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Abstract. In this paper a new concept of Lower interval probability
function based decision theoretic rough set model is introduced and some
of its properties are studied. Some comparative discussions are cited be-
tween the new concept and some of the previously defined concepts, such
as pawlak rough set model, variable precision rough set model, Bayesian
decision theoretic rough set model etc. Lastly some example is taken and
attribute reduction is done by this new method and various other meth-
ods. It is shown that this method gives better result than the previously
defined methods. Also some important properties are studied in various
other methods.
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1. Introduction

The concept of Rough set was first introduced by Z. Pawlak in 1982 [4]. Later
on lots of research has been undertaken in the field of rough set and its generalized
form [5, 6, 7]. One of the main application of Rough set is data reduction. Z. Pawlak
and other has first introduced a method with the help of discernibility function for
reducing the attribute using the rough set introduced by him. Later on W.Ziarko
in 1993 introduced Variable precision rough set[17, 18] model and studied attribute
reduction for this type of rough set. D. Slezak and W. Ziarko in 2002 introduced
Bayesian rough set model [8]. In 2003 they introduced Bayesian version of variable
precision rough set model and studied attribute reduction in the respective model.
Y. Y. Yao in 2003 introduced probabilistic approach of rough set [11] and in 2007
introduced the concept of Decision theoretic rough set model [10]. The attribute
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reduction in Decision theoretic rough set model [13, 14] has been studied by Y. Y.
Yao and Y. Zhao in 2008. Some more study [16] has been done by them in 2011.
In 2012 H. Zhang, J. Zhou, D. Miao, C. Gao [15]has studied some proposition on
Bayesian rough set model. In 2003 H. Tanaka, K. Sugihara and Y. Maeda [9]has
introduced Interval probability and studied some of its properties.

The aim of this paper is to introduce a new hybrid approach of Lower interval
probability function based decision theoretic rough set model. Attribute reduction
is done by this method using an arbitrary information table. Using the same in-
formation table attribute reduction is done by the other methods defined earlier.
It is found that this new method gives more significant attributes after reduction
than the other methods. So a comparative study is shown in this paper by the help
of some example. Lastly some proposition is studied and the difference with other
methods related to this proposition is also shown in this paper. Further researches
may be done using original data.

2. Preliminaries

2.1. Information table([4]). An information table is the following tuple: IS =
(U,A = At = C ∪D,V, ρ), Where U is a finite nonempty set of objects, At is a finite
nonempty set of attributes, V is a nonempty set of values of a ∈ At, and ρ is an
information function . For classification problems we consider an information table of
the form S = (U,At = C ∪{D}, {Va}, {ρa}), where C is a set of condition attributes
describing the objects, and D is a decision attribute that indicates the classes of
objects. Let πD = {D1, D2, ..., Dm} be a partition of the universe U defined by the
decision attribute D. Each equivalence class Di ∈ πD is called a decision class. Given
another partition πA = {A1, A2, ..., An} of U defined by a condition attribute set
A ⊆ C each equivalence class Aj also is defined by [x]A = {y ∈ U : ∀a ∈ A(Ia(x) =
Ia(y))}.

2.2. Rough set([4]). Pawlak in 1982 defined the concept of Rough set. According
to Pawlak the rough set is defined as below. Typically objective of rough set theory
is to form an approximate definition of the target set X ⊆ U in terms of some
definable sets especially when the target set is indefinable or vague. The upper and
lower approximation of X with respect to equivalence relation A are denoted as AX
and AX respectively and defined as:
AX = {E: P(X/E)>0, E∈ U/A}, AX = {E: P(X/E)=1, E∈ U/A}.

2.3. Variable precision rough set([17]). In practical applications Pawlaks rough
set model cannot deal with data sets which have some noisy data effectively. Lots
of information in the boundary region will be abandoned which may provide latest
useful knowledge. By applying the parameter the approximate regions can be ad-
justed and controlled in VPRSM. Given a parameter β, 0 ≤ 1−β < P (X) < β ≤ 1,
three kinds of approximation regions of concepts X ⊆ U with respect to equivalence
relation A can be defined as follows:
β Positive region: POSβA(X) = ∪{E : P (X|E) ≥ β,E ∈ U |A},
β Negative region: NEGβA(X) = ∪{E : P (X|E) ≤ 1− β,E ∈ U |A},
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β Boundary region: BNDβ
A(X) = ∪{E : 1− β < P (X|E) < β,E ∈ U |A}.

β positive region is the collection of all those elementary sets which can be included
in X with the certainty degree not lower than β, β negative region is composed
of all those elementary sets which can be included in the complement of X. Since
1 − β < β, 0.5 < β ≤ 1 it indicates that 0 ≤ 1 − β < P (X) < β ≤ 1 includes the
original 0.5 symmetric variable precision rough set model. When β = 1 the VPRS
will be same as Pawlaks rough set model. In some application however it is not clear
how to define the parameters.

2.4. Decision theoretic rough set([12]). The decision theoretic rough set model
systematically calculates the thresholds by a set of loss functions based on the
Bayesian decision procedure. The physical meaning of the loss functions can be
interpreted based on more practical notions of costs and risks. By using the thresh-
olds, for a decision class Di ∈ πD, the probabilistic lower and upper approximations
with respect to a partition πA can be defined based on two thresholds 0 ≤ β < α ≤ 1
as:

apr
(α,β)

(Di|πA) = {x ∈ U : p(Di|[x]A) ≥ α}

and

apr(α,β)(Di|πA) = {x ∈ U : p(Di|[x]A) > β}.

2.5. Bayesian rough set model ([8]). Slezak and Ziarko put forward BRSM in
which the prior probability of the event under consideration is chosen as a benchmark
value . BRSM is a hybrid product which connects rough set theory and Bayesian
reasoning validity and reasonably. It is more appropriate to application problems
concerned with achieving any certainty gain during the procedures of prediction or
decision making rather than meeting a special certainty goal.
In BRSM three kinds of B approximation regions of concepts X ⊆ U with respect
to equivalence relation A can be defined as follows :

B positive region : POS∗A(X)=
⋃
{E : P (X/E) > P (X), E ∈ U/A},

B negative region: NEG∗A(X)=
⋃
{E : P (X/E) < P (X), E ∈ U/A},

B boundary region: BND∗A(X)=
⋃
{E : P (X/E) = P (X), E ∈ U/A}.

2.6. Bayesian rough set depending on coverage ([3]). The positive, negative
and boundary region in Bayesian rough set depending on coverage for an information
system IS = (U,A = C ∪D,V, ρ)is as follows:
Pos = POScov(πA)(Di) = {[x]C : |[x]C ∩Di|/|Di| > P ([x]C)},
Neg=NEGcov(πA)(Di) = {[x]C : |[x]C ∩Di|/|Di| < P ([x]C)},
Bnd = BNDcov(πA)(Di) = {[x]C : |[x]C ∩Di|/|Di| = P ([x]C)}.

2.7. Bayesian decision theoretic rough set ([1]). Positive, negative and bound-
ary region are defined as follows :

Positive region: Pos∗Di([x]C) = {[x]C : |[x]C ∩Di|/|[x]C | > P (Di),
Negative region: Neg∗Di([x]C) = {[x]C : |[x]C ∩Di|/|[x]C | < P (Di) ,
Boundary region: Bnd∗Di([x]C) = {[x]C : |[x]C ∩Di|/|[x]C | = P (Di).
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It is actually a Bayesian rough set model depending on decision.Attribute reduc-
tion in Bayesian decision theoretic rough set [2] is also studied by the author in
2014.

2.8. Interval probability function ([9]). The lower and upper functions condi-
tioned by B ⊆ X are defined as :

LB(A|B) = (LB(AB))/(LB(AB) + UB(B −AB))

and

UB(A|B) = (UB(AB))/(UB(AB) + LB(B −AB)).

The lower and upper functions in Bayes’ decision problem with IPF are defined as :

LB(A|B) = (LB(A,B))/(LB(A,B) + UB(Ac, B))

and

UB(A|B) = (UB(A,B))/(UB(A,B) + LB(Ac, B)).

2.9. Significance of the reducts ([4]). Significance of an attribute (reduct) can
be evaluated by measuring effect of removing the attribute from an information table
on classification defined by the table.

Let C and D be sets of condition and decision attribute respectively and let
a be a condition attribute, i.e., a ∈ C. Now the consistency factor γ(C,D) =
|POSC(D)|/|U | .
If γ(C,D) = 1,the decision table is consistent and if γ(C,D) 6= 1,the decision table
is inconsistent. But the co-efficient γ(C,D) changes when we remove any attribute
a. Now we define the significance of any attribute a as-

σ(C,D)(a) = (γ(C,D)− γ(C − {a}, D))/γ(C,D) = 1− (γ(C − a,D)/γ(C,D)).

And simply denoted by σ(a), where 0 ≤ σ(a) ≤ 1.
In the next section the concept of Lower Interval probability function based decision
theoretic rough set model is introduced and some of its properties are studied and by
taking some example it has been shown that the new method gives better reduction
and also comparative study has been done.

3. Lower interval probability function based decision theoretic
rough set model

Here we introduce a new concept of decision theoretic rough set model which is
based on Lower Interval probability function. Skowron has proved that reducts are
in one-to-one correspondence to the prime implicants of the associated discernibility
function in a given decision table. According to this property, discernibility matrices
for Lower Interval probability function based decision theoretic rough set model is
introduced. Discernibility function for this new model is also introduced.

Definition 3.1. The Lower Interval probability function based decision theoretic
positive, boundary and negative regions of Di ∈ πD with respect to the equivalence
classes can be defined by:
POS(α,β)([x]C |πD) = {Di : LB([x]C |Di) ≥ α},
BND(α,β)([x]C |πD) = {Di : β < LB([x]C |Di) < α} ,
NEG(α,β)([x]C |πD) = {Di : LB([x]C |Di) ≤ β} where 0 ≤ β < α ≤ 1 and
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LB([x]C |Di) = LB([x]C ,Di)
LB([x]C ,Di)+UB([x]cC ,Di)

= |[x]C∩Di|
|[x]C∩Di|+|[x]cC∪Di|

,

i.e., by LB([x]C , Di) we mean the index of intersection of [x]C andDi and UB([x]cC , Di)
represent the index of union of [x]cC and Di.

Definition 3.2. Discernibility matrix and discernibility function for Lower
Interval probability function based decision theoretic rough set model:
Constructing a reduct for decision preservation can apply any traditional methods
for example, the methods based on the discernibility matrix. Both rows and columns
of the matrix correspond to the equivalence classes defined by C. An element of the
matrix is the set of all attributes that distinguish the corresponding pair of equiv-
alence classes. Namely the matrix element consists of all attributes on which the
corresponding two equivalence classes have distinct values and thus distinct decision
making. A discernibility matrix is symmetric. The elements of a positive decision
based discernibility matrix MPOS(α,β)

is defined as follows. For any two equivalence

classes [x]C and [y]C ,

MPOS(α,β)
([x]C , [y]C) = {a ∈ C : Ia(x) 6= Ia(y) ∧ POS(α,β)([x]C |πD)

6= POS(α,β)([y]C |πD)}.
Skowron and Rauser showed that the set of attribute reducts are in fact the set of
prime implicants of the reduced disjunctive form of the discernibility function. Thus
a positive decision reduct is a prime implicant of the reduced disjunctive form of the
discernibility function.
f(MPOS(α,β)

) = ∧{∨MPOS(α,β)
([x]C , [y]C) : x, y ∈ U, (MPOS(α,β)

([x]C , [y]C) 6= φ)}.
The expression ∨MPOS(α,β)

([x]C , [y]C) is the disjunction of all attributes in

MPOS(α,β)
([x]C , [y]C) indicating that the pair of equivalence classes [x]C and [y]C can

be distinguished by any attribute in M. The expression ∧{∨MPOS(α,β)
([x]C , [y]C)}

is the conjunction of all ∨MPOS(α,β)
([x]C , [y]C) indicating that the family of dis-

cernible pairs of equivalence classes can be distinguished by a set of attributes sat-
isfying ∧{∨MPOS(α,β)

([x]C , [y]C)}. In order to derive the reduced disjunctive form

the discernibility function f(MPOS(α,β)
) is transformed by using the absorption and

distribution laws. Accordingly finding the set of reducts can be modeled based on
the manipulation of a Boolean function. Let us now consider an example and show
the attribute reduction by the various other previously defined methods and the new
method.

Example 3.3. Here in the information table in Table1 we have,
LB([O1]C |M) = LB([O2]C |M) = LB([O6]C |M)=2/(2+10)=1/6,
LB([O1]C |Q) = LB([O2]C |Q) = LB([O6]C |Q)=1/(1+9)=1/10,
LB([O1]C |F ) = LB([O2]C |F ) = LB([O6]C |F )=0,
LB([O3]C |M) = LB([O5]C |M)=1/(1+11)=1/12,
LB([O3]C |Q) = LB([O5]C |Q)=1/(1+10)=1/11,
LB([O3]C |F ) = LB([O5]C |F ) = 0, LB([O4]C |M) = LB([O7]C |M) = LB([O8]C |M)

= LB([O9]C |M)=1/(1+9)=1/10,
LB([O4]C |Q) = LB([O7]C |Q) = LB([O8]C |Q) = LB([O9]C |Q)=1/(1+8)=1/9,
LB([O4]C |F ) = LB([O7]C |F ) = LB([O8]C |F ) = LB([O9]C |F )=2/(2+7)=2/9.

Suppose α = 2/9 and β = 1/9. We can obtain the following regions for the equiva-
lence class [O1]C ,
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Table 1. An Information Table

C1 C2 C3 C4 C5 C6 D

O1 1 0 0 1 0 0 M
O2 1 0 0 1 0 0 M
O3 1 0 0 0 0 0 M
O4 0 0 0 1 1 0 M
O5 1 0 0 0 0 0 Q
O6 1 0 0 1 0 0 Q
O7 0 0 0 1 1 0 Q
O8 0 0 0 1 1 0 F
O9 0 0 0 1 1 0 F

Table 2. a reformation of Table1 indicating the decision associated
with each equivalence class [x]C

C1 C2 C3 C4 C5 C6 POS BND NEG

O1 1 0 0 1 0 0 φ {M} {Q,F}
O2 1 0 0 1 0 0 φ {M} {Q,F}
O3 1 0 0 0 0 0 φ φ {M,Q,F}
O4 0 0 0 1 1 0 {F} φ {M,Q}
O5 1 0 0 0 0 0 φ φ {M,Q,F}
O6 1 0 0 1 0 0 φ {M} {Q,F}
O7 0 0 0 1 1 0 {F} φ {M,Q}
O8 0 0 0 1 1 0 {F} φ {M,Q}
O9 0 0 0 1 1 0 {F} φ {M,Q}

POS(α,β)([O1]C |πD) = {Di : LB([O1]C |Di) ≥ α} = φ,

BND(α,β)([O1]C |πD) = {Di : β < LB([O1]C |Di) < α} = {M},
NEG(α,β)([O1]C |πD) = {Di : LB([O1]C |Di) ≤ β} = {Q,F}.

Similarly we can compute the other regions for all others equivalence classes and we
form a reformation of table 1 indicating the decision associated with each equivalence
class [x]C which is shown in Table 2 and the discernibility matrix is shown in Table 3.
According to this discernibility matrix in Lower interval probability function based
decision theoretic rough set we get the reduction as {C1}, {C5}. If we compare the
reduction in the new model with other models (Pawlak rough set model, Variable
precision rough set model, Bayesian rough set model, Bayesian rough set depending
on coverage) we get the comparison study between various model which is shown in
Table 4. Hence it is seen that Lower interval probability function based decision
theoretic rough set model gives the better reduction.

Example 3.4. Let us consider another information table shown in Table 5, Taking
α = 1/6, β = 1/7, a reformation of Table 5, shown as Table 6, indicates the be-
longing relationship of all equivalence classes [x]C to the probabilistic region. and a
discernibility matrix is shown in Table 7.
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Table 3. Discernibility matrix

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 φ
O2 φ φ
O3 φ φ φ
O4 φ φ φ φ
O5 φ φ φ {1,4,5} φ
O6 φ φ φ {1,5} φ φ
O7 {1,5} {1,5} {1,4,5} φ φ φ φ
O8 {1,5} {1,5} {1,4,5} φ {1,4,5} {1,5} φ φ
O9 {1,5} {1,5} {1,4,5} φ {1,4,5} {1,5} φ φ φ

Table 4. Comparison study

Model Attribute Reduction

1. Lower interval probability function based
decision theoretic rough set model {C1}, {C5}
2. Pawlak rough set model Reduction not possible
3. Variable precision rough set model {C1, C4}, {C4, C5}
4. Bayesian rough set model {C1, C4}, {C4, C5}
5. Bayesian rough set depending on coverage {C1, C4}, {C4, C5}

Table 5. An information table

C1 C2 C3 C4 C5 C6 D

O1 1 1 1 1 1 1 M
O2 1 1 0 0 1 1 M
O3 1 1 1 1 1 1 M
O4 1 1 0 0 1 1 Q
O5 1 0 1 0 1 1 Q
O6 1 0 1 0 1 1 F
O7 1 1 1 0 0 0 F
O8 1 1 1 0 0 0 F
O9 1 0 1 0 1 1 F

After reducing the attribute we get the reduction as {C2, C4},{C2, C3, C5},
{C2, C3, C6},{C3, C4, C5}, {C3, C4, C6}. If we compare the reduction in the new
method with other methods (Pawlak rough set model, Variable precision rough set
model, Bayesian rough set model, Bayesian rough set depending on coverage) we get
the comparison which is shown in below:

(1) Lower interval probability function based decision theoretic rough set model:
{C2, C4}, {C2, C3, C5}, {C2, C3, C6},
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Table 6. A reformation of Table 6

C1 C2 C3 C4 C5 C6 POS BND NEG

O1 1 1 1 1 1 1 {M} φ {Q,F}
O2 1 1 0 0 1 1 φ φ {M,Q,F}
O3 1 1 1 1 1 1 {M} φ {Q,F}
O4 1 1 0 0 1 1 φ φ {M,Q,F}
O5 1 0 1 0 1 1 {F} φ {M,Q}
O6 1 0 1 0 1 1 {F} φ {M,Q}
O7 1 1 1 0 0 0 φ φ {M,Q,F}
O8 1 1 1 0 0 0 φ φ {M,Q,F}
O9 1 0 1 0 1 1 {F} φ {M,Q}

Table 7. Discernibility matrix

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 φ
O2 φ φ
O3 φ φ φ
O4 {3,4} φ {3,4} φ
O5 {2,4} {2,3} {2,4} φ φ
O6 {2,4} {2,3} {2,4} {2,3} φ φ
O7 {4,5,6} φ {4,5,6} φ {2,5,6} φ φ
O8 {4,5,6} φ {4,5,6} φ {2,5,6} φ φ φ
O9 {2,4} {2,3} {2,4} {2,3} φ φ φ φ φ

{C3, C4, C5}, {C3, C4, C6}

(2) Pawlak rough set model: {C4, C5}, {C4, C6}, {C2, C3, C4}, {C2, C3, C5}, {C2, C3, C6}

(3) Variable precision rough set model: {C3, C4}, {C2, C3, C5}, {C2, C3, C6}, {C2,
C4, C5}, {C2, C4, C6}

(4) Bayesian rough set model: {C2, C3, C4}, {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5},
{C2, C4, C6}, {C3, C4, C5}, {C3, C4, c6}

(5) Bayesian rough set depending on coverage: {C2, C3, C4}, {C2, C3, C5}, {C2, C3, C6},
{C2, C4, C5}, {C2,
C4, C6}, {C3, C4, C5}, {C3, C4, c6}

In the information table shown in Table 8 the significance of attributes C1,
C2, C3, C5, C6 are zero but the significance of the attribute C4 is 1/3. So if we
remove attribute C4 then it will effect the consistent decision rule. Using Lower
interval probability function based decision theoretic rough set model we get the
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Table 8. Information table

Example 3.5.

C1 C2 C3 C4 C5 C6 D

O1 1 0 0 1 1 1 M

O2 1 0 0 1 1 1 M

O3 1 0 1 0 1 0 M

O4 1 0 1 0 1 0 M

O5 1 0 0 0 1 1 Q

O6 1 0 1 0 1 0 Q

O7 1 1 1 1 0 1 F

O8 1 0 0 1 1 1 F

O9 1 1 1 1 0 1 F

Table 9. A reformation of table 8

C1 C2 C3 C4 C5 C6 POS BND NEG

O1 1 0 0 1 1 1 {M} φ {Q,F}
O2 1 0 0 1 1 1 {M} φ {Q,F}
O3 1 0 1 0 1 0 {M} {Q} {F}
O4 1 0 1 0 1 0 {M} {Q} {F}
O5 1 0 0 0 1 1 φ φ {M,Q,F}
O6 1 0 1 0 1 0 {M} {Q} {F}
O7 1 1 1 1 0 1 {F} φ {M,Q}
O8 1 0 0 1 1 1 {M} φ {Q,F}
O9 1 1 1 1 0 1 {F} φ {M,Q}

region associated with each equivalence classes [x]C which is shown in Table 9 and
the discernibility matrix is shown in Table 10. Using the discernibility matrix we
get the reduction as {C3, C4}, {C2, C4, C6}, {C4, C5, C6} Now after finding all the
discernibility matrix if we reduce the attribute then we get the following results.

(1) By Lower interval probability function based decision theoretic rough set
model the reduction is {C3, C4}, {C2, C4, C6}, {C4, C5, C6}

(2) By pawlak method the reduction is {C3, C4}, {C4, C5, C6},{C2, C4, C6}
(3) By Variable precision rough set method the reduction is {C3, C4}, {C4, C5,

C6},{C2, C4, C6}
(4) By Bayesian decision theoretic rough set method the reduction is {C3, C4},
{C4, C5, C6},{C2, C4, C6}

(5) By Bayesian rough set method depending on coverage the reduction is {
C4}, {C3, C6},{C2, C3, C5}

Hence we get a comparative study between the various methods of attribute reduc-
tion.
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Table 10. Discernibility matrix

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 φ

O2 φ φ

O3 φ φ φ

O4 φ φ φ φ

O5 {4} {4} {3,6} {3,6} φ

O6 φ φ φ φ {3,6} φ

O7 {2,3,5} {2,3,5} {2,4,5} {2,4,5} {2,3,4,5} {2,4,5} φ

O8 φ φ φ φ {4} φ {2,3,5} φ

O9 {2,3,5} {2,3,5} {2,4,5} {2,4,5} {2,3,4,5} {2,4,5} φ {2,3,5} φ

Proposition 3.6. Proposition in Lower Interval probability function based deci-
sion theoretic rough set model Suppose an information system IS = (U,A = C ∪
D,V, ρ), X ⊆ U , ∀B ⊂ D if Di, Dj ∈ πD(i 6= j), F ∈ πB and F = Di ∪Dj, we have

(1) If Di ⊆ POS(α,β)([x]C |πD) and
Dj ⊆ POS(α,β)([x]C |πD), then F ⊆ POS(α,β)([x]C |πB).

(2) If Di ⊆ NEG(α,β)([x]C |πD) and
Dj ⊆ NEG(α,β)([x]C |πD), then F ⊆ NEG(α,2β)([x]C |πB).

(3) If Di ⊆ BND(α,β)([x]C |πD) and
Dj ⊆ BND(α,β)([x]C |πD), then F ⊆ BND(2α,β)([x]C |πB).

(4) If Di ⊆ POS(α,β)([x]C |πD) and
Dj ⊆ BND(α,β)([x]C |πD), then F ⊆ POS(β,β)([x]C |πB).

() If Di ⊆ NEG(α,β)([x]C |πD) and
Dj ⊆ BND(α,β)([x]C |πD), then F ⊆ NEG(α,2α)([x]C |πB).

Proof. (1) Because Di ⊆ POS(α,β)([x]C |πD) and
Dj ⊆ POS(α,β)([x]C |πD), LB([x]C |Di) ≥ α and LB([x]C |Dj) ≥ α.
For F,

LB([x]C |F )
= |[x]C ∩ F |/(|[x]C ∩ F |+ |[x]cC ∪ F |)
= |[x]C ∩ (Di ∪Dj)|/(|[x]C ∩ (Di ∪Dj)|+ |[x]cC ∪ (Di ∪Dj)|)
= (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |[x]cC |+ |Di|+ |Dj |)
≥ (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |[x]cC |+ |[x]cC |+ |Di|+ |Dj |)
≥ α.

Consequently, F ⊆ POS(α,β)([x]C |πB).
(2) Since Di ⊆ NEG(α,β)([x]C |πD) and Dj ⊆ NEG(α,β)([x]C |πD),

LB([x]C |Di) ≤ β and LB([x]C |Dj) ≤ β.

That is,
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(|[x]C ∩Di|)/(|[x]C ∩Di|+ |[x]cC ∪Di|) ≤ β

and

(|[x]C ∩Dj |)/(|[x]C ∩Dj |+ |[x]cC ∪Dj |) ≤ β.

Now
(|[x]C ∩ (Di ∪Dj)|)/(|[x]C ∩ (Di ∪Dj)|+ |[x]cC ∪ (Di ∪Dj)|)

= (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)
= |[x]C ∩Di|/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)

+(|[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)
< |[x]C ∩Di|/(|[x]C ∩Di|+ |Di|+ |[x]cC |) + |[x]C ∩Dj |/(|[x]C ∩Dj |+ |Dj |+ |[x]cC |)
= LB([x]C |Di) + LB([x]C |Dj)
≤ 2β.

Thus F = Di ∪Dj ⊆ NEG(α,2β)([x]C |πB).
(3) Since Di ⊆ BND(α,β)([x]C |πD) and Dj ⊆ BND(α,β)([x]C |πD),

β < LB([x]C |Di) < α and β < LB([x]C |Dj) < α.

Now
(|[x]C ∩ (Di ∪Dj)|)/(|[x]C ∩ (Di ∪Dj)|+ |[x]cC ∪ (Di ∪Dj)|)

= (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)
= |[x]C ∩Di|/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)

+(|[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)
< |[x]C ∩Di|/(|[x]C ∩Di|+ |Di|+ |[x]cC |) + |[x]C ∩Dj |/(|[x]C ∩Dj |+ |Dj |+ |[x]cC |)
= LB([x]C |Di) + LB([x]C |Dj)
< 2α.

Also
|[x]C ∩ (Di ∪Dj)|/(|[x]C ∩ (Di ∪Dj)|+ |[x]cC ∪ (Di ∪Dj)|)

= (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |[x]cC |+ |Di|+ |Dj |)
≥ (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |[x]cC |+ |[x]cC |+ |Di|+ |Dj |)
> β.

So F = Di ∪Dj ⊆ BND(2α,β)([x]C |πB).
(4) Since Di ⊆ POS(α,β)([x]C |πD) and Dj ⊆ BND(α,β)([x]C |πD),

(|[x]C ∩Di|)/(|[x]C ∩Di|+ |[x]cC ∪Di|) ≥ α > β

and

β < (|[x]C ∩Dj |)/(|[x]C ∩Dj |+ |[x]cC ∪Dj |) < α.

Now,
|[x]C ∩ (Di ∪Dj)|/(|[x]C ∩ (Di ∪Dj)|+ |[x]cC ∪ (Di ∪Dj)|)

= (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |[x]cC |+ |Di|+ |Dj |)
≥ (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |[x]cC |+ |[x]cC |+ |Di|+ |Dj |)
> β.

Then F = Di ∪Dj ⊆ POS(β,β)([x]C |πB).
(5) Since Di ⊆ NEG(α,β)([x]C |πD) and Dj ⊆ BND(α,β)([x]C |πD),

(|[x]C ∩Di|)/(|[x]C ∩Di|+ |[x]cC ∪Di|) ≤ β < α
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and

β < (|[x]C ∩Dj |)/(|[x]C ∩Dj |+ |[x]cC ∪Dj |) < α.

Now
(|[x]C ∩ (Di ∪Dj)|)/(|[x]C ∩ (Di ∪Dj)|+ |[x]cC ∪ (Di ∪Dj)|)

= (|[x]C ∩Di|+ |[x]C ∩Dj |)/(|[x]C ∩Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)
= |[x]C∩Di|/(|[x]C∩Di|+ |[x]C∩Dj |+ |Di|+ |Dj |+ |[x]cC |)+(|[x]C∩Dj |)/(|[x]C∩

Di|+ |[x]C ∩Dj |+ |Di|+ |Dj |+ |[x]cC |)
< |[x]C ∩Di|/(|[x]C ∩Di|+ |Di|+ |[x]cC |) + |[x]C ∩Dj |/(|[x]C ∩Dj |+ |Dj |+ |[x]cC |)
= LB([x]C |Di) + LB([x]C |Dj) < 2α

Thus, F ⊆ NEG(α,2α)([x]C |πB). �

Proposition 3.7. Proposition in Bayesian decision theoretic rough set model Sup-
pose an information system IS = (U,A = C∪D,V, ρ), X ⊆ U ,∀B ⊂ A, if [x]m, [x]n ∈
πA(m 6= n), and F = [x]m ∪ [x]n,F ∈ πB we have

(1) If [x]m ⊆ POS∗Di([x]C) and [x]n ⊆ POS∗Di([x]C), then F ⊆ POS∗Di([x]C′ ).
(2) If [x]m ⊆ NEG∗Di([x]C) and [x]n ⊆ NEG∗Di([x]C), then F ⊆ NEG∗Di([x]C′ ).
(3) If [x]m ⊆ BND∗Di([x]C) and [x]n ⊆ BND∗Di([x]C), then F ⊆ BND∗Di([x]C′ ).
(4) If [x]m ⊆ POS∗Di([x]C) and [x]n ⊆ BND∗Di([x]C), then F ⊆ POS∗Di([x]C′ ).
(5) If [x]m ⊆ NEG∗Di([x]C) and [x]n ⊆ BND∗Di([x]C), then F ⊆ NEG∗Di([x]C′ ).

Here C
′
is the condition attribute set in B.

Proposition 3.8. Proposition in Bayesian rough set depending on coverage Suppose
an information system IS = (U,A = C ∪D,V, ρ), X ⊆ U , ∀B ⊂ A, if [x]m, [x]n ∈
πA(m 6= n), and F = [x]m ∪ [x]n, F ∈ πB we have

(1) If [x]m ⊆ POScov(πA)(Di) and [x]n ⊆ POScov(πA)(Di),
then F ⊆ POScov(πB)(Di).

(2) If [x]m ⊆ NEGcov(πA)(Di) and [x]n ⊆ NEGcov(πA)(Di),
then F ⊆ NEGcov(πB)(Di).

(3) If [x]m ⊆ BNDcov(πA)(Di) and [x]n ⊆ BNDcov(πA)(Di),
then F ⊆ BNDcov(πB)(Di).

(4) If [x]m ⊆ POScov(πA)(Di) and [x]n ⊆ BNDcov(πA)(Di),
then F ⊆ POScov(πB)(Di).

(5) If [x]m ⊆ NEGcov(πA)(Di) and [x]n ⊆ BNDcov(πA)(Di),
then F ⊆ NEGcov(πB)(Di).

Proof. Straight forward. �

Proposition 3.9. The definition of Bayesian rough set and Bayesian rough set
depending on coverage is quite different but in case of positive, negative and boundary
region there is some relation between these two model.

(1) If an equivalence class [x]C belongs to Bayesian decision theoretic rough set
positive region iff its also belongs to Bayesian rough set depending on coverage pos-
itive region.

(2) If an equivalence class [x]C belongs to Bayesian decision theoretic rough set
boundary region iff its also belongs to Bayesian rough set depending on coverage
boundary region.

384



Kalyani Debnath et al. /Ann. Fuzzy Math. Inform. 12 (2016), No. 3, 373–386

(3) If an equivalence class [x]C belongs to Bayesian decision theoretic rough set
negative region iff its also belongs to Bayesian rough set depending on coverage neg-
ative region.

Proof. Only proof of (1) is shown here, other two are similar. Let [x]C belongs
to Bayesian decision theoretic rough set positive region. i.e., for a decision Di,
|[x]C ∩Di|/|[x]C | > P (Di), i.e.,|[x]C ∩Di| > P (Di)|[x]C |.
Now,|[x]C ∩Di|/|Di|> P (Di)|[x]C |/|Di| = |[x]C |/

∑
(Di) = |[x]C |/‖U | = P ([x]C),

i.e., |[x]C ∩Di|/|Di| > P ([x]C).
This implies [x]C belongs to Bayesian rough set depending on coverage positive

region.
Now for the converse part let us assume [x]C belongs to Bayesian rough set depending
on coverage positive region.

i.e., |[x]C ∩Di|/|Di| > P ([x]C),
i.e., |[x]C ∩Di| > P ([x]C)|Di|,
i.e., |[x]C ∩Di|/|[x]C | > P ([x]C)|Di|/|[x]C | = |Di|/|U | = P (Di),
i.e., |[x]C belongs to Bayesian decision theoretic rough set positive region. �

4. Conclusion

In this paper the concept of attribute reduction using Lower Interval probability
function based Decision Theoretic Rough set model is shown. Also considering
some example the comparison of Lower Interval probability function based Decision
Theoretic Rough Set Model with other methods are shown. It is found that the
reduct by this method gives the better reduction. To deal with huge data a Matlab
program is to be tested using original data.
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