAIDI GORAGHANI</u> (siminsaidi@yahoo.com) Department of Mathematics, Farhangian University, Iran

<u>RAJAB ALI BORZOOEI</u> (borzooei@sbu.ac.ir) Department of Mathematics, Shahid Beheshti University, Tehran, Iran