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1. Introduction

Advances in science and technology have made our modern society very complex
and hence uncertainties are occurring increasingly in decision making process. To
deal with uncertainties in decision making process, L.A. Zadeh[17] introduced the
notion of fuzzy set in 1965. In his pioneering work, he has defined the algebraic oper-
ations on fuzzy set like union, intersection, complement etc. Later on many research
works [5, 6, 16] have been done on this field. In 2001, Ismat Beg [3] constructed the
sum and the scalar multiplication of fuzzy sets to define a fuzzy linear space. Infact,
uncertainties are also being tackled by the theory of probability, fuzzy set, rough set
etc.

All these concepts have some inherent difficulties. To over come a few of such
difficulties, D. Molodtsov [12] introduced the notion of soft set in 1999. Thereafter
so many research works[1, 2, 7, 8, 9, 11, 13, 14, 15] have been done with this concept
in different disciplines of mathematics.

In this paper, the sum and scalar multiplication of soft sets over a linear space
are being defined. Then we have established some propositions concerning the above
said notions.
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2. Preliminaries

Throughout the work, U refers to an initial universe, E is the set of parameters,
P (U) is the power set of U and A ⊆ E.
Definition 2.1 ([10]). Let f be a mapping of X into Y and µ be a fuzzy subset of
X. The image f(µ) of µ is the fuzzy subset of Y defined by, for y ∈ Y

f(µ)(y) =

 sup
x∈f−1(y)

µ(x) if f−1(y) 6= ∅,

0 otherwise.

Definition 2.2 ([3]). Let X be a vector space over K where K denotes either
a real or complex numbers. Let µ1, µ2, · · · , µn be the fuzzy subsets of X, then
µ1 × µ2 × · · · × µn is a fuzzy subset µ of Xn defined by

µ(x1, x2, · · · , xn) = min{µ1(x1), µ2(x2), · · · , µn(xn)}.
If f : Xn → X is defined by f(x1, x2, · · · , xn) = x1 + x2 + · · ·+ xn, then the fuzzy
set f(µ) in X is called the sum of fuzzy sets µ1, µ2, · · · , µn and it is denoted by
µ1 + µ2 + · · ·+ µn.
For a fuzzy subset µ of X and a scalar t ∈ K, we denote tµ the image of µ under
the map g : X → X, g(x) = tx.

Definition 2.3 ([4]). A soft set FA on the universe U is defined by the set of ordered
pairs FA = {(e, FA(e)) : e ∈ E,FA(e) ∈ P (U)}, where FA : E → P (U) such that
FA(e) = φ if e is not an element of A.
The set of all soft sets over (U,E) is denoted by S(U).

Definition 2.4 ([4]). Let FA ∈ S(U). If FA(e) = φ, for all e ∈ E, then FA is called
a empty soft set, denoted by Φ. FA(e) = φ means that there is no element in U
related to the parameter e ∈ E.

Definition 2.5 ([4]). Let FA, GB ∈ S(U). We say that FA is a soft subsets of GB

and we write FA v GB if and only if
(i) A ⊆ B,
(ii) FA(e) ⊆ GB(e) for all e ∈ E.

Definition 2.6 ([4]). Let FA, GB ∈ S(U). Then FA and GB are said to be soft
equal, denoted by FA = GB , if FA(e) = GB(e) for all e ∈ E.
Definition 2.7 ([4]). Let FA, GB ∈ S(U). Then the soft union of FA and GB is
also a soft set FA tGB = HA∪B ∈ S(U), defined by

HA∪B(e) = (FA tGB)(e) = FA(e) ∪GB(e) for all e ∈ E.

Definition 2.8 ([4]). Let FA, GB ∈ S(U). Then the soft intersection of FA and GB

is also a soft set FA uGB = HA∩B ∈ S(U), defined by

HA∩B(e) = (FA uGB)(e) = FA(e) ∩GB(e) for all e ∈ E.

Definition 2.9. Let FA be a soft set over (U,E) and f : E → E. Then f(FA), a
soft set over (U,E), is defined by

f(FA)(e) =

{
∪e′∈f−1(e)FA(e

′
) if f−1(e) 6= ∅,

∅ otherwise.
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3. Vector sum and scalar multiplication of soft sets

In this section, we denote 0 and 1 as the zero element and unity of the field
respectively. Also the zero vector of the linear space is denoted by 0 which can
easily separated from the zero element of the field.

Definition 3.1. If FA and GB are two soft sets over (U,E), then their product
FA ×GB is a soft set over (U,E × E) and it is defined by

(FA ×GB)(e1, e2) = FA(e1) ∩GB(e2), for all (e1, e2) ∈ E × E.

Example 3.2. Let U = {a, b, c, d, e}, E = {e1, e2, e3, e4, e5}, A = {e1, e2} and
B = {e2, e3, e4}. Also let FA and GB be two soft sets over (U,E) defined by
FA(e1) = {a, b, c}, FA(e2) = {d, e}
and GB(e2) = {b, d, e}, GB(e3) = {a, b}, GB(e4) = {c, d, e}. Then

(FA ×GB)(e1, e2) = {b},
(FA ×GB)(e1, e3) = {a, b},
(FA ×GB)(e1, e4) = {c},
(FA ×GB)(e2, e2) = {d, e},
(FA ×GB)(e2, e3) = ∅,
(FA ×GB)(e2, e4) = {d, e} and
(FA ×GB)(ei, ej) = ∅ if (ei, ej) ∈ (E × E)− (A×B).

Definition 3.3. Let U be a universal set and E be a usual vector space over R or
C and FA1

, FA2
, · · · , FAn

be soft sets over (U,E) and f : En → E be the function
defined by f(e1, e2, · · · , en) = e1 + e2 + · · ·+ en. Then the vector sum FA1

+ FA2
+

· · ·+ FAn
is defined by

FA1 + FA2 + · · ·+ FAn = f(FA1 × FA2 × · · · × FAn).

That is, for each e ∈ E,

(FA1
+ FA2

+ · · ·+ FAn
)(e)

= f(FA1 × FA2 × · · · × FAn)(e)

= ∪(e1,e2,··· ,en)∈f−1(e)(FA1
× FA2

× · · · × FAn
)(e1, e2, · · · , en)

= ∪(e1,e2,··· ,en)∈f−1(e){FA1
(e1) ∩ FA2

(e2) ∩ · · · ∩ FAn
(en)}.

Example 3.4. Let universal set U = R2, the parameter set E= the real vector
space R and f : R2 → R be the function defined by f(e1, e2) = e1 + e2.
Also let A = {1, 2, 3}, B = {3, 4} and FA, GB be two soft sets over (U,E) defined
by

FA(e) =

{
{(x, y) ∈ R2 : 2x+ 3y = e} if e ∈ A,
∅ otherwise

and

GB(e) =

{
{(x, y) ∈ R2 : 4x+ 7y = e} if e ∈ B,
∅ otherwise.

Now 1 + 3 = 4, 1 + 4 = 5, 2 + 3 = 5, 2 + 4 = 6, 3 + 3 = 6 and 3 + 4 = 7.
Then the vector sum of FA and GB is FA +GB , where

(FA +GB)(4) = ∪(e1,e2)∈f−1(4){FA(e1) ∩GB(e2)}
= FA(1) ∩GB(3) = {(−1, 1)},
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(FA +GB)(5) = ∪(e1,e2)∈f−1(5){FA(e1) ∩GB(e2)}
= {FA(1) ∩GB(4)} ∪ {FA(2) ∩GB(3)}

=

{(
−5

2
, 2

)
,

(
5

2
,−1

)}
,

(FA +GB)(6) = ∪(e1,e2)∈f−1(6){FA(e1) ∩GB(e2)}
= {FA(2) ∩GB(4)} ∪ {FA(3) ∩GB(3)}
= {(1, 0) , (6,−3)},

(FA +GB)(7) = ∪(e1,e2)∈f−1(7){FA(e1) ∩GB(e2)}

= FA(3) ∩GB(4) =

{(
9

2
,−2

)}
and

(FA +GB)(e) = ∅, if e ∈ R− {4, 5, 6, 7}.

Definition 3.5. If U is a universal set, E is a usual vector space over R or C,
t is a scalar and g : E → E is a mapping defined by g(e) = te, then the scalar
multiplication tFA of a soft set FA is defined by tFA = g(FA). That is, for e ∈ E,

tFA(e) = g(FA)(e) = ∪e′∈g−1(e)FA(e
′
).

Proposition 3.6. Let U be a universal set, E be a usual vector space over R or C,
t be a scalar and FA be a soft set over (U,E). Then

tFA(e) =

 FA(t−1e) if t 6= 0,
∅ if t = 0 and e 6= 0,
∪e∈EFA(e) if t = 0 and e = 0.

Proof. Case(i): Suppose t 6= 0 and let e ∈ E. Then

tFA(e) = g(FA)(e) = ∪e′∈g−1(e)FA(e
′
) = ∪e′=t−1eFA(e

′
) = FA(t−1e).

Case(ii): Suppose t = 0.

Subcase(a). If e(6= 0) ∈ E, then tFA(e) = ∪e′∈g−1(e)FA(e
′
) = ∅. [as t = 0,

e = g(e
′
) = 0. But e 6= 0. Thus there exists no such e

′
.]

Subcase(b). If e = 0, then tFA(e) = ∪e′∈g−1(e)FA(e
′
).

Let e
′ ∈ E. Then 0e

′
= 0, that is, g(e

′
) = 0 or e

′ ∈ g−1(0) = g−1(e). Thus,

g−1(e) = E. So tFA(e) = ∪e′∈EFA(e
′
). �

Example 3.7. Let the Universal set U = the set of all integers, The parameter set
E = the set of all real numbers, A =the set of all positive real numbers. Also let FA

be a soft set defined by

FA(e) =

{
{[e], [e] + 1, [e] + 2, · · · } if e ∈ A,
∅ otherwise

and t ∈ R. Then, by the proposition 3.6, we now find tFA.
If t 6= 0, then

tFA(e) = FA(t−1e) =

{
{[t−1e], [t−1e] + 1, [t−1e] + 2, · · · } if t−1e ∈ A,
∅ if t−1e /∈ A.
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If t = 0 and e 6= 0, then tFA(e) = ∅.
If t = 0 and e = 0, then tFA(e) = ∪e∈EFA(e) = ∪e∈AFA(e) =the set of all natural

numbers including zero.

Proposition 3.8. Suppose E1 and E2 are linear spaces over the same field R or C
and f : E1 → E2 is linear mapping. Then for any soft sets FA and GB over (U,E1)
and for the scalar t,

(1) f(FA +GB) = f(FA) + f(GB),
(2) f(tFA) = tf(FA).

Proof. (1) Let the range of f be M and w ∈ E2. Put P = f(FA + GB)(w) and
Q = (f(FA) + f(GB))(w).

Case(i): If w ∈ E2 \M , then f−1(w) = ∅. Thus P = ∅. Further, if w = w1 +w2,
then at least one of w1 and w2 is not in M as f is linear. Thus, either

f(FA)(w1) = ∪e∈f−1(w1)FA(e) = ∅

or

f(GB)(w2) = ∪e∈f−1(w2)GB(e) = ∅.
So

Q = (f(FA) + f(GB))(w) = ∪w=w1+w2
(f(FA)(w1) ∩ f(GB)(w2)) = ∅.

Hence, in this case, P = Q.
Case(ii): If w ∈ M and p ∈ P , then p ∈ ∪e∈f−1(w)(FA + GB)(e), that is, p ∈

(FA +GB)(e) for some e ∈ f−1(w). That is, p ∈ ∪e=e1+e2(FA(e1) ∩GB(e2)). Thus
there exist e1, e2 ∈ E with e = e1 + e2 such that p ∈ FA(e1) ∩GB(e2).
On one hand,

Q = (f(FA) + f(GB))(w) = ∪w=w1+w2(f(FA)(w1) ∩ f(GB)(w2)).

Since w = f(e) = f(e1 + e2) = f(e1) + f(e2),

f(FA)(f(e1)) ∩ f(GB)(f(e2)) ⊆ Q.

Then,

{∪r1∈f−1(f(e1))FA(r1)} ∩ {∪r2∈f−1(f(e2))GB(r2)} ⊆ Q.
Thus FA(e1) ∩GB(e2) ⊆ Q, that is, p ∈ Q. So, P ⊆ Q.

For the reverse, we take q ∈ Q. Then q ∈ ∪w=w1+w2
(f(FA)(w1) ∩ f(GB)(w2)).

Thus, there exist w1, w2 ∈M with w = w1 + w2 such that
q ∈ f(FA)(w1) ∩ f(GB)(w2)= {∪e1∈f−1(w1)FA(e1)} ∩ {∪e2∈f−1(w2)GB(e2)}.

So, there exist e1 ∈ f−1(w1) and e2 ∈ f−1(w2) such that q ∈ FA(e1)∩GB(e2), where

w = w1 + w2 = f(e1) + f(e2) = f(e1 + e2).

Now P = f(FA + GB)(w) = ∪e∈f−1(w)(FA + GB)(e). Since w = f(e1 + e2),

(FA + GB)(e1 + e2) ⊆ P , that is, ∪(e1+e2)=e
′
1+e

′
2
{FA(e

′

1) ∩ GB(e
′

2)} ⊆ P , that is,

FA(e1) ∩ GB(e2) ⊆ P . Then q ∈ P . Thus Q ⊆ P. So P = Q. This completes the
proof of (1).

(2) Let the range of f be M and w ∈ E2. Put P = tf(FA)(w) and Q = f(tFA)(w).
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Case(i): If w ∈ E2 \M , then f−1(w) = ∅. Thus for t 6= 0,

P = tf(FA)(w) = f(FA)(t−1w)

= ∪e∈f−1(t−1w)FA(e) = ∪te∈f−1(w)FA(e)

= ∅.[ as f−1(w) = ∅]

Also P = ∅, when t = 0. So, if w ∈ E2 \M , then P = ∅.
Now

Q = f(tFA)(w) = ∪e∈f−1(w)tFA(e)

= ∅.[ as f−1(w) = ∅]

Hence P = Q, for w ∈ E2 \M .
Case(ii): If w ∈M and t 6= 0, then

P = f(FA)(t−1w) = ∪e∈f−1(t−1w)FA(e)

= ∪tf(e)=wFA(e) = ∪f(te)=wFA(e)

and

Q = f(tFA)(w) = ∪e′∈f−1(w)tFA(e
′
)

= ∪f(e′ )=wFA(t−1e
′
)

= ∪f(te)=wFA(e).[ taking t−1e
′

= e]

Thus P = Q, for w ∈M and t 6= 0.
Case(iii): If w( 6= 0) ∈M and t = 0, then

P = 0f(FA)(w) = ∅

and

Q = f(0FA)(w) = ∪f(e)=w0FA(e)

= ∅.[ since f(e) = w 6= 0, e 6= 0]

Thus P = Q, for w(6= 0) ∈M and t = 0.
Case(iv): If w(= 0) ∈M and t = 0, then

P = 0f(FA)(0) = ∪e2∈E2f(FA)(e2)

= ∪e2∈E2
∪e1∈f−1(e2) FA(e1) = ∪e1∈E1

FA(e1)

and

Q = f(0FA)(0) = ∪e∈f−1(0)0FA(e)

= 0FA(0)[ as if e(6= 0) ∈ f−1(0), then 0FA(e) = ∅]

= ∪e1∈E1FA(e1).

Thus P = Q for w(= 0) ∈M and t = 0. This completes the proof of part (2). �

Proposition 3.9. If S is an ordinary subset of a linear space E over R or C, FA

is a soft set over (U,E) and x ∈ E, then
(1) (x+ FA)(e) = FA(e− x) for all e ∈ E where x+ FA means 1x + FA and

1x(e) =

{
U if e = x

∅ if e 6= x.

356



Sanjay Roy et al. /Ann. Fuzzy Math. Inform. 12 (2016), No. 3, 351–359

(2) x+ FA = Tx(FA) for the translation mapping Tx : E → E defined by Tx(e) =
x+ e for all e ∈ E.

(3) S + FA = ta∈S(a+ FA).

Proof. (1) (x+ FA)(e) = ∪e=e1+e2{1x(e1) ∩ FA(e2)}
= {1x(x) ∩ FA(e− x)} ∪e1 6=x {∅ ∩ FA(e− e1)}
= FA(e− x) ∪∅
= FA(e− x).

(2) Tx(FA)(e) = ∪e′∈T−1
x (e)FA(e

′
) = FA(e− x).

Thus, by (1), we get x+ FA = Tx(FA).
(3) (S + FA)(e) = ∪e=e1+e2{1S(e1) ∩ FA(e2)}

= ∪a∈S{1S(a) ∩ FA(e− a)} ∪a∈E\S {1S(a) ∩ FA(e− a)}
= ∪a∈SFA(e− a) ∪∅
= ∪a∈SFA(e− a)

= ∪a∈S(a+ FA)(e). �

Proposition 3.10. If FA, FA1
, FA2

, · · · , FAn
are soft sets over (U,E), where E is

a linear space. Then for the scalars t1, t2, · · · , tn, the following are equivalent:
(1) t1FA1

+ t2FA2
+ · · ·+ tnFAn

v FA.
(2) For all e1, e2, · · · , en ∈ E, FA(t1e1 + t2e2 + · · ·+ tnen) ⊇ ∩ni=1FAi(ei)

Proof. (1) ⇒ (2): Without lost of generality, we may assume that the first m (0 ≤
m ≤ n) scalars t1, t2, · · · , tm are non-zero and the remaining scalars are zero. Then

FA(t1e1 + t2e2 + · · ·+ tmem + 0em+1 + · · ·+ 0en)
⊇ (t1FA1

+ t2FA2
+ · · ·+ tmFAm

+ 0FAm+1
+ · · ·+ 0FAn

)
(t1e1 + t2e2 + · · ·+ tmem + 0em+1 + · · ·+ 0en)

= ∪t1e1+t2e2+···+tmem+0em+1+···+0en=r1+r2+···+rm+···+rn{t1FA1(r1)
∩t2FA2

(r2) ∩ · · · ∩ tmFAm
(rm) ∩ 0FAm+1

(rm+1) ∩ · · · ∩ 0FAn
(rn)}

⊇ t1FA1
(t1e1) ∩ t2FA2

(t2e2) ∩ · · · ∩ tmFAm
(tmem) ∩ 0FAm+1

(0) ∩ · · · ∩ 0FAn
(0)

⊇ t1FA1
(t1e1) ∩ t2FA2

(t2e2) ∩ · · · ∩ tmFAm
(tmem) ∩ FAm+1

(em+1)
∩ · · · ∩ FAn

(en) [as 0FAi
(0) = ∪e∈EFAi

(e) for i = m+ 1,m+ 2, · · · , n]
= FA1(e1) ∩ FA2(e2) ∩ · · · ∩ FAm(em) ∩ FAm+1(em+1) ∩ · · · ∩ FAn(en).
(2)⇒ (1): Let FA(t1e1 + t2e2 + · · ·+ tnen) ⊇ FA1(e1) ∩ FA2(e2) ∩ · · · ∩ FAn(en)

for all e1, e2, · · · , en ∈ E. Rearranging the order, let ti 6= 0 for 1 ≤ i ≤ k and ti = 0
for k < i ≤ n. Then, from the hypothesis, we get

FA(t1e1 + t2e2 + · · ·+ tkek)
⊇ FA1

(e1) ∩ FA2
(e2) ∩ · · · ∩ FAk

(ek) ∩ FAk+1
(xk+1) ∩ · · · ∩ FAn

(xn),
for all xk+1, xk+2, · · · , xn ∈ E.
Thus,

FA(t1e1 + t2e2 + · · ·+ tkek)
⊇ FA1

(e1) ∩ FA2
(e2) ∩ · · · ∩ FAk

(ek) ∩ 0FAk+1
(0) ∩ · · · ∩ 0FAn

(0),
for all e1, e2, · · · , ek ∈ E.

On one hand,
(t1FA1 + t2FA2 + · · ·+ tnFAn)(e)

= ∪e=e1+e2+···+en{t1FA1
(e1) ∩ t2FA2

(e2) ∩ · · · ∩ tnFAn
(en)}

= ∪e=e1+e2+···+en{t1FA1
(e1) ∩ t2FA2

(e2) ∩ · · · ∩ tkFAk
(ek)
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∩0FAk+1
(ek+1) ∩ · · · ∩ 0FAn(en)}

= ∪e=e1+e2+···+ek{t1FA1(e1) ∩ t2FA2(e2) ∩ · · · ∩ tkFAk
(ek)

∩0FAk+1
(0) ∩ · · · ∩ 0FAn

(0)}
= ∪e=e1+e2+···+ek{FA1

(t−11 e1) ∩ FA2
(t−12 e2) ∩ · · · ∩ FAk

(t−1k ek)
∩0FAk+1

(0) ∩ · · · ∩ 0FAn
(0)}

⊆ ∪e=e1+e2+···+ekFA(t1t
−1
1 e1 + t2t

−1
2 e2 + · · ·+ tkt

−1
k ek)

= ∪e=e1+e2+···+ekFA(e1 + e2 + · · ·+ ek)
= FA(e). �

Proposition 3.11. If FA and GB are two soft sets over (U,E), where E is a linear
space, then

(1) 1FA + 0GB v FA.
(2) 1FA + 0GB = FA iff ∪e∈EFA(e) ⊆ ∪e∈EGB(e).

Proof. (1) Let e1, e2 ∈ E. Then FA(1e1 + 0e2) = FA(e1) ⊇ FA(e1) ∩GB(e2).
Thus, by previous proposition, we have 1FA + 0GB v FA.

(2) Let ∪e∈EFA(e) ⊆ ∪e∈EGB(e) and e ∈ E. Then

(1FA + 0GB)(e) = ∪e=e1+e2 {1FA(e1) ∩ 0GB(e2)}
= 1FA(e) ∩ 0GB(0) = FA(e) ∩ {∪x∈EGB(x)}
= FA(e).[ as by the hypothesis we have FA(e) ⊆ ∪x∈EGB(x)]

Thus 1FA + 0GB = FA.
Conversely, suppose that 1FA + 0GB = FA and x ∈ ∪e∈EFA(e).

Then x ∈ FA(e) = (1FA + 0GB)(e) for some e ∈ E.
Thus x ∈ ∪e=e1+e2{1FA(e1) ∩ 0GB(e2)}.
So x ∈ 1FA(e) ∩ 0GB(0), i.e., x ∈ 0GB(0) = ∪e∈EGB(e).
Hence ∪e∈EFA(e) ⊆ ∪e∈EGB(e). �

4. Conclusions

Ismat Beg [3] has defined the vector sum and the scalar multiplication of fuzzy
sets in 2001. In this paper, the vector sum and scalar multiplication are being defined
on soft sets over a linear space. Then we have established some propositions which
will be needed in future for construction of a soft balanced set, absorbing set, convex
set etc.

Acknowledgements. The authors are grateful to the referees for their valuable
suggestions in rewriting the paper in the present form.
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