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1. Introduction

The term fuzzy derivative has been introduced in 1972 by Chang and Zadeh [1],
while the the term fuzzy differential equation (FDE) was first formulated in 1978
by Kaleva [2] and Seikala [3]. The theory of fuzzy differential equations (FDEs) has
two branches, the one in which the Hukuhara derivative is the main tool and the
other one is inclusion. This paper is based on the concept of generalized Hukuhara
differentiability. The solution of FDE has a wide range of applications in the dy-
namic system of uncertainty. Moreover the field of FDEs is becoming a necessary
part of science and real word problems [2, 3]. In the last few decades, many method
have been applied for the solution of FIVP as discussed in [4, 8, 19, 20] but every
method has advantages and disadvantages. In the near past Allahviranloo, Kaini
and Barkhordari [5] introduced an approach toward the existence and uniqueness
to solve a second order FIVP. Here we will adopt FLT method in order to find an
analytical solution of FIVP. Recently Salahshour and Allahviranloo [6] has found
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the analytical solution of second order FIVP, then the third order FIVP has been
solved by Hawrra and Amal [7]. In order to solve a FIVP Allahviranloo, Kiani and
Barkhordari [5] stated under what condition FLT can be applied to solve a FIVP.
In [5], they proposed two conditions for the existence of solution of FIVP using FLT
and its inverse, and gave some useful results in the form of first order and second
order derivative theorem such as linearity, continuity, uniformity and convergency
under the new definition of absolute value of fuzzy-valued functions etc. They also
proposed two types of absolute value of fuzzy valued function which define the con-
vergence and exponential order of a fuzzy-valued function to find an appropriate
condition. In addition they have also proved that a large class of fuzzy-valued func-
tion can be solved with the help of FLT. In this paper, we generalize FLT for nth

order FIVP.

The original contributions of the paper are as follows:

• proof of nth derivative theorem [22] for FLT following the approach of [18]
which is different from [22] as they have proved the same theorem by induc-
tion,

• generalization of the r-level set of the fuzzy valued functions in the form of
(i) and (ii)-differentiable for nth derivative,

• generalization of the system of differential equations to nth order in the form
of differential operators, which are (i) and (ii)-differentiable,

• constructing solution of nth order FIVP by FLT.

The paper is arranged as follows:
In section 2, we recall some basics definitions and theorems. In section 3, fuzzy
Laplace Transform is defined. Then we prove nth derivative theorem, which provides
us a base for the generalization of the FLT to solve nth order FIVP. In section 4, we
solve FDEs by FLT. To illustrate the method, several examples are given in section
5. Conclusion is given in section 6.

2. Preliminaries

In this section we will recall some basics definitions and theorems needed through-
out the paper such as fuzzy number, fuzzy-valued function and the derivative of the
fuzzy-valued functions as presented in [2, 3, 8, 9].

Definition 2.1. A fuzzy number is defined as the mapping such that u : R → [0, 1],
which satisfies the following four properties:

(i) u is upper semi-continuous.
(ii) u is fuzzy convex that is u(λx + (1 − λ)y) ≥ min {u(x), u(y)}.x, y ∈ R and

λ ∈ [0, 1].
(iii) u is normal that is ∃ x0 ∈ R, where u(x0) = 1.

(iv) A = {x ∈ R : u(x) > 0} is compact, where A is closure of A.

Definition 2.2. A fuzzy number in parametric form is an order pair of the form
u = (u(r), u(r)), where 0 ≤ r ≤ 1 satisfying the following conditions:

(i) u(r) is a bounded left continuous increasing function in the interval [0, 1].
(ii) u(r) is a bounded left continuous decreasing function in the interval [0, 1].
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(iii) u(r) ≤ u(r).
If u(r) = u(r) = r, then r is called crisp number.

Now we recall a triangular fuzzy number which must be in the form of u = (l, c, r)
where l, c, r ∈ R and l ≤ c ≤ r, then u(α) = l + (c − r)α and u(α) = r − (r − c)α
are the end points of the α level set. Since each y ∈ R can be regarded as a fuzzy
number if

ỹ(t) =

{
1, if y = t,

0, if y 6= t.

For arbitrary fuzzy numbers u = (u(α), u(α)) and v = (v(α), v(α)) and an arbi-
trary crisp number j, we define addition and scalar multiplication as:

(i) (u+ v)(α) = (u(α) + v(α)).
(ii) (u+ v)(α) = (u(α) + v(α)).
(iii) (ju)(α) = ju(α), (ju)(α) = ju(α) j ≥ 0.
(iv) (ju)(α) = ju(α)α, (ju)(α) = ju(α)α, j < 0.

Definition 2.3. Let x, y ∈ E. If ∃ z ∈ E such that x = y + z, then z is called the
H-difference of x and y and is given by x⊖ y.

Remark 2.4 ([10]). Let X be a cartesian product of the universes, X1, X1, · · · , Xn,
that is X = X1 ×X2 × · · · ×Xn and A1, · · · , An be n fuzzy numbers in X1, · · · , Xn

respectively then f is a mapping from X to a universe Y , and y = f(x1, x2, · · · , xn),
then the Zadeh extension principle allows us to define a fuzzy set B in Y as;

B = {(y, uB(y))|y = f(x1, · · · , xn), (x1, · · · , xn) ∈ X},
where

uB(y) =

{
sup(x1,··· ,xn)∈f−1(y)min{uA1

(x1), · · ·uAn
(xn)}, if f−1(y) 6= 0,

0, otherwise,

where f−1 is the inverse of f .
The extension principle reduces in the case if n = 1 and is given as follows:

B = {(y, uB(y)|y = f(x), x ∈ X)}, where

uB(y) =

{
supx∈f−1(y) min{uA(x)}, if f−1(y) 6= 0,

0, otherwise.

By Zadeh extension principle the approximation of addition of E is defined by
(u⊕ v)(x) = supy∈R min(u(y), v(x − y)), x ∈ R and scalar multiplication of a fuzzy
number is defined by

(k ⊙ u)(x) =

{
u(xk ), k > 0,

0 otherwise ,

where 0̃ ∈ E.

The Housdorff distance between the fuzzy numbers [6, 11] is defined by

d : E × E −→ R
+ ∪ {0},

d(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v(r)|},
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where u = (u(r), u(r)) and v = (v(r), v(r)) ⊂ R.

We know that if d is a metric in E, then it will satisfies the following properties,
introduced by Puri and Ralescu [12]:

(1) d(u + w, v + w) = d(u, v), ∀ u, v, w ∈ E.
(2) (k ⊙ u, k ⊙ v) = |k|d(u, v), ∀k ∈ R, and u, v ∈ E.
(3) d(u ⊕ v, w ⊕ e) ≤ d(u,w) + d(v, e), ∀ u, v, w, e ∈ E.

Definition 2.5 ([13]). If f : R× E −→ E, then f is continuous at point (t0, x0) ∈
R × E provided that for any fixed number r ∈ [0, 1] and any ǫ > 0, ∃ δ(ǫ, r) such
that

d([f(t, x)]r , [f(t0, x0)]
r) < ǫ,

whenever |t− t0| < δ(ǫ, r) and d([x]r , [x0]
r) < δ(ǫ, r) ∀ t ∈ R, x ∈ E.

Theorem 2.6 ([14]). Let f be a fuzzy-valued function on [a,∞) given in the para-

metric form as (f(x, r), f (x, r)) for any constant number r ∈ [0, 1]. Here we assume

that f(x, r) and f(x, r) are Reman-Integral on [a, b] for every b ≥ a. Also we assume

that M(r) and M(r) are two positive functions, such that
∫ b

a

|f(x, r)|dx ≤ M(r)

and ∫ b

a

|f(x, r)|dx ≤ M(r),

for every b ≥ a. Then f(x) is improper integral on [a,∞). Thus an improper integral
will always be a fuzzy number.
In short ∫ r

a

f(x)dx = (

∫ b

a

|f(x, r)|dx,
∫ b

a

|f(x, r)|dx).

It is well known that Hukuhare differentiability for fuzzy function was introduced
by Puri and Ralescu in 1983.

Definition 2.7 ([15]). Let f : (a, b) → E where x0 ∈ (a, b), then we say that f

is strongly generalized differentiable at x0 (Beds and Gal differentiability). If ∃ an
element f ′(x0) ∈ E such that

(i) ∀h > 0 sufficiently small, ∃ f(x0 + h) ⊖ f(x0), f(x0) ⊖ f(x0 − h), then the
following limits hold (in the metric d):

lim
h→0

f(x0 + h)⊖ f(x0)

h
= lim

h→0

f(x0)⊖ f(x0 − h)

h
= f ′(x0),

or
(ii) ∀h > 0 sufficiently small, ∃ f(x0) ⊖ f(x0 + h), f(x0 − h) ⊖ f(x0), then the

following limits hold (in the metric d):

lim
h→0

f(x0)⊖ f(x0 + h)

−h
= lim

h→0

f(x0 − h)⊖ f(x0)

−h
= f ′(x0),

or
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(iii) ∀h > 0 sufficiently small, ∃ f(x0+h)⊖f(x0), f(x0−h)⊖f(x0), then following
limits hold (in metric d):

lim
h→0

(x0 + h)⊖ f(x0)

h
= lim

h→0

f(x0 − h)⊖ f(x0)

−h
= f ′(x0),

or
(iv) ∀h > 0 sufficiently small, ∃ f(x0) ⊖ f(x0 + h), f(x0) ⊖ f(x0 − h), then the

following limits holds(in metric d):

lim
h→0

f(x0)⊖ f(x0 + h)

−h
= lim

h→0

f(x0 − h)⊖ f(x0)

h
= f ′(x0).

The denominators h and −h denote multiplication by 1
h

−1
h respectively.

Theorem 2.8 ([16]). Let f : R → E be a function denoted by f(t) = (f(t, r), f (t, r))

for each r ∈ [0, 1]. Then
(1) If f is (i)-differentiable, then f(t, r) and f(t, r) are differentiable functions

and f ′(t) = (f ′(t, r), f
′
(t, r)).

(2) If f is (ii)-differentiable, then f(t, r) and f(t, r) are differentiable functions

and f ′(t) = (f
′
(t, r), f ′(t, r)).

Lemma 2.9 ([17]). Let x0 ∈ R, then the FDE y′ = f(x, y), y(x0) = y0 ∈ R and
f : R×E → E is supposed to be a continuous and equivalent to one of the following
integral equations.

y(x) = y0 +

∫ x

x0

f(t, y(t))dt ∀ x ∈ [x0, x1],

or

y(0) = y1(x) + (−1)⊙
∫ x

x0

f(t, y(t))dt ∀ x ∈ [x0, x1],

on some interval (x0, x1) ⊂ R depending on the strongly generalized differentiability.
Integral equivalency shows that if one solution satisfies the given equation, then the
other will also satisfy.

Remark 2.10 ([12]). In the case of strongly generalized differentiability to the
FDE’s y′ = f(x, y) we use two different integral equations. But in the case of
differentiability as the definition of H-derivative, we use only one integral. The
second integral equation as in Lemma 2.9 will be in the form of y1(t) = y10 ⊖
(−1)

∫ x

x0

f(t, y(t))dt. The following theorem related to the existence of solution of
FIVP under the generalized differentiability.

Theorem 2.11. Let us suppose that the following conditions are satisfied:
(1) Let R0 = [x0, x0 + s] × B(y0, q), s, q > 0, y ∈ E, where B(y0, q) = {y ∈ E :

B(y, y0) ≤ q} which denotes a closed ball in E and let f : R0 → E be continuous
functions such that D(0, f(x, y)) ≤ M , ∀(x, y) ∈ R0 and 0 ∈ E.

(2) Let g : [x0, x0 + s] × [0, q] → R such that g(x, 0) ≡ 0 and 0 ≤ g(x, u) ≤ M ,
∀x ∈ [x0, x0 + s], 0 ≤ u ≤ q, such that g(x, u) is increasing in u, and g is such that
the FIVP u′(x) = g(x, u(x)), u(x) ≡ 0 on [x0, x0 + s].

(3) We have D[f(x, y), f(x, z) ≤ g(x,D(y, z))],∀ (x,y), (x, z)∈ R0 and D(y, z) ≤
q.
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(4) ∃d > 0 such that for x ∈ [x0, x0 + d], the sequence y1n : [x0, x0 + d] → E given
by y10(x) = y0, y

1
n+1(x) = y0 ⊖ (−1)

∫ x

x0

f(t, y1n)dt defined for any n ∈ N .

Then the FIVP y′ = f(x, y), y(x0) = y0 has two solutions that is (i)-differentiable
and (ii)-differentiable for y.

y1 = [x0, x0 + r] → B(y0, q), where r = min{s, q
M , q

M1

, d} and the successive

iterations y0(x) = y0, yn+1(x) = y0 +
∫ x

x0

f(t, yn(t))dt and y1n+1 = y0, y
1
n+1(x) =

y0 ⊖ (−1)
∫ x

x0

f(t, y1n(t))dt converge to these two solutions, respectively.

Now according to Theorem 2.11, we restrict our attention to function which are (i)
or (ii)-differentiable on their domain except on a finite number of points as discussed
in [21].

3. Fuzzy Laplace transform (FLT)

Suppose that f is a fuzzy-valued function and p is a real parameter, then according
to [6, 17] FLT of the function f is defined as follows:

Definition 3.1. The FLT of fuzzy-valued function is [6]

(3.1) F̂ (p) = L[f(t)] =

∫ ∞

0

e−ptf(t)dt,

(3.2) F̂ (p) = L[f(t)] = lim
τ→∞

∫ τ

0

e−ptf(t)dt,

(3.3) F̂ (p) =

[
lim
τ→∞

∫ τ

0

e−ptf(t)dt, lim
τ→∞

∫ τ

0

e−ptf(t)dt

]
,

whenever the limits exist.

Definition 3.2. Classical fuzzy Laplace transform: Now consider the fuzzy-
valued function in which the lower and upper FLT of the function are represented
by

(3.4) F̂ (p; r) = L[f(t; r)] = [l(f(t; r)), l(f (t; r))],

where

(3.5) l[f(t; r)] =

∫ ∞

0

e−ptf(t; r)dt = lim
τ→∞

∫ τ

0

e−ptf(t; r)dt,

(3.6) l[f(t; r)] =

∫ ∞

0

e−ptf(t; r)dt = lim
τ→∞

∫ τ

0

e−ptf(t; r)dt.

Definition 3.3 ([8]). Let f : (a, b) → E and x0 ∈ (a, b). Then the nth order
derivative of the function is as follows:

Let f : (a, b) → E, where x0 ∈ (a, b). Then we say that f is strongly generalized
differentiable of the nth order at x0, if ∃ an element fk(x0) ∈ E such that ∀ k =
1, 2 · · · , n, one of the following holds:

(i) ∀h > 0 sufficiently small,

∃fk−1(x0 + h)⊖ fk−1(x0) and fk−1(x0)⊖ fk−1(x0 − h),
454
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then the following limits hold (in the metric d):

lim
h

→ 0
fk−1(x0 + h)⊖ fk−1(x0)

h
= lim

h→0

fk−1(x0)⊖ fk−1(x0 − h)

h
= fk(x0),

(ii) ∀h > 0 sufficiently small,

∃ fk−1(x0)⊖ fk−1(x0 + h) and fk−1(x0 − h)⊖ fk−1(x0),

then the following limits holds (in the metric d):

lim
h→0

fk−1(x0)⊖ fk−1(x0 + h)

−h
= lim

h→0

fk−1(x0 − h)⊖ fk−1(x0)

−h
= fk(x0),

(iii) ∀h > 0 sufficiently small,

∃ fk−1(x0 + h)⊖ fk−1(x0) and fk−1(x0 − h)⊖ fk−1(x0),

then following limits holds (in metric d):

lim
h→0

fk−1(x0 + h)⊖ fk−1(x0)

h
= lim

h→0

fk−1(x0 − h)⊖ fk−1(x0)

−h
= fk(x0),

(iv) ∀h > 0 sufficiently small,

∃ fk−1(x0)⊖ fk−1(x0 + h) and fk−1(x0)⊖ fk−1(x0 − h),

then the following limits holds(in metric d):

lim
h→0

fk−1(x0)⊖ fk−1(x0 + h)

−h
= lim

h→0

fk−1(x0 − h)⊖ fk−1(x0)

h
= fk(x0).

Theorem 3.4 ([7]). Let F (t), F ′(t), F ′′(t), · · · , F (n)(t) are nth order differentiable
fuzzy-valued functions and we denote r-level set of a fuzzy-valued function F (t) with
[F (t)]r = [fr(t), gr(t)], then [Fn(t)] = [fn

r (t), g
n
r (t)]’

Proof. Here F (t) and F ′(t) are differentiable, then we can write as [F ′′(t)]r =
[f ′′

r (t), g
′′
r (t)]. Since F ′′(t) is differentiable, then by Definition 2.6 of [7], a fuzzy-

valued function F : U → F0(R
n) is called Hukuhara differentiable at t0 ∈ U

if ∃ DF (t0) = F ′(t0) ∈ F0 × R
n such that the limits limh→0

F (t0+h)⊖F (t0)
h and

limh→0
F (t0)⊖F (t0−h

h exist and is equal to DF (t0).

Similarly, for D2F (t0), we have

[F ′(t0 + h)⊖ F ′(t0)]
r = [f ′

r(t0 + h), g′r(t0 + h)]⊖ [f ′
r(t0), g

′
r(t0)]

= [f ′
r(t0 + h)⊖ f ′

r(t0), g
′
r(t0 + h)⊖ g′r(t0)]

(3.7)

and

[F ′(t0)⊖ F ′(t0 − h)]r = [f ′
r(t0), g

′
r(t0)]⊖ [f ′

r(t0 − h), g′r(t0 − h)]

= [f ′
r(t0)⊖ f ′

r(t0 − h), g′r(t0)⊖ g′r(t0 − h)].
(3.8)

Similarly, for third order, fourth order and continuing up to nth order i.e DnF (t0)
we have

[F (n−1)(t0 + h)⊖ F (n−1)(t0)]
r

= [f (n−1)
r (t0 + h), g(n−1)

r (t0 + h)]⊖ [f (n−1)
r (t0), g

(n−1)
r (t0)]

= [f (n−1)
r (t0 + h)⊖ f (n−1)

r (t0), g
(n−1)
r (t0 + h)⊖ g(n−1)

r (t0)],

(3.9)
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[F (n−1)(t0)⊖ F (n−1)(t0 − h)]r

= [f (n−1)
r (t0), g

(n−1)
r (t0)]⊖ [f (n−1)

r (t0 − h), g(n−1)
r (t0 − h)]

= [f (n−1)
r (t0)⊖ f (n−1)

r (t0 − h), g(n−1)
r (t0)⊖ g(n−1)

r (t0 − h)].

(3.10)

Now multiplying 1
h to the second order, third order and so on up to nth order and

then applying limit as h → 0 on both sides we get the general form. According to [18],
if n is a positive integer so in the case of (i) and (ii)-differentiability we can write the
nth derivative of the functions F, F ′, · · · , F (n−1) in the form ofDn

k1···k−nF (t0), where
ki = 1, 2 for i = 1, · · · , n. Now if we want to compute the nth derivative of F at t0
MoreoverD

(n−1)
11 F (t0) is (i)-differentiable andD

(n−1)
22 F (t0) is (ii)-differentiable. Also

D
(n−1)
12 F (t0) is (i)and (ii)-differentiable and D

(n−1)
21 F (t0) is (ii) and (i)-differentiable

and hence proof is completed. �

3.1. Convergence. The FLT can be applied to a large number of fuzzy-valued
functions [6], and in some of the examples FLT does not converge as explained
below and reported in [6].

Example 3.5. Let the fuzzy-valued function f(t) = Cet
2

, where C ∈ E, then we
get

lim
τ→∞

∫ τ

0

Ce−ptet
2

dt → ∞

for any choice of variable p so the integral grows with out bounds as τ → ∞.

In the fuzzy Laplace theory, we have to use absolute value of fuzzy-valued func-
tions. Here we will define two types of absolute value of fuzzy-valued functions as
discussed in [6] and is given in the following definition.

Definition 3.6. Let us consider a fuzzy-valued function whose parametric form is
given as:

f(t; r) = [f(t; r), f (t; r)].

Now if f is (i)-absolute value function, then ∀ r ∈ [m1,m2] ⊂ [0, 1]

[f(t; r)] = [|f(t; r)|, |f (t; r)|].
If f is (2)-absolute value function, then ∀ r ∈ [m1,m2] ⊆ [0, 1]

[f(t; r)] = [|f(t; r)|, |f (t; r)|],
provided that the r-cut or r-level set is satisfied by the fuzzy-valued function |f(t; r)|

Theorem 3.7. According to [6], if a fuzzy-valued function f defined as [f(t; r)] =
[|f(t; r)|, |f (t; r)|], where f(t; r) and f(t; r) are lower and upper end points fuzzy-

valued functions for r ∈ [0, 1] respectively, then
(1) If f(t; r) ≥ 0 ∀r then f is (i)-absolute value fuzzy function.

(2) If f(t; r) ≤ 0 ∀r then f is (ii)-absolute value fuzzy function.

Example 3.8. Let us consider f(t; r) = a(r)et, which is discussed in [6] where
a(r) = [1 + r; 2− r], then f(t) is (1)-absolute and ∀ r ∈ [0, 1], we have

|f(t; r)| = [|(1 + r)et|, |(2− r)e−t|] = [(1 + r)et, (2 − r)et].
456
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Definition 3.9. The integral (3.1) is absolute convergent, if

(3.11) lim
τ→∞

∫ τ

0

|e−ptf(t)|dt

exists, that is

(3.12) lim
τ→∞

∫ τ

0

e−pt|f(t; r)|dt, lim
τ→∞

∫ τ

0

e−pt|f(t; r)|dt

exist.
If L[f(t)] does not converge absolutely and if f(t) is (i)-absolute, then

(3.13) |
∫ τ́

τ

e−ptf(t)dt |= [|
∫ τ́

τ

e−ptf(t; r)dt |, |
∫ τ́

τ

e−ptf(t; r)dt|],

(3.14) |
∫ τ́

τ

e−ptf(t)dt| � [

∫ τ́

τ

e−pt|f(t; r)|dt,
∫ τ́

τ

e−pt|f(t; r)|dt],

(3.15) |
∫ τ́

τ

e−ptf(t)dt| =
∫ τ́

τ

e−pt|f(t)|dt → 0̃,

as τ → ∞, ∀ τ́ > τ . This implies that L[f(t)] also converges.
Similar case holds when f is (ii)-absolute. The symbol ≤ is an ordering relation

defined as follows:
For any two arbitrary fuzzy numbers u and v, u ≤ v ⇔ u(r) ≤ v(r) and u(r) ≤ v(r),
for all r ∈ [0, 1].

Theorem 3.10 ([6]). Suppose that f, f ′ are continuous fuzzy-valued functions on
[0,∞) and of exponential order and that f ′′ is piecewise continuous fuzzy-valued
function [0,∞). Then

(3.16) L(f ′′(t)) = p2L(f(t))⊖ pf(0)⊖ f ′(0),

if f and f ′ are (i)-differentiable.

(3.17) L(f ′′(t)) = ⊖(f ′(0))⊖ (−p2)L(f(t))⊖ pf(0),

if f is (i)-differentiable and f ′ is (ii)-differentiable.

(3.18) L(f ′′(t)) = ⊖(pf(0))⊖ (−p2)L(f(t))⊖ f ′(0),

if f is (ii)-differentiable and f ′ is (i)-differentiable.

(3.19) L(f ′′(t)) = p2L(f(t))⊖ pf(0)− f ′(0),

if f and f ′ are (ii)-differentiable.

Theorem 3.11. According to [7], suppose that f(t), f ′(t), f ′′(t) are the continuous
fuzzy-valued function on [0,∞) and of exponential order while f ′′′(t) is piecewise con-

tinuous fuzzy-valued function on [0,∞) with f(t) = (f(t, r), f(t, r)). Then notations
of the nth derivative of the function is given by

(3.20) L[f ′′′(t, r)] = p3L[f(t)]⊖ p2f(0)⊖ pf ′(t)⊖ f ′′(0).

.
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Proof. Here the notations f ′, f
′′

, f
′′′

means the lower end points functions derivatives

and f
′
, f

′′

, f
′′′

are the upper end points functions derivatives. By using Theorem
3.2, we have

(3.21) L[f ′′′(t)] = L[f
′′′

(t, r), f
′′′

(t, r)] = [lf
′′′

(t, r), lf
′′′

(t, r)].

Now for any arbitrary fixed number r ∈ [0, 1], using the definition of classical trans-
form, we get

(3.22) l[f ′′′(t, r)] = p3l[f(t, r)] − p2f(0, r)− pf ′(0, r)− f
′′

(0, r),

(3.23) l[f
n
(t, r)] = p3l[f(t, r)] − p2f(0, r)− pf

′
(0, r) − f

′′

(0, r).

�

Now in order to solve the nth order FIVP, we need the FLT of nth derivative
of the fuzzy-valued functions under the generalized H-differentiability. So we will
prove the following theorem for the fuzzy Laplace transform for nth order FIVP as
follows.

Theorem 3.12 ([22]). Suppose that f, f ′, · · · , f (n−1) are continuous fuzzy-valued
functions on [0,∞) and of exponential order and that f (n) is piecewise continuous
fuzzy-valued function on [0,∞). Then

L(f (n)(t)) = pnL(f(t))⊖ pn−1f(0)⊖ pn−2f ′(0)⊖ pn−3f
′′

(0)

⊖ · · · ⊖ fn−1(0)
,(3.24)

if f, f ′ · · · f (n−1) are (i)-differentiable.

L(f (n)(t)) = ⊖(f (n−1)(0))⊖ (−pn)L(f(t))⊖ pn−1f(0)⊖ pn−2f ′(0)

⊖ · · · ⊖ pn−(n−1)f (n−2)(0),
(3.25)

if f, f ′ · · · f (n−2) are (i)-differentiable and f (n−1) is (ii)-differentiable.

L(f (n)(t)) = ⊖(pn−(n−1)f (n−2))⊖ f (n−1)(0)⊖ (−pn)L(f(t))⊖ pn−1f(0)

⊖pn−2f ′(0)⊖ · · · ⊖ pn−(n−2)f (n−3)(0),
(3.26)

if f, f ′ · · · f (n−3) are (i)-differentiable and f (n−1), f (n−2) are (ii)-differentiable. Sim-
ilarly

L(f (n)(t)) = ⊖(pn−1f(0))⊖ (−pn)L(f(t))⊖ pn−2f ′(0)

⊖ · · · ⊖ f (n−1)(0),
(3.27)

if f ′, · · · , f (n−1) are (i)-differentiable and f is (ii)-differentiable.
Continuing the process until we obtain 2n system of differential equations, hence
according to [17] the last equation is

(3.28) L(f (n)(t)) = pnL(f(t))⊖ pn−1f(0)⊖ pn−2f ′(0)⊖ pn−3f ′′(0) · · · − fn−1(0),

if f, f ′ · · · f (n−1) are (ii)-differentiable.
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Proof. This theorem is already proved in [22]. In [22], they have used principle of
induction to prove the nth derivative theorem. We follow the approach of [18] to
generalize the Allahviranloo and Ahmadi derivative theorem.

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0)⊖ · · · ⊖ f (n−1)(0) = (pnl[f(t, r)] − pn−1f(0, r)

−pn−2f ′(0, r) · · · − f (n−1)(0, r), pnl[f(t, r)] − pn−1f(0, r) − pn−2f
′
(0, r)

· · · − f
(n−1)

(0, r)).

Since

l(f (n)(t, r)) = l(f (n)(t, r)) = pnl[f(t, r)]−pn−1f(0, r)−pn−2f ′(0, r) · · ·−f (n−1)(0, r),

l(f (n)(t, r)) = l(f
(n)

(t, r)) = pnl[f(t, r)]−pn−1f(0, r)−pn−2f
′
(0, r) · · ·−f

(n−1)
(0, r),

where f (n−1)(0, r) = f (n−1)(0, r)) and f
(n−1)

(0, r) = f
(n−1)

(0, r).

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0) · · · ⊖ f (n−1)(0) = (l(f (n))(t, r), l(f
(n)

)(t, r)),

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0) · · · ⊖ f (n−1)(0) = L(f (n)(t, r), (f
(n)

(t, r))),

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0) · · · ⊖ f (n−1)(0) = L(f (n)(t)).

Hence the proof is completed.
Now we are going to prove the final equation (3.28), while the equations in the

middle are almost analogous to the proof of (3.24) and (3.28).

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0) · · · − f (n−1)(0) = (pnl[f(t, r)] − pn−1f(0, r)−

pn−2f ′(0, r) · · · − f
(n−1)

(0, r), pnl[f(t, r)] − pn−1f(0, r)− pn−2f
′
(0, r) · · ·

−f (n−1)(0, r)).

Since

l(f (n)(t, r)) = l(f (n)(t, r)) = pnl[f(t, r)]−pn−1f(0, r)−pn−2f ′(0, r) · · ·−f (n−1)(0, r),

l(f (n)(t, r)) = l(f
(n)

)(t, r)) = pnl[f(t, r)]−pn−1f(0, r)−pn−2f
′
(0, r) · · ·−f

(n−1)
(0, r).

Also we know that

f
(n−1)

(0, r) = f (n−1)(0, r) and f (n−1)(0, r) = f
(n−1)

. Therefore

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0) · · · − f (n−1)(0) = (l(f (n))(t, r), l(f
(n)

)(t, r)),

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0) · · · ⊖ f (n−1)(0) = L(f (n)(t, r), (f
(n)

(t, r))),

pnL[f(t)]⊖ pn−1f(0)⊖ pn−2f ′(0) · · · ⊖ f (n−1)(0) = L(f (n)(t)),

which is the required result. �
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4. Constructing solutions of FIVP via FLT

In this section we are going to consider the following nth order FIVP under
generalized H-differentiability proposed in [17].

(4.1) y(n)(t) = f(t, y(t), y′(t), · · · , y(n−1)(t)),

subject to the nth order initial conditions

y(0) = (y(0; r), y(0; r)),

y′(0) = (y′(0; r), y′(0; r)),

y′′(0) = (y′′(0; r), y′′(0; r)).

continuing for nth initial conditions

y(n−1)(0) = (y(n−1)(0; r), y(n−1)(0; r)).

Now we use FLT

(4.2) L[y(n)(t)] = L[f(t, y(t), y′(t), · · · , y(n−1)(t))].

Using theorem 3.12 and equation (4.2)

pnL[y(t)]⊖ pn−1y(0)⊖ pn−2y′(0)⊖ · · · ⊖ y(n−1)(0) = L[f(t, y(t), y′(t), · · · , yn−1(t))].

In the classical form

pnl[y(t; r)]− pn−1y(0; r)− pn−2y′(0; r)− · · · − y(n−1)(0; r)

= l[f(t, y(0; r), y′(0; r), · · · , y(n−1)(0; r))],
(4.3)

pnl[y(t; r)] − pn−1y(0; r) − pn−2y
′

(0; r)− · · · − y(n−1)(0; r)

= l[f(t, y(0; r), y′(0; r), · · · , y(n−1)(0; r))].
(4.4)

In order to solve (4.3) and (4.4) we assume that A(p; r) and B(p; r) are the solutions
of (4.3) and (4.4) respectively. Then, we have

(4.5) l[y(t; r)] = A(p; r),

(4.6) l[y(t; r)] = B(p; r).

Using inverse Laplace transform (ILT), we have

(4.7) [y(t; r)] = l−1[A(p; r)],

(4.8) [y(t; r)] = l−1[B(p; r)].

In case of gh-differentiability, if we apply FLT on fourth order FIVP, then we have a
system of sixteen differential equations. It can be listed in the form of a differential
operator on the function f(t0). The list is below
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Table 1. Differentiable operators of sixteen possible solution for
order four

S. No 1 and 2 differentiability S. No 1 and 2 differentiability

1 (D1D1D1D1)f(t0) 9 (D1D2D1D2)f(t0)
2 (D2D1D1D1)f(t0) 10 (D2D1D2D1)f(t0)
3 (D2D2D1D1)f(t0) 11 (D2D2D1D2)f(t0)
4 (D2D2D2D1)f(t0) 12 (D1D2D1D1)f(t0)
5 (D2D2D2D2)f(t0) 13 (D1D1D2D1)f(t0)
6 (D1D2D2D2)f(t0) 14 (D2D1D2D2)f(t0)
7 (D1D1D2D2)f(t0) 15 (D2D1D1D2)f(t0)
8 (D1D1D1D2)f(t0) 16 (D1D2D2D1)f(t0)

5. Examples

Example 5.1. Consider the following fourth order FIVP

(5.1) y(iv)(t) + y
′′

(t) = y
′′′

(t), t ∈ [−5, 5]

subject to the fuzzy initial conditions:
y(0) = (r − 1, 1− r),
y′(0) = (r + 1, 3− r),
y′′(0) = (2 + r, 4− r),
y′′′(0) = (3 + r, 5− r).

To solve this example, we will discuss two cases.

Case (i): If y, y′, · · · , y′′′

are (1)-differentiable. Applying FLT on both sides of
(5.1), we get

L[y(iv)(t)] + L[y′′(t)] = L[y′′′(t)],

p4L[y(t)]⊖ p3y(0)⊖ p2y′(0)⊖ py′′(0)⊖ y′′′(0) + p2L[y(t)]⊖ py(0)⊖ y′(0)

= p3L[y(t)]⊖ p2y(0)⊖ py′(0)⊖ y′′(0).

Now the classical FLT form of the above equation is

p4l[y(t, r)] − p3y(0, r) − p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) + p2l[y(t, r)]

−py(0, r)− y′(0, r) = p3l[y(t, r)] − p2y(0, r)− py′(0, r)− y′′(0, r).

p4l[y(t, r)] − p3y(0, r) − p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) + p2l[y(t, r)]

−py(0, r) − y′(0, r) = p3l[y(t, r)] − p2y(0, r)− y′(0, r)− y′′(0, r).

Applying the initial conditions, we have

p4l[y(t, r)]− p3(r − 1)p2(r + 1)− p(2 + r)− (3 + r) + p2l[y(t, r)]p(r − 1)− (r + 1)

= p3l[y(t, r)] − p2(r − 1)− p(r + 1)− (2 + r),

p4l[y(t, r)]− p3(1 − r)p2(3− r)− p(4− r)− (5− r) + p2l[y(t, r)]p(1 − r) − (3− r))

= p3l[y(t, r)] − p2(1− r)− p(3− r)− (4− r).
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Taking the inverse Laplace transform of the above equation, then solve for y(t, r)

and y(t, r) , we get

y(t, r) = (r − 1) + (r + 1)t+ (2 + r)

[
− t+

2et/2Sin
[√

3t
2

]

√
3

]

+[1 + t− 1

3
et/2

(
3Cos

[√
3t

2

]
+
√
3Sin

[√
3t

2

])]
,

y(t, r) = (1− r) + (3− r)t + (4− r)

[
− t+

2et/2Sin
[√

3t
2

]

√
3

]

+

[
1 + t− 1

3
et/2

(
3Cos

[√
3t

2

]
+
√
3Sin

[√
3t

2

])]
.
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Figure 1. y(t, r) for example 5.1 (case 1)
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Figure 2. y(t, r) for example 5.1 (case 1)
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Case (ii): If y, y′ are (1)-differentiable and y
′′

, y
′′′

are (2)-differentiable.
Applying FLT on both sides of (5.1), we get

L[y(iv)(t)] + L[y′′(t)] = L[y′′′(t)]

⊖(y′′′(0))⊖ py′′(0)⊖ (−p4)L[y(t)]⊖ p3y(0)⊖ p2y′(0) + p2L[y(t)]⊖ py(0)⊖ y′(0)

= ⊖(y′′(0))⊖ (−p3)L[y(t)]⊖ p2y(0)⊖ py′(0).

Now the classical FLT form of the above equation is

p4l[y(t, r)] − p3y(0, r) − p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) + p2l[y(t, r)]

−py(0, r)− y′(0, r) = p3l[y(t, r)] − p2y(0, r) − py′(0, r) − y
′′

(0, r).

p4l[y(t, r)] − p3y(0, r) − p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) + p2l[y(t, r)]

−py(0, r)− y′(0, r) = p3l[y(t, r)]− p2y(0, r)− y′(0, r) − y
′′

(0, r).

Applying the initial conditions, we have

p4l[y(t, r)]− p3(r − 1)− p2(r + 1)− p(4− r) − (5− r) + p2l[y(t, r)]− p(r − 1)− (r + 1)

= p3l[y(t, r)]− p2(r − 1)− p(r + 1)− (4− r),

p4l[y(t, r)]− p3(1− r)− p2(3 − r)− p(2 + r) − (3 + r) + p2l[y(t, r)]− p(1− r) − (3− r)

= p3l[y(t, r)]− p2(1− r)− p(3− r) − (2 + r).

Taking the inverse Laplace transform of the above equation, then solve for y(t, r)
and y(t, r) , we get

y(t, r) = (r − 1) + (r + 1)t+ (4− r)

[
− t+

2et/2Sin
[√

3t
2

]

√
3

]

+(5− r)

[
1 + t− 1

3
et/2

(
3Cos

[√
3t

2

]
+
√
3Sin

[√
3t

2

])]
,

y(t, r) = (1− r) + (3− r)t + (2 + r)

[
− t+

2et/2Sin
[√

3t
2

]

√
3

]

+(3 + r)

[
1 + t− 1

3
et/2

(
3Cos

[√
3t

2

]
+
√
3Sin

[√
3t

2

])]
.

Example 5.2. Consider the following fourth order FIVP

(5.2) y(iv)(t) = y(t), t ∈ [−5, 5],

subject to the following fuzzy initial conditions:
y(0) = (r − 1, 1− r),
y′(0) = (r − 1, 1− r),
y′′(0) = (r − 1, 1− r),
y′′′(0) = (r − 1, 1− r).
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Figure 3. y(t, r) for example 5.1 (case 2)
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Figure 4. y(t, r) for example 5.1 (case 2)

Case (i): If y, y′, · · · , y′′′

are (1)-differentiable. Applying FLT on both sides of
(5.2), we get

L[y(iv)(t)] = L[y(t)],

p4L[y(t)]⊖ p3y(0)⊖ p2y′(0)⊖ py′′(0)⊖ y′′′(0) = L[y(t)].

Now the classical FLT form of the above equation is

p4l[y(t, r)] − p3y(0, r)− p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) = l[y(t, r)],

p4l[y(t, r)] − p3y(0, r)− p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) = l[y(t, r)].

Applying the initial conditions, we have

p4l[y(t, r)] − p3(r − 1)− p2(r − 1)− p(r − 1)− (r − 1) = l[y(t, r)],

p4l[y(t, r)] − p3(1− r)p2(1− r) − p(1− r)− (1 − r) = l[y(t, r)].

Taking the inverse Laplace transform of the above equation, then solve for y(t, r)
and y(t, r) , we get

y(t, r) = (r − 1)l−1

[
p3 + p2 + p+ 1

p4 − 1

]
,
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y(t, r) = (1− r)et.

And

y(t, r) = (1− r)l−1

[
p3 + p2 + p+ 1

p4 − 1

]
,

y(t, r) = (1− r)et.
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Figure 5. y(t, r) for example 5.2 (case 1)
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Figure 6. y(t, r) for example 5.2 (case 1)

Case (ii): If y is (1)-differentiable and y′, y′′, y
′′′

are (2)-differentiable. Ap-
plying FLT on both sides of (5.2), we get

L[y(iv)(t)] = L[y(t)], t ∈ [−5, 5]

⊖(p3y(0))⊖ (−p4)L[y(t)]⊖ p2y′(0)⊖ py′′(0)⊖ y′′′(0) = L[y(t)].

Now the classical FLT form of the above equation is

p4l[y(t, r)] − p3y(0, r)− p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) = l[y(t, r)],
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p4l[y(t, r)] − p3y(0, r)− p2y′(0, r)− py
′′

(0, r)− y
′′′

(0, r) = l[y(t, r)].

Applying the initial conditions, we have

p4l[y(t, r)] − p3(1− r) − p2(r − 1)− p(r − 1)− (r − 1) = l[y(t, r)],

p4l[y(t, r)] − p3(r − 1)− p2(1− r) − p(1− r)− (1− r) = l[y(t, r)].

Taking the inverse Laplace transform of the above equation, then solve for y(t, r)

and y(t, r) , we get

y(t, r) = (r − 1)l−1

[
p3

p4 − 1

]
+ (1− r)l−1

[
p2 + p+ 1

p4 − 1

]
,

y(t, r) = (r − 1)

[
e−t

4
+

et

4
+

Cos[t]

2

]
+ (1− r)

[
− e−t

4
+

3et

4
− Cos[t]

2

]
.

And

y(t, r) = (1− r)

[
e−t

4
+

et

4
+

Cos[t]

2

]
+ (r − 1)

[
− e−t

4
+

3et

4
− Cos[t]

2

]
.
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Figure 7. y(t, r) for example 5.2 (case 2)
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Figure 8. y(t, r) for example 5.2 (case 2)
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6. Conclusion

We proved the FLT for the nth derivative of a fuzzy-valued function with a
different approach than [22] and provided method for the solution of an nth order
FIVP using the generalized differentiability concept. We also generalized the r-level
set of the fuzzy valued functions in the form of (i) and (ii)-differentiable for nth

derivative. We have solved a number of different problems using this new approach.
However some more research is needed to apply this method for the solution of
system of FDEs which is in progress.
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