
Annals of Fuzzy Mathematics and Informatics

Volume 12, No. 3, (September 2016), pp. 469–478

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Intuitionistic fuzzy Zweier I-convergent sequence
spaces defined by Orlicz function

Vakeel A. Khan, Ayhan Esi, Yasmeen

Received 13 February 2016; Accepted 9 March 2016

Abstract. In this article we introduce the intuitionistic fuzzy Zweier
I-convergent sequence spaces ZI(µ,ν)(M) and ZI0(µ,ν)(M) defined by Orlicz
function and study the fuzzy topology on the said spaces.

2010 AMS Classification: 46S40

Keywords: Ideal, Filter, I-convergence, Intuitionistic fuzzy normed spaces.

Corresponding Author: Ayhan Esi (aesi23@hotmail.com)

1. Introduction

After the pioneering work of Zadeh [23], a huge number of research papers have
been appeared on fuzzy theory and its applications as well as fuzzy analogues of the
classical theories. Fuzzy set theory is a powerful hand set for modelling uncertainty
and vagueness in various problems arising in field of science and engineering. It has
a wide range of applications in various fields: population dynamics [3], chaos control
[6], computer programming [7], nonlinear dynamical system [8], etc. Fuzzy topology
is one of the most important and useful tools and it proves to be very useful for
dealing with such situations where the use of classical theories breaks down. K. Hur.
H. W. Kang and K. C. Lee[9] introduced the notion of fuzzy equivalence relations
and fuzzy partitions. The concept of intuitionistic fuzzy normed space [19] and of
intuitionistic fuzzy 2-normed space [16] are the latest developments in fuzzy topology.
Quite recently, V. A. Khan, K. Ebadullah and Yasmeen ([10], [11],[12]) studied the
notion of I- convergence in Intuitionistic Fuzzy Zweier I-convergent Double Sequence
Spaces.

The notion of statistical convergence is a very useful functional tool for study-
ing the convergence problems of numerical problems/matrices(double sequences)
through the concept of density. The notion of I-convergence, which is a generaliza-
tion of statistical convergence [5], was introduced by Kostyrko, Salat and Wilczynski
[13] by using the idea of I of subsets of the set of natural numbers N and further
studied in [17]. Recently, the notion of statistical convergence of double sequences
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x = (xij) has been defined and studied by Mursaleen and Edely [15]; and for fuzzy
numbers by Savaş and Mursaleen [20]. Quite recently, Das et al. [4] studied the
notion of I and I∗- convergence of double sequences in R.

2. Preliminaries

We recall some notations and basic definitions used in this paper.

Definition 2.1. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is said to be continuous
t-norm, if it satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) ∗ is continuous,
(iii) a ∗ 1 = a for all a ∈ [0, 1],
(iv) a ∗ c ≤ b ∗ d whenever a ≤ b and c ≤ d for each a, b, c, d ∈ [0, 1].

For example, a ∗ b = a.b is a continuous t-norm.

Definition 2.2. A binary operation � : [0, 1]× [0, 1]→ [0, 1] is said to be continuous
t-conorm, if it satisfies the following conditions:

(i) � is associative and commutative,
(ii) � is continuous,
(iii) a � 0 = a for all a ∈ [0, 1],
(iv) a � c ≤ b � d whenever a ≤ b and c ≤ d for each a, b, c, d ∈ [0, 1].

For example, a � b = min{a+ b, 1} is a continuous t-conorm.

Definition 2.3. The five-tuple (X,µ, ν, ∗, �) is said to be an intuitionistic fuzzy
normed space(for short, IFNS) if X is a vector space, ∗ is a continuous t-norm, � is
a continuous t-conorm and µ, ν are fuzzy sets on X× (0,∞) satisfying the following
conditions for every x, y ∈ X and s, t > 0 :

(i) µ(x, t) + ν(x, t) ≤ 1,
(ii) µ(x, t) > 0,
(iii) µ(x, t) = 1 if and only if x = 0,
(iv) µ(αx, t) = µ(x, t

|α| ) for each α 6= 0,

(v) µ(x, t) ∗ µ(y, s) ≤ µ(x+ y, t+ s),
(vi) µ(x, .) : (0,∞)→ [0, 1] is continuous,
(vii) lim

t→∞
µ(x, t) = 1 and lim

t→0
µ(x, t) = 0,

(viii) ν(x, t) < 1,
(ix) ν(x, t) = 0 if and only if x = 0,
(x) ν(αx, t) = ν(x, t

|α| ) for each α 6= 0,

(xi) ν(x, t) � ν(y, s) ≥ ν(x+ y, t+ s),
(xii) ν(x, .) : (0,∞)→ [0, 1] is continuous,
(xiii) lim

t→∞
ν(x, t) = 0 and lim

t→0
ν(x, t) = 1.

In this case (µ, ν) is called an intuitionistic fuzzy norm.

Definition 2.4. Let (X,µ, ν, ∗, �) be an IFNS. Then a sequence x = (xk) is said to
be convergent to L ∈ X with respect to the intuitionistic fuzzy norm (µ, ν), if for
every ε > 0 and t > 0, there exists k0 ∈ N such that

µ(xk − L, t) > 1− ε and ν(xk − L, t) < ε for all k ≥ k0.
470
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In this case we write (µ, ν)− limx = L.

Definition 2.5. Let X be a non empty set and let 2X be the power set of X.
Then a family of sets I ⊆ 2X is said to be an ideal on X, if I is additive, i.e.,
A,B ∈ I ⇒ A ∪B ∈ I and hereditary, i.e., A ∈ I,B ⊆ A⇒ B ∈ I.

Definition 2.6. Let X be a non empty set. Then F ⊂ 2X is said to be a filter
on X, if φ 6∈ F , for A,B ∈ F we have A ∩ B ∈ F and for each A ∈ F and B ⊃
A implies B ∈ F .

Definition 2.7. Let I ⊂ 2N be a non trivial ideal and (X,µ, ν, ∗, �) be an IFNS. A
sequence x = (xk) of elements of X is said to be I-convergent to L ∈ X with respect
to the intuitionistic fuzzy norm (µ, ν) if for every ε > 0 and t > 0 , the set

{k ∈ N : µ(xk − L, t) ≥ 1− ε or ν(xk − L, t) ≤ ε} ∈ I.
In this case L is called the I-limit of the sequence (xk) with respect to the intuition-
istic fuzzy norm (µ, ν) and we write I(µ,ν) − limxk = L.

Definition 2.8. Let (X,µ, ν, ∗, �) be an IFNS. Let r ∈ (0, 1), t > 0 and x ∈ X.
Then the set

Bx(r, t) = {y ∈ X : {k ∈ N : µ(xk − yk, t) ≤ 1− r or ν(xk − yk, t) ≥ r} ∈ I}
is called an open ball with centre x and radius r with respect to t.

The approach of constructing new sequence spaces by means of the matrix domain
of a particular limitation method have been recently employed by Altay, Başar,
Mursaleen [1], Malkowsky [14] Ng and Lee [18], and Wang [22]. Şengönül [21]
defined the sequence y = (yi) which is frequently used as the Zp transformation of
the sequence x = (xi) i.e,

yi = pxi + (1− p)xi−1
where x−1 = 0, p 6= 1, 1 < p <∞ and Zp denotes the matrix Zp = (zik) defined by

zik =

{ p, if (i = k),
1− p, (i− 1 = k); (i, k ∈ N)
0, otherwise .

Analogous to Başar and Altay [2], Şengönül [21] introduced the Zweier sequence
spaces Z and Z0 as follows

Z = {x = (xk) ∈ ω : Zpx ∈ c},

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.

Definition 2.9. An Orlicz function is a function M : [0,∞) → [0,∞), which is
continuous, non-decreasing and convex with M(0) = 0,M(x) > 0 for x > 0 and
M(x) → ∞ as x → ∞. If the convexity of Orlicz function M is replaced by
M(x+ y) ≤M(x) +M(y), then this function is called modulus function.

Remark 2.10. If M is an Orlicz function, then M(λx) ≤ λM(x) for all λ with
0 < λ < 1.
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In this article, we introduce the intuitionistic Zweier I-convergent
sequence spaces defined by Orlicz function as follows:

ZI(µ,ν)(M) =
{

(xk) ∈ ω :
{
k ∈ N : M

(
µ(x

/
k−L,t)
ρ

)
≤ 1− ε or M

(
ν(x

/
k−L,t)
ρ

)
≥ ε
}
∈ I
}
,

ZI0(µ,ν)(M) =
{

(xk) ∈ ω :
{
k ∈ N : M

(
µ(x

/
k,t)

ρ

)
≤ 1− ε or M

(
ν(x

/
k,t)

ρ

)
≥ ε
}
∈ I
}
.

3. Main Results

Theorem 3.1. ZI(µ,ν)(M) and ZI0(µ,ν)(M) are linear spaces.

Proof. We prove the result for ZI(µ,ν)(M). Similarly the result can be proved for

ZI0(µ,ν)(M). Let (x
/
k), (y

/
k) ∈ ZI(µ,ν)(M) and let α, β be scalars. Then for a given

ε > 0, we have

A1 =

{
k ∈ N : M

(µ(x/k−L1,
t

2|α|)

ρ1

)
≤ 1− ε or M

(ν(x/k−L1,
t

2|α|)

ρ1

)
≥ ε
}
∈ I,

A2 =

{
k ∈ N : M

(µ(y/k−L2,
t

2|β|)

ρ2

)
≤ 1− ε or M

(ν(y/k−L2,
t

2|β|)

ρ2

)
≥ ε
}
∈ I.

Ac1 =

{
k ∈ N : M

(µ(x/k−L1,
t

2|α|)

ρ1

)
> 1− ε or M

(ν(x/k−L1,
t

2|α|)

ρ1

)
< ε
}
∈ F(I),

Ac2 =

{
k ∈ N : M

(µ(y/k−L2,
t

2|β|)

ρ2

)
> 1− ε or M

(ν(y/k−L2,
t

2|β|)

ρ2

)
< ε
}
∈ F(I).

Define the set A3 = A1 ∪ A2, so that A3 ∈ I. It follows that Ac3 is a non-empty
set in F(I).

We shall show that for each (x
/
k), (y

/
k) ∈ ZI(µ,ν)(M),

Ac3 ⊂
{
k ∈ N : M

(µ((αx/k + βy
/
k)− (αL1 + βL2), t

)
ρ

)
> 1− ε or

M
(ν((αx/k + βy

/
k)− (αL1 + βL2), t

)
ρ

)
< ε
}
.

Let m ∈ Ac3. In this case

M
(µ(x/m−L1,

t
2|α| )

ρ

)
> 1− ε or M

(ν(x/m−L1,
t

2|α| )

ρ

)
< ε

and

M
(µ(y/m−L2,

t
2|β| )

ρ

)
> 1− ε or M

(ν(y/m−L2,
t

2|β| )

ρ

)
< ε.
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Then

M
(µ((αx/m + βy

/
m)− (αL1 + βL2), t

)
ρ

)
≥M

(µ(αx
/
m − αL1,

t
2 )

ρ

)
∗M

(µ(βy
/
m − βL2,

t
2 )

ρ

)
= M

(µ(x
/
m − L1,

t
2|α| )

ρ

)
∗M

(µ(y
/
m − L2,

t
2|β| )

ρ

)
> (1− ε) ∗ (1− ε)
= (1− ε).

and

M
(ν((αx/m + βy

/
m)− (αL1 + βL2), t

)
ρ

)
≤M

(ν(αx
/
m − αL1,

t
2 )

ρ

)
�M

(ν(βy
/
m − βL2,

t
2 )

ρ

)
= M

(ν(x
/
m − L1,

t
2|α| )

ρ

)
�M

(ν(y
/
m − L2,

t
2|β| )

ρ

)
< ε � ε
= ε.

So

Ac3 ⊂
{
k ∈ N : M

(µ((αx/k + βy
/
k)− (αL1 + βL2), t

)
ρ

)
> 1− ε or

M
(ν((αx/k + βy

/
k)− (αL1 + βL2), t

)
ρ

)
< ε
}
.

Hence ZI(µ,ν)(M) is a linear space. �

Theorem 3.2. Every open ball Bx/(r, t) is an open set in ZI(µ,ν)(M).

Proof. Let Bx/(r, t) be an open ball with centre x/ and radius r with respect to t.
That is

Bx/(r, t) =
{
y ∈ X : {k ∈ N : M(

µ(x
/
k−y

/
k,t)

ρ ) ≤ 1− r or M(
ν(x

/
k−y

/
k,t)

ρ ) ≥ r} ∈ I
}
.

Let y/ ∈ Bc
x/

(r, t). Then M(µ(x
/−y/,t)
ρ ) > 1− r and M(ν(x

/−y/,t)
ρ ) < r.

Since M(µ(x
/−y/,t)
ρ ) > 1−r, there exists t0 ∈ (0, 1) such that M(µ(x

/−y/,t0)
ρ ) > 1−r

and M(ν(x
/−y/,t0)
ρ ) < r. Putting r0 = M(µ(x

/−y/,t)
ρ ). Then r0 > 1 − r. Thus there

exists s ∈ (0, 1) such that r0 > 1−s > 1−r. For r0 > 1−s, there exist r1, r2 ∈ (0, 1)
such that r0 ∗ r1 > 1− s and (1− r0) � (1− r2) ≤ s. Putting r3 = max{r1, r2} and
consider the ball Bc

y/
(1− r3, t− t0). We prove that Bc

y/
(1− r3, t− t0) ⊂ Bc

x/
(r, t).

Let z/ ∈ Bc
y/

(1− r3, t− t0). Then

M(µ(y
/−z/,t−t0)

ρ ) > r3 and M(ν(y
/−z/,t−t0)

ρ ) < r3.
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Thus

M(
µ(x/ − z/, t)

ρ
) ≥M(

µ(x/ − y/, t0)

ρ
) ∗M(

µ(y/ − z/, t− t0)

ρ
)

≥ (1− r0) � (1− r3)

≥ (r0 ∗ r1)

≥ 1− s
> 1− r.

and

M(
ν(x/ − z/, t)

ρ
) ≤M(

ν(x/ − y/, t0)

ρ
) �M(

ν(y/ − z/, t− t0)

ρ
)

≤ (1− r0) � (1− r3)

≤ (1− r0) � (1− r2)

≤ s < r.

So z/ ∈ Bc
x/

(r, t). Hence Bc
y/

(1− r3, t− t0) ⊂ Bc
x/

(r, t). �

Define

τ(µ,ν)(M)

= {A ⊂ ZI(µ,ν)(M) : for each x ∈ A ∃ t > 0 and r ∈ (0, 1) such that Bx/(r, t) ⊂ A}.

Then τ(µ,ν)(M) is a topology on ZI(µ,ν)(M).

Theorem 3.3. The topology τ(µ,ν)(M) on ZI0(µ,ν)(M) is first countable.

Proof. {Bx/( 1
n ,

1
n ) : n = 1, 2, 3, ......................} is a local base at x/, the topology

τ(µ,ν)(M) on ZI0(µ,ν)(M) is first countable. �

Theorem 3.4. ZI(µ,ν)(M) and ZI0(µ,ν)(M) are Housdroff spaces.

Proof. Let x/, y/ ∈ ZI(µ,ν)(M) such that x/ 6= y/. Then 0 < M(µ(x
/−y/,t)
ρ ) < 1

and 0 < M(ν(x
/−y/,t)
ρ ) < 1. Putting r1 = M(µ(x

/−y/,t)
ρ ), r2 = M(ν(x

/−y/,t)
ρ ) and

r = max{r1, 1− r2}. Then for each r0 ∈ (r, 1), there exists r3 and r4 such that

r3 ∗ r4 ≥ r0 and (1− r3) � (1− r4) ≤ (1− r0).

Putting r5 = max{r3, 1− r4} and consider the open ball Bc
x/

(1 − r5,
t
2 ) and

Bc
y/

(1− r5, t2 ). Then clearly Bc
x/

(1− r5, t2 ) ∩Bc
y/

(1− r5, t2 ) = φ.

For if there exists z/ ∈ Bc
x/

(1− r5, t2 ) ∩Bc
y/

(1− r5, t2 ), then

r1 = M(
µ(x/ − y/, t)

ρ
) ≥M(

µ(x/ − z/, t2 )

ρ
) ∗M(

µ(z/ − y/, t2 )

ρ
)

≥ r5 ∗ r5 ≥ r3 ∗ r3 ≥ r0 > r1
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and

r2 = M(
ν(x/ − y/, t)

ρ
) ≤M(

ν(x/ − z/, t2 )

ρ
) �M(

ν(z/ − y/, t2 )

ρ
)

≤ (1− r5) � (1− r5)

≤ (1− r4) � (1− r4)

≤ 1− r0 < r.

This is a contradiction. So ZI(µ,ν)(M) is a Housedroff space.

Similarly we can prove that ZI0(µ,ν)(M) is a Housedorff space. �

Theorem 3.5. ZI(µ,ν)(M) is an IFNS. τ(µ,ν)(M) is a topology on ZI(µ,ν)(M). Then

a sequence (x
/
x) ∈ ZI(µ,ν)(M), x

/
k → x/ if and only if M(

µ(x
/
k−x

/,t)

ρ ) → 1 and

M(
ν(x

/
k−x

/,t)

ρ )→ 0 as k →∞.

Proof. Fix t0 > 0. Suppose x
/
k → x/. Then for r ∈ (0, 1), there exists n0 ∈ N such

that x
/
k ∈ Bx/(r, t) for all k ≥ n0. Thus

B =
{
k ∈ N : M(

µ(x
/
k−x

/,t)

ρ ) ≤ 1− r or M(
ν(x

/
k−x

/,t)

ρ ) ≥ r
}
∈ I

such that Bc ∈ F(I).

So 1−M(
µ(x

/
k−x

/,t)

ρ ) < r and M(
ν(x

/
k−x

/,t)

ρ ) < r.

Hence M(
µ(x

/
k−x

/,t)

ρ )→ 1 and M(
ν(x

/
k−x

/,t)

ρ )→ 0 as k →∞.

Conversely, if for each t > 0, M(
µ(x

/
k−x

/,t)

ρ ) → 1 and M(
ν(x

/
k−x

/,t)

ρ ) → 0 as

k → ∞, then for r ∈ (0, 1), there exists n0 ∈ N such that 1 −M(
µ(x

/
k−x

/,t)

ρ ) < r

and M(ν(x
/−x/,t)
ρ ) < r, for all k ≥ n0. It follows that M(

µ(x
/
k−x

/,t)

ρ ) > 1 − r and

M(
ν(x

/
k−x

/,t)

ρ ) < r for all k ≥ n0. Thus x
/
k ∈ Bc, for all k ≥ n0. So x

/
k → x/. �

Theorem 3.6. A sequence x = (x
/
k) ∈ ZI(µ,ν)(M) I-converges if and only if for

every ε > 0 and t > 0 there exists a number N = N(x, ε, t) such that{
k ∈ N : M

(µ(x/k−L,t2)
ρ

)
> 1− ε or M

(ν(x/k−L,t2)
ρ

)
< ε
}
∈ F(I).

Proof. Suppose that I(µ,ν)−x = L and let ε > 0 and t > 0. For a given ε > 0, choose

s > 0 such that (1− ε) ∗ (1− ε) > 1− s and ε � ε < 0. Then for each x ∈ ZI(µ,ν)(M),

A =
{
k ∈ N : M(

µ(x
/
k−L,

t
2 )

ρ ) ≤ 1− ε or M(
ν(x

/
k−L,

t
2 )

ρ ) ≥ ε
}
∈ I.

Thus

Ac =
{
k ∈ N : M(

µ(x
/
k−L,

t
2 )

ρ ) > 1− ε or M(
ν(x

/
k−L,

t
2 )

ρ ) < ε
}
∈ F(I).

Conversely let us choose N ∈ Ac. Then
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M
(µ(x/N−L, t2)

ρ

)
> 1− ε or M

(ν(x/N−L, t2)
ρ

)
< ε.

Now we want to show that there exists a number N = N(x
/
N , ε, t) such that{

k ∈ N : M(
µ(x

/
k−x

/
N ,t)

ρ ) ≤ 1− s or M(
ν(x

/
k−x

/
N ,t)

ρ ) ≥ s
}
∈ I.

For this, define for each x ∈ ZI(µ,ν)(M),

B =
{
k ∈ N : M(

µ(x
/
k−x

/
N ,t)

ρ ) ≤ 1− s or M(
ν(x

/
k−x

/
N ,t)

ρ ) ≥ s
}
∈ I.

Now we show that B ⊂ A.
Assume that B ⊂ A does not hold. Then there exists n ∈ B and n /∈ A. Thus

M(
µ(x/n−x

/
N ,t)

ρ ) ≤ 1− s and M(
µ(x

/
k−L,

t
2 )

ρ ) > 1− ε.

In particular M(
µ(x

/
N−L,

t
2 )

ρ ) > 1− ε. So

1− s ≥M(
µ(x

/
n − x/N , t)
ρ

)

≥M(
µ(x

/
n − L, t2 )

ρ
) ∗M(

µ(x
/
N − L,

t
2 )

ρ
)

≥ (1− ε) ∗ (1− ε) > 1− s.

This is not possible.
On the other hand,

M(
ν(x/n−x

/
N ,t)

ρ ) ≥ s and M(
ν(x

/
k−L,

t
2 )

ρ ) > ε.

In particular M(
ν(x

/
N−L,

t
2 )

ρ ) > ε. Then

s ≤M(
ν(x

/
n − x/N , t)
ρ

)

≤M(
ν(x

/
n − L, t2 )

ρ
) �M(

ν(x
/
N − L,

t
2 )

ρ
)

≤ ε � ε < s.

This is not possible. So B ⊂ A. Hence A ∈ I implies B ∈ I. �

Acknowledgments: The authors would like to record their gratitude to the
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the presentation of the paper.
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