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1. Introduction

M V -algebras were defined by C. C. Chang [2, 3] as algebras corresponding to the
Lukasiewicz infinite valued propositional calculus. These algebras have appeared in
the literature under different names and polynomially equivalent presentation: CN -
algebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. It
is discovered that MV -algebras are naturally related to the Murray-von Neumann
order of projections in operator algebras on Hilbert spaces and that they play an
interesting role as invariants of approximately finite-dimensional C∗-algebras. They
are also naturally related to Ulam

,

s searching games with lies. MV -algebras ad-
mit a natural lattice reduct and hence a natural order structure. Many important
properties can be derived from the fact, established by Chang that nontrivial MV -
algebras are subdirect products of MV -chains, that is, totally ordered MV -algebras.
To prove this fundamental result, Chang introduced the notion of prime ideal in an
MV -algebra.

A product MV -algebra (or PMV -algebra, for short) is an MV -algebra which
has an associative binary operation “.”. It satisfies an extra property which will be
explained in Preliminaries. PMV -algebras were introduced by A. Di Nola and A.
Dvurečenskij in [5]. They also introduced ·-ideals in PMV -algebras. During the
last years, PMV -algebras were considered and their equivalence with a certain class
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of l-rings with strong unit was proved. In 2014, F. Forouzesh, E. Eslami and A.
Borumand Saeid defined ·-prime ideals in PMV -algebras [8].

The concept of fuzzy sets was introduced by Zadeh for the first time [11]. Since
then, many studies were performed about this subject and many researchers started
working on the fuzzy algebraic structures. Recently, many papers were writed, too.
For example, see [1, 10].

In this paper, we introduce the notions of prime ·-ideals and fuzzy prime ·-ideals
in PMV -algebras and prove some results on them. In fact, we open new fields to
anyone that is interested to studying and development of fuzzy ideals in PMV -
algebras.

2. Preliminaries

In this section, we review related lemmas and theorems that we use in the next
sections.

Definition 2.1 ([4]). An MV-algebra is a structure M = (M,⊕,′ , 0) of type (2, 1, 0)
such that:

(MV 1) (M,⊕, 0) is an Abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a.

If we define the constant 1 = 0′ and operations � and 	 by a � b = (a′ ⊕ b′)′,
a	 b = a� b′, then

(MV 5) (a⊕ b) = (a′ � b′)′,
(MV 6) x⊕ 1 = 1,
(MV 7) (a	 b)⊕ b = (b	 a)⊕ a,
(MV 8) a⊕ a′ = 1,

for every a, b ∈ A.
It is clear that (M,�, 1) is an abelian monoid. Now, if we define auxiliary op-

erations ∨ and ∧ on M by a ∨ b = (a � b′) ⊕ b and a ∧ b = a � (a′ ⊕ b), for every
a, b ∈M , then (M,∨,∧, 0) is a bounded distributive lattice.

In MV -algebra M , the following conditions are equivalent: for every a, b, c ∈M ,
(i) a′ ⊕ b = 1.
(ii) a� b′ = 0.
(iii) b = a⊕ (b	 a).
(iv) ∃c ∈ A such that a⊕ c = b.

For any two elements a, b of MV -algebra M , a ≤ b if and only if a, b satisfy in the
above equivalent conditions (i)-(iv).

An ideal of MV -algebra M is a subset I of M , satisfying the following condition:
for every x, y ∈ I,

(I1) 0 ∈ I,
(I2) x ≤ y and y ∈ I implies that x ∈ I,
(I3) x⊕ y ∈ I.

A proper ideal I of M is a prime ideal if and only if x 	 y ∈ I or y 	 x ∈ I (or
x ∧ y ∈ I implies that x ∈ I or y ∈ I), for every x, y ∈M .
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In MV -algebra M , the distance function d : M ×M →M is defined by d(x, y) =
(x	 y)⊕ (y 	 x) which satisfies

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ d(x, y)⊕ d(y, z),
(iv) d(x, y) = d(x′, y′),
(v) d(x⊕ z, y ⊕ t) ≤ d(x, y)⊕ d(z, t),

for every x, y, z, t ∈M .
Let I be an ideal of MV -algebra M . Then we denote x ∼ y (x ≡I y) if and only

if d(x, y) ∈ I, for every x, y ∈ M . Thus ∼ is a congruence relation on M . Denote
the equivalence class containing x by x

I and M
I = {xI : x ∈M}. Then (MI ,⊕,

′ , 0I ) is

an MV -algebra, where (xI )′ = x′

I and x
I ⊕

y
I = x⊕y

I , for all x, y ∈M .
Let M and K be two MV -algebras. A mapping f : M → K is called an MV -

homomorphism if
(H1) f(0) = 0,
(H2) f(x⊕ y) = f(x)⊕ f(y),
(H3) f(x′) = (f(x))′,

for every x, y ∈M .
If f is one to one (onto), then f is called an MV -monomorphism (epimorphism) and
if f is onto and one to one, then f is called an MV -isomorphism(see [6]).

Proposition 2.2 ([4]). Let M be an MV -algebra and W ⊆M . Then the principal
ideal generated by W is denoted by ≺ W � and ≺ W �= {x ∈ M : x ≤ w1 ⊕
w2 ⊕ · · · ⊕ wn, for some w1, · · · , wn ∈ W}. Further, for every ideal J of M ,
≺ J ∪ {z} �= {x ∈M : nz ⊕ a ≥ x, for some n ∈ N and a ∈ J}.

Lemma 2.3 ([4]). Let M,N be two MV -algebras and f : M → N be an MV -
homomorphism. Then the following properties hold:

(i) Ker(f) is an ideal of M .
(ii) If f is an MV -epimorphism, then M

Kerf
∼= N .

(iii) f(x) ≤ f(y) iff x	 y ∈ Ker(f).
(iv) f is injective iff Ker(f) = {0}.

Lemma 2.4 ([4]). In every MV -algebra M , the natural order “ ≤ ” has the following
properties: for every x, x′, y, y′, z ∈M ,

(i) x ≤ y if and only if y′ ≤ x′.
(ii) If x ≤ y, then x⊕ z ≤ y ⊕ z.
(iii) If x ≤ y, then x� z ≤ y � z.

Proposition 2.5 ([4]). The following equatoins hold in every MV -algebra:
(i) x� (y ∨ z) = (x� y) ∨ (x� z).
(ii) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Definition 2.6 ([6]). In MV -algebra M , a partial addition is defined as following:
x+y is defined if and only if x ≤ y′ and in this case, x+y = x⊕y, for any x, y ∈M .

Lemma 2.7 ([6]). Let M be an MV -algebra and let + is the partial addition on M .
Then for every x, y, z ∈M ,

(c) x ∨ y = x+ (x′ � y).
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(d) If x+ y and (x+ y) + z are defined, then y+ z and x+ (y+ z) are defined and
(x+ y) + z = x+ (y + z).

(e) x+ y = 1 if and only if y = x′.
(f) If z + x ≤ z + y, then x ≤ y.
(g) If x+ y = z, then y = x′ � z.
(h) If z + x = z + y, then x = y.

Definition 2.8 ([5]). A productMV -algebra (or PMV -algebra, for short) is a struc-
ture (A,⊕, .,′ , 0), where (A,⊕,′ , 0) is an MV -algebra and · is a binary associative
operation on A such that the following property is satisfied: if x+ y is defined, then
x·z+y ·z and z ·x+z ·y are defined and (x+y)·z = x·z+y ·z, z ·(x+y) = z ·x+z ·y,
where + is a partial addition on A.

If A is a PMV -algebra, then a unity for the product is an element e ∈ A such
that e · x = x · e = x, for every x ∈ A.
A PMV -algebra that has unity for the product will be called unital.

A ·-ideal of a PMV -algebra A is an ideal I of MV -algebra A such that if a ∈ I
and b ∈ A, then a · b ∈ I and b · a ∈ I.

Lemma 2.9 ([6]). If A is a unital PMV -algebra, then
(i) The unity for the product is e = 1.
(ii) x · y ≤ x ∧ y, for every x, y ∈ A.

Definition 2.10 ([6]). Let X and Y be PMV -algebras. An MV -homomorphism
f : X → Y is called a homomorphism of PMV -algebras (or PMV -homomorphism)
if and only if f(x · y) = f(x) · f(y).

Lemma 2.11 ([5]). Let A be a PMV -algebra. Then 1.a = a and a ≤ b implies that
a.c ≤ b.c and c.a ≤ c.b, for every a, b, c ∈ A.

Definition 2.12 ([6]). Let A = (A,⊕, .,′ , 0) be a PMV -algebra, M = (M,⊕,′ , 0)
be an MV -algebra and the operation Φ : A×M −→M be defined by Φ(a,m) = am,
which satisfies the following axioms:

(AM1) If x+y is defined in M , then ax+ay is defined in M and a(x+y) = ax+ay.
(AM2) If a+b is defined in A, then ax+bx is defined in M and (a+b)x = ax+bx.
(AM3) (a.b)x = a(bx), for every a, b ∈ A and x, y ∈M .

Then M is called a (left) MV -module over A or briefly an A-module.
We say that M is a unitary MV -module if A has a unity 1A for the product, i.e.,
(AM4) 1Ax = x, for every x ∈M .

Lemma 2.13 ([6]). Let A be a PMV -algebra and M be an A-module. Then for
every a, b ∈ A and x, y ∈M ,

(a) 0x = 0.
(b) a0 = 0.
(c) ax′ ≤ (ax)′.
(d) a′x ≤ (ax)′.
(e) (ax)′ = a′x+ (1x)′.
(f) x ≤ y implies ax ≤ ay.
(g) a ≤ b implies ax ≤ bx.
(h) a(x⊕ y) ≤ ax⊕ ay.
(i) d(ax, ay) ≤ ad(x, y).

530



S. Saidi Goraghani et al. /Ann. Fuzzy Math. Inform. 12 (2016), No. 4, 527–538

Definition 2.14 ([11]). A fuzzy set in set of A is a mapping µ : A → [0, 1]. Let µ
be a fuzzy set in A and t ∈ [0, 1]. Then µt = {x ∈ A : µ(x) ≥ t} is called a level
subset of µ.

Definition 2.15 ([9]). If A is an MV -algebra, then a fuzzy set µ in A is a fuzzy
ideal of A, if it satisfies

(FI1) µ(0) ≥ µ(x), for all x ∈ A,
(FI2) µ(y) ≥ µ(x) ∧ µ(y � x′), for all x, y ∈ A.

Theorem 2.16 ([9]). Let µ be a fuzzy ideal in A. Then for every x, y ∈ A,
(i) µ(x⊕ y) = µ(x) ∧ µ(y).
(ii) µ(x ∨ y) = µ(x) ∧ µ(y)
(iii) µ(x ∧ y) ≥ µ(x) ∨ µ(y).

Lemma 2.17 ([7]). Let A be an MV -algebra and µ : A → [0, 1] be a fuzzy set on
A. Then µ is a fuzzy ideal on A if and only if

(i) µ(x) ≤ µ(0),
(ii) µ(x⊕ y) ≥ µ(x) ∧ µ(y),
(iii) If x ≤ y, then µ(x) ≥ µ(y), for all x, y ∈ A.

Theorem 2.18 ([7]). Let µ be a fuzzy set in A. µ is a fuzzy ideal in A if and only
if for all t ∈ [0, 1], µt is either empty or an ideal of A.

Corollary 2.19 ([7]). I is an ideal of A if and only if χI is a fuzzy ideal of A, where
χI is characteristic function of I.

3. Prime ·-ideals in PMV -algebras

Note: From now on, in this paper, A is a PMV -algebra.
In this section, we introduce prime ·-ideals in PMV -algebras and state some condi-
tions to obtain them.

Definition 3.1. Let P be a ·-ideal of A. If P is a prime ideal of MV -algebra A,
then P is called a prime ·-ideal of A.

Example 3.2. Let A = {0, 1, 2, 3} and the operations “⊕” and “.” on A be defined
as follows:

⊕ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

. 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

Consider 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0. Then it is easy to show that (A,⊕,′ , ., 0)
is a PMV -algebra, J = {0, 2} and I = {0, 1} are prime ·-ideals of A. Also, {0} is
not a prime ·-ideal of A.

Lemma 3.3. Let A be an MV algebra and I ⊆ A. Then I is an ideal of A if and
only if

(i) 0 ∈ I,
(ii) x⊕ y ∈ I, for every x, y ∈ I,
(iii) if x	 y, y ∈ I, then x ∈ I, for any x, y ∈ A.
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Proof. (⇒) Let I be an ideal of A. Then (i) and (ii) are clear. Now, let x	y, y ∈ I.
Then by (ii) and (MV 7), (y 	 x)⊕ x = (x	 y)⊕ y ∈ I. Since x ≤ (y 	 x)⊕ x ∈ I,
x ∈ I.

(⇐) Let (i), (ii) and (iii) be true. If x ≤ y and y ∈ I, then x	 y = x� y′ = 0 ∈ I.
Thus by (iii), x ∈ I. So I is an ideal of A. �

Theorem 3.4. Let A,B be PMV -algebras and f : A −→ B be a PMV -homomorphism.
Then

(i) If P is a prime ·-ideal of B, then f−1(P ) is a prime ·-ideal of A.
(ii) If f is onto, P is a prime ·-ideal of A and Ker(f) ⊆ P , then f(P ) is a prime

·-ideal of B.

Proof. (i) The proof is routine.
(ii) The first we show that f(P ) is an ideal of B. The proofs of (I1) and (I3) are

easy. We show that f(P ) satisfies in (I2). Let a ≤ b ∈ f(P ), for some a, b ∈ B.
Since f is onto, there are x ∈ A and y ∈ P such that a = f(x) and b = f(y). Since
f(x) ≤ f(y), by Lemma 2.3 (iii), x	 y ∈ P . Thus by Lemma 3.3, x ∈ P . It means
that a = f(x) ∈ f(P ). So f(P ) is an ideal of B. It is routine to see that f(P ) is a
·-ideal of B.

Now, let a ∧ b ∈ f(P ), for a, b ∈ B. Then there are x, y ∈ A such that a = f(x)
and b = f(y). We have

a ∧ b = f(x) ∧ f(y) = f(x ∧ y) ∈ f(P ) ⇒ f(x ∧ y) = f(t), t ∈ P
⇒ x ∧ y � t′ ∈ P, t ∈ P
⇒ x ∧ y ∈ P.

Thus x ∈ P or y ∈ P . So a = f(x) ∈ f(P ) or b = f(y) ∈ f(P ). Hence f(P ) is a
prime ideal of B and thus it is a prime ·-ideal of B. �

Lemma 3.5. In PMV -algebra A, (α⊕ β)a ≤ αa⊕ βa, for every α, β, a ∈ A.

Proof. Since βa ≤ (αa)′⊕βa, by Lemma 2.4 (i), (αa)�(βa)′ = ((αa)′⊕βa)′ ≤ (βa)′.
Then (αa)�(βa)′+βa is defined, where “+” is the partial addition on A. Similarly,
α� β′ + β is defined, too.

Consider A as A-module, where ab = a.b, for every a, b ∈ A. Then by Lemma
2.13 (d) and (g), since α� β′ ≤ β′, (α� β′)a ≤ β′a ≤ (βa)′. Thus (α� β′)a+ βa is
defined. Now, α ≤ α ∨ β implies that αa ≤ (α ∨ β)a and similarly, βa ≤ (α ∨ β)a.
So αa ∨ βa ≤ (α ∨ β)a. Hence by Lemma 2.7 (c),

(αa)�(βa)′+βa = αa∨βa ≤ (α∨β)a = (α�β′⊕β)a = (α�β′+β)a = (α�β′)a+βa.

Now, by Lemma 2.7(f), αa� (βa)′ ≤ (α�β′)a. If we set α⊕β instead of α, then
by Lemma 2.13 (g), we have (α ⊕ β)a� (βa)′ ≤ ((α ⊕ β)� β′)a = (α ∧ β′)a ≤ αa.
Thus

(α⊕ β)a = (α⊕ β)a ∨ βa = (α⊕ β)a� (βa)′ ⊕ βa ≤ αa⊕ βa.
�

Lemma 3.6. Let I be an ideal of A and c ∈ I. Then a.c ∈ I, for every a ∈ A.

Proof. The proof is easy. �

Definition 3.7. S ⊆ A is called a ·-closed subset of A, if x.y ∈ S, for every x, y ∈ S.
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Example 3.8. In Example 3.2, S = {1, 3} is a ·-closed subset of A.

Theorem 3.9. Let A be unital, I be a ·-ideal of A and S be a ·-closed subset of A
such that I ∩ S = ∅. Then there exists a prime ·-ideal P of A such that I ⊆ P and
P ∩ S = ∅.

Proof. Let T = {J : J is a · −ideal of A, I ⊆ J and J ∩ S = ∅}. Since I ∈ T ,
T 6= ∅. By Zorn’s Lemma, T has a maximal element P . We show that P is a prime
·-ideal of A. Let x ∧ y ∈ P and x, y /∈ P . Consider ≺ P ∪ {x} � and ≺ P ∪ {y} �.
By maximality P , ≺ P ∪{x} � ∩S 6= ∅ and ≺ P ∪{y} � ∩S 6= ∅ and so there exist
α ∈≺ P ∪ {x} � ∩S and β ∈≺ P ∪ {y} � ∩S. Then by Proposition 2.2, there exist
a, b ∈ P and n,m ∈ N ∪ {0} such that α ≤ nx⊕ a and β ≤ my ⊕ b. By Proposition
2.13 (f),(g), α.β ≤ (nx⊕a).(my⊕b). If we consider A as A-module, where xy = x.y,
for every x, y ∈ A, then by Lemmas 3.5, 3.6 and 2.13 (h),

α.β ≤ (nx⊕ a).my ⊕ (nx⊕ a).b ≤ nx.my ⊕ a.my ⊕ nx.b⊕ a.b
≤ x.y ⊕ · · · ⊕ x.y︸ ︷︷ ︸

mn times

⊕ a.y ⊕ · · · ⊕ a.y︸ ︷︷ ︸
m times

⊕x.b⊕ · · ·⊕︸ ︷︷ ︸
n times

⊕a.b ∈ P.

So α.β ∈ P . Since S is a ·-closed subset of A, α.β ∈ P ∩S, which is a contradiction.
Hence P is a prime ·-ideal of A. �

Lemma 3.10. Let A be unital, I be an ideal of A and r(I) be the intersection of all
prime ·-ideals of A containing I. Then

r(I) = {x ∈ A : xn = x.x. · · · .x︸ ︷︷ ︸
n times

∈ I, for some n ∈ N}.

Proof. Let T = {x ∈ A : xn = x.x. · · · .x︸ ︷︷ ︸
n times

∈ I, for some n ∈ N}. It is easy to show

that T ⊆ r(I). Let x ∈ r(I). If x /∈ T , then xn /∈ I, for every n ∈ N. Consider
S = {xn ⊕ a : n ∈ N ∪ {0}, a ∈ I and xn ≤ a′}. Let xn ⊕ a, xm ⊕ b ∈ S, for a, b ∈ I
and n,m ∈ N. Since xn ≤ a′ and xm ≤ a′, xn+a and xm+a are defined in A. Thus

(xn ⊕ a).(xm ⊕ b) = (xn + a).(xm + b) = xm+n + a.xm + xn.b+ a.b = xn+m ⊕ t ∈ S,

where by Lemma 3.6, t ∈ I. It results that S is a ·-closed subset of A. It is easy to
see that S ∩ I = ∅. So by Theorem 3.9, there is a prime ·-ideal P of A such that
I ⊆ P and S ∩P = ∅. Now, since x ∈ r(I) and x = x1 ⊕ 0 ∈ S, x ∈ P ∩ S, which is
a contradiction. Hence x ∈ T . Therefore T = r(I). �

Theorem 3.11. Let P be a ·-ideal of A. P = r(P ) if and only if A
P has no nilpotent

elements.

Proof. (⇒) Let P = r(P ) and 0
P 6=

x
P be an element of A

P . If ( xP )n = 0
P , for n ∈ N,

then xn

P = 0
P . Thus xn ∈ P . So by Lemma 3.10, x ∈ r(P ) = P and thus x

P = 0
P ,

which is a contradiction. Hence A
P has no nilpotent elements.

(⇐) Let A
P has no nilpotent elements. It is clear that P ⊆ r(P ). Let x ∈ r(P ).

Then by Lemma 3.10, xn ∈ P . Thus xn

P = 0
P , for n ∈ N. Since x

P has no nilpotent

elements, x
P = 0

P .Sand so x ∈ P . Hence r(P ) = P . �
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4. Fuzzy prime ·-ideals in PMV -algebras

In this section, we introduce fuzzy ·-ideals, fuzzy prime ·-ideals in PMV -algebras
and obtain some results on them.

Definition 4.1. Let µ be a fuzzy ideal in A. Then
(i) µ is called a fuzzy ·-ideal in A if and only if µ(x.y) ∧ µ(y.x) ≥ µ(x), for every

x, y ∈ A.
(ii) µ is called a fuzzy prime ·-ideal in A if and only if µt = A or µt is a prime

.-ideal of A.

Example 4.2. (i) Let A = {0, 1, 2, 3} and the operations “ ⊕ ” and “.” be defined
on A as follows:

⊕ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

. 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

Consider 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0. Then it is easy to show that (A,⊕,′ , ., 0)
is a PMV -algebra Now, let µ(0) = 0.8 and µ(2) = µ(1) = µ(3) = 0.5. Then µ is a
fuzzy ·-ideal of A.

(ii) Let A = {0, 1} and the operations “⊕ ” and “.” on A be defined as follows:

⊕ 0 1
0 0 1
1 1 1

. 0 1
0 0 0
1 1 1

Then it is easy to show that (A,⊕,′ , ·, 0) is a PMV -algebra. Now, let µ(0) = 0.8
and µ(1) = 0.5 . Then µ is a fuzzy prime ·-ideal of A.

Corollary 4.3. Let µ be a fuzzy ·-ideal in A such that µ(0) 6= µ(1). µ is a fuzzy
prime ·-ideal in A if and only if µµ(0) is a prime ·-ideal of A.

Proof. The proof is clear. �

Theorem 4.4. Let µ be a fuzzy ·-ideal in A such that µ(0) 6= µ(1). µ is a fuzzy
prime ·-ideal in A if and only if µ(x) ∨ µ(y) ≥ µ(x ∧ y), for every x, y ∈ A.

Proof. (⇒) Let µ be a fuzzy prime ·-ideal in A. Then µt is a prime ·-ideal of A.
Let x, y ∈ A. Consider t = µ(x ∧ y). Then µ(x ∧ y) ≥ t. Thus x ∧ y ∈ µt. So
x ∈ µt or y ∈ µt and thus µ(x) ≥ t or µ(y) ≥ t. Hence µ(x) ∨ µ(y) ≥ t. Therefore
µ(x) ∨ µ(y) ≥ µ(x ∧ y).

(⇐) Let µ(x)∨µ(y) ≥ µ(x∧ y), for every x, y ∈ A and µt 6= A, for t ∈ [0, 1]. The
first, we show that µt is a ·-ideal of A. Let x ∈ µt and y ∈ A. Since µ is a fuzzy
·-ideal of A, µ(x.y) ∧ µ(y.x) ≥ µ(x) ≥ t. Then µ(x.y) ≥ t and µ(y.x) ≥ t. Thus
x.y, y.x ∈ µt. If x ∧ y ∈ µt, then µ(x ∧ y) ≥ t. Thus µ(x) ∨ µ(y) ≥ t. So µ(x) ≥ t
or µ(y) ≥ t. Hence x ∈ µt or y ∈ µt. �

Corollary 4.5. Let A be unital and µ be a fuzzy ·-ideal in A such that µ(0) 6= µ(1).
µ is a fuzzy prime ·-ideal in A if and only if µ(x) ∨ µ(y) = µ(x ∧ y), for every
x, y ∈ A.
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Proof. (⇒) Let µ be a fuzzy prime ·-ideal in A. By Lemma 2.16 ,(iii), α.β ≤
(nx ⊕ a).(my ⊕ b). If we consider A as A-mo, µ(x ∧ y) ≥ µ(x) ∨ µ(y). Then by
Theorem 4.4, µ(x) ∨ µ(y) = µ(x ∧ y).

(⇐) By Theorem 4.4, it is clear. �

Corollary 4.6. Let I be a ·-ideal in A. I is a prime ·-ideal in A if and only if χI
is a fuzzy prime ·-ideal of A.

Proof. (⇒) Let I be a prime ·-ideal in A. We have (χI)t = {x : χI(x) ≥ t} = I, for
every t ∈ [0, 1]. Then (χI)t is a prime ·-ideal in A. Thus χI is a fuzzy prime ·-ideal
of A.

(⇐) Let χI be a fuzzy prime ·-ideal of A. Then by Corollary 4.3, I = {x ∈ A :
χ(x) ≥ 1} = (χI)χI(0) is a prime ·-ideal of A. �

Theorem 4.7. Let µ be a fuzzy set of A such that µ(0) 6= µ(1). µ is a fuzzy prime
·-ideal in A if and only if

(i) µ(x · y) = µ(y · x) = µ(0), for every x ∈ µµ(0) and y ∈ A.
(ii) µ(x	 y) = µ(0) or µ(y 	 x) = µ(0), for every x, y ∈ A.

Proof. (⇒) Let µ be a fuzzy prime ·-ideal in A. Then by Corollary 4.3, µµ(0) is
a prime ·-ideal of A. Since µµ(0) is a ·-ideal of A, x · y, y · y ∈ µµ(0). Thus
µ(x · y) = µ(y ·x) = µ(0), for every x ∈ µµ(0) and y ∈ A. Since µµ(0) is a prime ideal
of A, x	 y ∈ µµ(0) or y	 x ∈ µµ(0)). So µ(x	 y) ≥ µ(0) or µ(y	 x) ≥ µ(0). Hence
µ(x	 y) = µ(0) or µ(y 	 x) = µ(0).

(⇐) Let (i) and (ii) be true. Then it is easy to see that µ is a fuzzy ·-ideal and
µµ(0) is a prime ·-ideal of A. Thus by Corollary 4.3, µ is a fuzzy prime ·-ideal in
A. �

Theorem 4.8. Let µ be a fuzzy ·-ideal and ν be a ·-ideal in A such that ν(0) 6= ν(1).
If µ ≤ ν and µ(0) = ν(0), then ν is a fuzzy prime ·-ideal in A, too.

Proof. Since µ is a fuzzy prime ·-ideal in A, by Theorem 4.7, µ(x 	 y) = µ(0)
or µ(y 	 x) = µ(0), for every x, y ∈ A. Let µ(x 	 y) = µ(0). Since µ ≤ ν,
µ(x 	 y) ≤ ν(x 	 y). Then µ(0) ≤ ν(x 	 y). Since µ(0) = ν(0), ν(0) ≤ ν(x 	 y).
Thus ν(0) = ν(x	 y). Simillarly, if µ(y 	 x) = µ(0), then ν(y 	 x) = ν(0). Also, it
is easy to see that ν(x · y) = ν(y · x) = ν(0), for every for every x ∈ νν(0) and y ∈ A.
So by Theorem 4.7, ν is a fuzzy prime ·-ideal in A. �

Theorem 4.9. If A be unital and µ be a fuzzy ·-ideal of A such that µ(0) 6= µ(1),
then the following are equivalent:

(i) µ is a fuzzy prime ·-ideal of A.
(ii) µµ(0) is a prime ·-ideal of A.
(iii) µ(x) ∨ µ(y) ≥ µ(x · y).

Proof. By Corollary 4.3, (i) and (ii) are equivalent. We prove that (ii) and (iii) are
equivalent, too.

(ii) ⇒ (iii): Let µµ(0) be a prime ·-ideal of A. Then µµ(0) is a prime ideal of A.
Thus x	 y ∈ µµ(0) or y 	 x ∈ µµ(0), for every x, y ∈ A. If x	 y ∈ µµ(0), then since
x.y ≤ x ∧ y ≤ x ∨ y, by Lemma 2.4 (iii) and Proposition 2.5 (i),

x.y 	 y ≤ (x ∨ y)	 y = (x ∨ y)� y′ = (x� y′) ∨ (y � y′) = x	 y ∈ µµ(0).
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Thus x.y 	 y ∈ µµ(0).
Simillarly, if y 	 x ∈ µµ(0), then x.y 	 x ∈ µµ(0). Thus µ(x.y 	 y) = µ(0) or

µ(x.y 	 x) = µ(0). So µ(y) ≥ µ(x.y 	 y) ∧ µ(x.y) = µ(x.y) or µ(x) ≥ µ(x.y 	 x) ∧
µ(x.y) = µ(x.y). It results that µ(x) ∨ µ(y) ≥ µ(x.y).

(iii) ⇒ (ii): Let µ(x) ∨ µ(y) ≥ µ(x · y), for every x, y ∈ A. Then by Lemma 2.9
(ii) and Theorem 2.16 (ii), µ(x) ∨ µ(y) ≥ µ(x ∧ y). Thus by Theorem 4.4, µ is a
fuzzy prime ·-ideal in A. So µt is a prime ·-ideal of A, for every t ∈ [0, 1]. Hence
µµ(0) is a prime ·-ideal of A. Note that, since µ(1) < µ(0), 1 /∈ µµ(o) and thus µµ(o)
is a proper ·-ideal of A. �

Lemma 4.10. Let µ be a fuzzy set in A.
(i) µ is a fuzzy ideal in A if and only if (z 	 y) 	 x = 0 implies that µ(z) ≥

µ(x) ∧ µ(y).
(ii) µ is a fuzzy ideal in A if and only if (x	y) ≤ z implies that µ(x) ≥ µ(z)∧µ(y),

for all x, y, z ∈ A.

Proof. (i) (⇒) Let µ be a fuzzy ideal in A and (z 	 y) 	 x = 0, for all x, y, z ∈ A.
Then µ(z) ≥ µ(y)∧µ(z	y) and µ(z	y) ≥ µ(x)∧µ((z	y)	x) = µ(x)∧µ(0) = µ(x).
Thus µ(z) ≥ µ(x) ∧ µ(y), for all x, y, z ∈ A.

(⇐) Suppose (z 	 y)	 x = 0 implies that µ(z) ≥ µ(x) ∧ µ(y), for all x, y, z ∈ A.
Since (0	 x)	 x = 0, µ(0) ≥ µ(x) ∧ µ(x) = µ(x). Also, since (x	 y)	 (x	 y) = 0,
µ(x) ≥ µ(y) ∧ µ(x	 y). Thus µ is a fuzzy ideal of A.

(ii) By (i), the proof is clear. �

Theorem 4.11. Let µ be a fuzzy prime ·-ideal in A. Then µ ⊕ α is also a fuzzy
prime ·-ideal in A, where (µ⊕α)(x) = µ(x)⊕α and α⊕ β = Min{µ(0), α+ β}, for
all x ∈ A and α, β ∈ [0, µ(0)).

Proof. The first we show that µ⊕α is a fuzzy ·-ideal of A. Let (x	y) ≤ z, for x, y, z ∈
A. Since µ is a fuzzy ideal of A, µ(x) ≥ µ(z) ∧ µ(y). Consider MV -algebra [0, 1].
Then by Proposition 2.5 (ii), µ(x)⊕α ≥ (µ(z)∧µ(y))⊕α = (µ⊕α)(z)∧ (µ⊕α)(y).
Thus (µ⊕ α)(x) ≥ (µ⊕ α)(z) ∧ (µ⊕ α)(y). So by Lemma 4.10 (ii), µ⊕ α is a fuzzy
ideal of A. Since µ is a fuzzy prime ·-ideal of A, µ(x) ∨ µ(y) ≥ µ(x ∧ y). Hence
(µ(x) ∨ µ(y)) ⊕ α ≥ µ(x ∧ y) ⊕ α, for every x, y ∈ A. It results that (µ(x) ⊕ α) ∨
(µ(y))⊕α) ≥ µ(x∧ y)⊕α and thus (µ⊕α)(x)∨ (µ⊕α)(y)) ≥ (µ⊕α)(x∧ y). Now,
since (µ ⊕ α)(0) = µ(0) ⊕ α 6= µ(1) ⊕ α = (µ ⊕ α)(1) and µ ≤ µ ⊕ α, by Theorem
4.8, µ⊕ α is a fuzzy prime ·-ideal of A. �

Lemma 4.12. Let A be unital and J be a proper ·-ideal of A. Then there is a prime
·-ideal P of A such that J ⊆ P .

Proof. A routine application of Zorn’s Lemma shows that there is a proper ·-ideal
I of A which is maximal with respect to the property J ⊆ I. We show that I is a
prime ideal of A. Let x ∧ y ∈ I and x, y /∈ I, for x, y ∈ A. Consider ≺ I ∪ {x} �
and ≺ I ∪ {y} �. By maximality I, we have 1 ∈≺ I ∪ {x} � and 1 ∈≺ I ∪ {y} �.
Then by Proposition 2.2, there are m,n ∈ N and a, b ∈ I such that 1 = nx ⊕ a
and 1 = my ⊕ b. Now, let u = a ⊕ b and k = max{m,n}. Then 1 = kx ⊕ u and
1 = ky⊕u. By Lemma 3.5 and Proposition 2.13 (h), we have 1.1 = (kx⊕u).(ky⊕u) =
(kx⊕ u).ky ⊕ (kx⊕ u).u ≤ (kx).(ky)⊕ u.ky ⊕ (kx).u⊕ u.u ∈ I. Thus 1 = 1.1 ∈ I,
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which is a contradiction. So I is a prime ideal of A. Hence I is a prime ·-idael of
A. �

Theorem 4.13. Let µ be a fuzzy ·-ideal in A such that 1 6= µ(0) 6= µ(1). Then there
is a fuzzy prime ·-ideal ν such that µ ≤ ν.

Proof. Consider µµ(0) = {x ∈ A : µ(x) = µ(0)} that is a proper ·-ideal of A. By
Lemma 4.12, there is a prime ·-ideal P of A such that µµ(0) ⊆ P . By Corollary 4.6,
χP is a fuzzy prime ·-ideal of A. Now, let ν = χP ⊕ α, where α = ∨x∈A−Pµ(x).
Then α ≤ µ(0) < 1. Thus by Theorem 4.11, ν is a fuzzy prime ·-ideal of A. �

Theorem 4.14. Let A be unital, µ and ν be fuzzy ·-ideals in A and µ ∧ ν ≤ α,
for α ∈ [0, µ(0)). Then there is a fuzzy prime ·-ideal h in A such that µ ≤ h and
ν ∧ h ≤ α.

Proof. Let T = {x ∈ A : µ(x) > α} and S = {x ∈ A : ν(x) > α}. If a, b ∈ S,
then ν(a) > α and ν(b) > α. Thus by Lemma 2.9 (ii) and Theorem 2.16 (iii),
ν(a.b) ≥ ν(a ∧ b) ≥ ν(a) ∨ ν(b) > α. It results that a.b ∈ S and thus S is .-closed.
We must show that T is a ·-ideal of A. Since α ∈ [0, µ(0)), 0 ∈ T . Let x, y 	 x ∈ T ,
for x, y ∈ A. Then µ(x) > α, µ(y 	 x) > α. Thus µ(x) ∧ µ(y 	 x) > α. Since
µ(y) ≥ µ(x)∧µ(y	 x), µ(y) > α. So y ∈ T . Also, since µ(x⊕ y) ≥ µ(x), x⊕ y ∈ T ,
for every x, y ∈ T . Hence by Lemma 3.3, T is an ideal of A. Now, let x ∈ T and
y ∈ A. Then µ(x) > α. Since x.y ≤ x ∧ y ≤ x, µ(x.y) ≥ µ(x) > α. Thus x.y ∈ T .
So T is a ·-ideal of A. Let T ∩ S 6= ∅. Then there is x ∈ T ∩ S. Thus µ(x) > α and
ν(x) > α. It results that (ν ∧ µ)(x) = ν(x) ∧ µ(x) > α, which is a contradiction.
Hence, by Theorem 3.9, there exists a prime ·-ideal P of A such that S ∩ P = ∅
and T ⊆ P . Consider h = χP ⊕ α. Then by Corollary 4.6 and Theorem 4.11, h is a
fuzzy prime ·-ideal of A. Now, we show that µ ≤ h. If x ∈ P , then χP (x) = 1 and
so h(x) = 1 ⊕ α. It results that µ ≤ h. If x /∈ P , then x /∈ T and so µ(x) ≤ α. On
the other hand, h(x) = χP (x) ⊕ α = α. Therefore µ(x) ≤ h(x). It is easy to show
that ν ∧ h ≤ α. �

5. Conclusions

Prime ideals, ·-ideals and ·-prime ideals had been defined in MV -algebras [4, 5, 8].
Lately, ideals in PMV -algebras were considered and some researchers have been
interested to them. We defined prime ·-ideals in PMV -algebras and stated some
conditions to have them. They are ·-ideals that are prime ideals, too. Also, we
defined fuzzy prime ·-ideals in PMV -algebras and obtained some results on them. In
fact, we opened new fields to anyone that is interested to studying and development
of ideals in MV -algebras.
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