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1. Introduction

Fuzzy systems are powerful tools to study a variety of problems ranging in
mathematic models, for example, population models [20], the golden mean [15],
transport of water and pesticide in an unsaturated layered soil profile [35]. Initially,
the derivative of fuzzy-valued functions is defined at the various modes. Namely,
Blasi differential, Fréchet differential [16] and H-derivative [30] and so on. The H-
derivative is a popular and practical concept, and an its important application is
exhibited in differential equations which in fuzzy setting are a natural way to model
uncertainty systems [1, 2, 4, 13, 19, 22, 26, 28, 29].

Under H-derivative, mainly the existence and uniqueness theorems of solution for
a fuzzy differential equation have been obtained [24, 27, 31, 33, 34, 38]. Solving
the fuzzy differential equations with H-derivative lead to solutions where have an
increasing support. This shortcoming is solved by interpreting a fuzzy differential
equation as a system of differential inclusions [17, 23]. The main shortcoming of using
differential inclusions is that we do not have a derivative of a fuzzy-valued function.
In another approach in [12, 11] instead of derivative concept, the extension principle
is used to extend crisp differential equations to the fuzzy case.
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For solving the above mentioned shortcomings, the strongly generalized differen-
tiability concept has been introduced in [8] and studied in [7, 9, 10] by Bede and
others. Indeed, the strongly generalized derivative is defined for a larger class of
fuzzy-valued functions than the Hukuhara derivative. In [9], Bede and Gal studied
several characterizations under this interpretation for a fuzzy-valued function from
R into E, and as an application obtained the existence and uniqueness theorems of
the solutions for a fuzzy differential equation.

The directional derivative has been presented and studied in [36] for a fuzzy-
valued function from Rn into E. By the strongly generalized differentiability concept
in [36], can introduce the strongly generalized partial derivative for a fuzzy-valued
function from Rn into E. In this work, we obtain existence and uniqueness theorems
of solution for a fuzzy partial differential equation by successive iterations of the
Adomian decomposition method [3, 21] using concept derivative in [9, 36].

After a preliminary section, we study the Adomian decomposition method. In
Section 3, by generalized partial derivative and successive iterations of the Adomian
decomposition method, we introduce a fuzzy partial differential equation and give
existence theorems. In Section 4, we provide two examples and in the last section
we represent some conclusions.

2. Preliminaries

Let E = {u|u : R→ [0, 1] has the following properties (1)− (4)}:
(1) ∀u ∈ E, u is normal, i.e. ∃x0 ∈ R with u(x0) = 1.
(2) ∀u ∈ E, u is a convex fuzzy set (i.e. u(rx+ (1− r)y) ≥ min(u(x), u(y)),
∀r ∈ [0, 1], x, y ∈ R),

(3) ∀u ∈ E, u is upper semi-continuous on R,
(4) [u]0 = cl{x ∈ R|u(x) > 0} is a compact set.

Then E is called fuzzy number space [18] and ∀u ∈ E, u is called a fuzzy number.
Obviously, R ⊂ E.

For each r ∈ [0, 1] and u ∈ E, [u]r = [u(r)∗, u(r)∗] denotes a bounded closed
interval and is defined by [u]r = {x ∈ R|u(x) ≥ r}.

For u, v ∈ E and λ ∈ R we can define sum and scalar multiplication on E,
respectively, by

[u⊕ v]r = [u]r + [v]r,

[λ� u]r = λ[u]r, ∀r ∈ [0, 1],

where [u]r + [v]r means the usual addition of two intervals (subsets) of R and λ[u]r

means the usual product between a scalar and a subset of R [18] and

(u+ v)(r)∗ = u(r)∗ + v(r)∗, (u+ v)(r)∗ = u(r)∗ + v(r)∗,

(λu)(r)∗ =

{
λu(r)∗ λ ≥ 0,
λu(r)∗ λ < 0,

and

(λu)(r)∗ =

{
λu(r)∗ λ ≥ 0,
λu(r)∗ λ < 0,

for any r ∈ [0, 1].

Definition 2.1 ([30]). Let u, v ∈ E. If there exists w ∈ E such that u = v ⊕ w,
then w is called H-difference of u and v and it is denoted by u− v = w.
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It is obvious that if the H-difference u− v exists, then (u− v)(r)∗ = u(r)∗− v(r)∗
and (u− v)(r)∗ = u(r)∗ − v(r)∗.

Theorem 2.2 ([6]). (1) If we show 0̃ = χ{0}, the characteristic function of zero,

then 0̃ ∈ E is neutral element with respect to ⊕, i.e. u ⊕ 0̃ = 0̃ ⊕ u = u, for all
u ∈ E.

(2) With respect to 0̃, none of u ∈ E \ R, has inverse in E (with respect to ⊕).
(3) For each a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and each u ∈ E, we have (a+b)�u =

a� u⊕ b� u. For general a, b ∈ R, the above property does not hold.
(4) For each λ ∈ R and each u, v ∈ E, we have λ� (u⊕ v) = λ� u⊕ λ� v.
(5) For each λ, µ ∈ R and each u ∈ E, we have λ� (µ� u) = (λµ)� u.

Theorem 2.3 ([16]). If u ∈ E, then u(r)∗ and u(r)∗ are functions on [0, 1] satis-
fying the following conditions (1)-(4):

(1) u(r)∗ is a nondecreasing function on [0, 1],
(2) u(r)∗ is a nonincreasing function on [0, 1],
(3) u(r)∗ and u(r)∗ are bounded and left continuous on (0, 1], and right continuous

at r = 0,
(4) u(r)∗ ≤ u(r)∗, for each r ∈ [0, 1].
Conversely, if functions u(r)∗ and u(r)∗ on [0, 1] satisfy conditions (1)-(4), then

there exists a unique u ∈ E such that [u]r = [u(r)∗, u(r)∗] for any r ∈ [0, 1].

The Hausdorff distance is defined as D : E × E → [0,+∞) by D(u, v) =
supr∈[0,1] max{|u(r)∗ − v(r)∗|, |u(r)∗ − v(r)∗|}. The following properties are well-

known [16]:
(1) D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ E,
(2) D(k � u, k � v) = |k|D(u, v), ∀k ∈ R, ∀u, v ∈ E,
(3) D(u⊕ v, w ⊕ e) ≤ D(u,w) +D(v, e), ∀u, v, w, e ∈ E

and (E,D) is a complete metric space.

Definition 2.4 ([19]). Let f : R → E be a fuzzy-valued function. If for arbitrary
fixed t0 ∈ R and ε > 0, there exist δ > 0 such that |t− t0| < δ ⇒ D(f(t), f(t0)) < ε.
f is said to be continuous.

Suppose that F : M(⊂ Rn) → E, F is called a fuzzy-valued function. For each
r ∈ [0, 1], r-cuts of F is defined by [F (x)]r = [F (x, r)∗, F (x, r)∗].

Definition 2.5 ([36]). Let F : M(⊂ Rn) → E be a fuzzy-valued function and
x0 ∈ M . If for y ∈ Rn, there exists δ > 0 such that x0 + hy, x0 − hy ∈ M and the
H-differences F (x0 +hy)−F (x0) and F (x0)−F (x0−hy) exist for any real number
h ∈ (0, δ), and there exists DyF (x0) ∈ E such that

limh→0+
F (x0+hy)−F (x0)

h

= limh→0+
F (x0)−F (x0−hy)

h

= DyF (x0).

Then we say F to be H-differentiable in the direction y at x0 and call DyF (x0) the
H-derivative of F at x0 in the direction y. (Here h in denominator means 1

h�.)
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Definition 2.6 ([36]). Let F : M(⊂ Rn) → (E,D) be a fuzzy-valued function,
x ∈M . If F is the strongly generalized directional differentiable in the direction ei
at x, then we say that F is generalization of partially differentiable at x with respect
to the i-th component, call Fxi(x) i.e. strongly generalized partial derivative of F
at x with respect to the i-th component.

Finally, we define the strongly generalized partial derivative for fuzzy-valued func-
tion F from M(⊂ R2) into E.

Definition 2.7 ([9, 36]). Let F : M(⊂ R2)→ E. We say that F is the strongly gen-
eralized partial differentiable at (t0, x0) with respect to t, if there exists an element
Ft(t0, x0) ∈ E such that

(1) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,
F (t0 + h, x0)− F (t0, x0), F (t0, x0)− F (t0 − h, x0) and the limits (in the metric D)

limh→0+
F (t0+h,x0)−F (t0,x0)

h

= limh→0+
F (t0,x0)−F (t0−h,x0)

h

= Ft(t0, x0),

or
(2) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,

F (t0, x0)− F (t0 + h, x0), F (t0 − h, x0)− F (t0, x0) and the limits

limh→0+
F (t0,x0)−F (t0+h,x0)

(−h)

= limh→0+
F (t0−h,x0)−F (t0,x0)

(−h)

= Ft(t0, x0),

or
(3) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,

F (t0 + h, x0)− F (t0, x0), F (t0 − h, x0)− F (t0, x0) and the limits

limh→0+
F (t0+h,x0)−F (t0,x0)

h

= limh→0+
F (t0−h,x0)−F (t0,x0)

(−h)

= Ft(t0, x0),

or
(4) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,

F (t0, x0)− F (t0 + h, x0), F (t0, x0)− F (t0 − h, x0) and the limits

limh→0+
F (t0,x0)−F (t0+h,x0)

(−h)

= limh→0+
F (t0,x0)−F (t0−h,x0)

h

= Ft(t0, x0).

(h and (−h) in denominators mean 1
h� and − 1

h�, respectively.)

Remark 2.8. The Definition 2.7 can be written with respect to the variable x.

Theorem 2.9 ([14]). Let F : M → E be a function and denote
[F (t, x)]r = [F (t, x, r)∗, F (t, x, r)∗] for each r ∈ [0, 1]. Then
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(1) If F is (1)-differentiable with respect to t, F (t, x, r)∗ and F (t, x, r)∗ are differ-
entiable functions which are the lower and upper functions of fuzzy-valued function
F in the parametric form and [Ft(t, x)]r = [Ft(t, x, r)∗, Ft(t, x, r)

∗].
(2) If F is (2)-differentiable with respect to t, F (t, x, r)∗ and F (t, x, r)∗ are dif-

ferentiable functions and [Ft(t, x)]r = [Ft(t, x, r)
∗, Ft(t, x, r)∗].

Remark 2.10. Theorem 2.9 can be written with respect to the variable x.

Theorem 2.11 ([37]). Let F (t, x) be a fuzzy-valued function on M represented by
(F (t, x, r)∗, F (t, x, r)∗). For any fixed r ∈ [0, 1], assume F (t, x, r)∗ and F (t, x, r)∗ are
Riemann-integrable with respect to t on [t0, t1] for every t1 ≥ t0, and assume there

are two positive functions N(r)∗ and N(r)∗ such that
∫ t1
t0
|F (t, x, r)∗|dt ≤ N(r)∗

and
∫ t1
t0
|F (t, x, r)∗|dt ≤ N(r)∗ for every t1 ≥ t0. Then F (t, x) is improper fuzzy

Riemann- integrable with respect to t on [t0,+∞] and the improper fuzzy Riemann-
integral is a fuzzy number. Furthermore, we have∫ ∞

t0

F (t, x)dt = (

∫ ∞
t0

F (t, x, r)∗dt,

∫ ∞
t0

F (t, x, r)∗dt).

Remark 2.12. Theorem 2.11 can be written with respect to the variable x.

Definition 2.13 ([5]). Let F : M → E and (t0, x0) ∈ M . We define the second-
order differential of F as follows: we say that F is strongly generalized differentiable
of the second-order at (t0, x0), if there exists an element Ftt(t0, x0) ∈ E, such that

(1) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,
Ft(t0 +h, x0)−Ft(t0, x0), Ft(t0, x0)−Ft(t0−h, x0) and the limits (in the metric D)

limh→0+
Ft(t0+h,x0)−Ft(t0,x0)

h

= limh→0+
Ft(t0,x0)−Ft(t0−h,x0)

h

= Ftt(t0, x0),

or
(2) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,

Ft(t0, x0)− Ft(t0 + h, x0), Ft(t0 − h, x0)− Ft(t0, x0) and the limits

limh→0+
Ft(t0,x0)−Ft(t0+h,x0)

(−h)

= limh→0+
Ft(t0−h,x0)−Ft(t0,x0)

(−h)

= Ftt(t0, x0),

or
(3) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,

Ft(t0 + h, x0)− Ft(t0, x0), Ft(t0 − h, x0)− Ft(t0, x0) and the limits

limh→0+
Ft(t0+h,x0)−Ft(t0,x0)

h

= limh→0+
Ft(t0−h,x0)−Ft(t0,x0)

(−h)

= Ftt(t0, x0),

or
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(4) for all h ∈ (0, δ) sufficiently small, there exist (t0 + h, x0), (t0 − h, x0) ∈ M ,
Ft(t0, x0)− Ft(t0 + h, x0), Ft(t0, x0)− Ft(t0 − h, x0) and the limits

limh→0+
Ft(t0,x0)−Ft(t0+h,x0)

(−h)

= limh→0+
Ft(t0,x0)−Ft(t0−h,x0)

h

= Ftt(t0, x0).

(h and (−h) in denominators mean 1
h� and − 1

h�, respectively.)

Remark 2.14. The Definition 2.13 can be written with respect to the variable x.

Theorem 2.15 ([32]). Let F (t, x) and Ft(t, x) are two differentiable fuzzy-valued
functions. Moreover, we denote r-cut representation fuzzy-valued function F (t, x)
with [F (t, x)]r = [F (t, x, r)∗, F (t, x, r)∗]. Then

(1) Let F (t, x) and Ft(t, x) be (1)-differentiable with respect to t, or, let F (t, x) and
Ft(t, x) be (2)-differentiable with respect to t. Then, F (t, x, r)∗ and F (t, x, r)∗ have
first-order and second-order derivatives and [Ftt(t, x)]r = [Ftt(t, x, r)∗, Ftt(t, x, r)

∗].
(2) Let F (t, x) be (1)-differentiable with respect to t and Ft(t, x) be (2)-differentiable

with respect to t, or, let F (t, x) be (2)-differentiable with respect to t and Ft(t, x) be
(1)-differentiable with respect to t. Then, F (t, x, r)∗ and F (t, x, r)∗ have first-order
and second-order derivatives and [Ftt(t, x)]r = [Ftt(t, x, r)

∗, Ftt(t, x, r)∗].

Remark 2.16. Theorem 2.15 can be written with respect to the variable x.

In results, in the same way can be defined higher-order derivatives.

3. Adomian decomposition method

Consider the crisp partial differential equation as

(3.1) Ltu(t, x) = ρ(t, x, Lx)u(t, x),

subject to

(3.2) u(t0, x) = q(x),

where Lt = ∂
∂t and Lx = ∂

∂x and (t, x) ∈M = [t0,+∞)×R with t0 ≥ 0. The operator
ρ(t, x, Lx) will be a polynomial, with continuous variable coefficient respect to t and
x on M . The Lx, Lx(Lx) = Lxx and so on, denote the order of partial derivative
with respect to x. Also, q : R→ R is a known continuous function.

Let us formally define the inverse integral operator

L−1t =

∫ t

t0

ds.

Applying the inverse operator L−1t to the Eq. (3.1), and using the initial condition
(3.2) yields

(3.3) u(t, x) = q(x) +

∫ t

t0

ρ(s, x, Lx)u(s, x)ds.

340



H. Rouhparvar /Ann. Fuzzy Math. Inform. 12 (2016), No. 3, 335–350

The linear terms u(t, x) can be decomposed by an infinite series of components

(3.4) u(t, x) =

+∞∑
n=0

un(t, x).

Because of not exist nonlinear terms in the Eq. (3.1), therefore isn’t expressed the
infinite series of the so-called Adomian polynomials. Now by replacing (3.4) onto
(3.3) we will have

(3.5)

+∞∑
n=0

un(t, x) = q(x) +

∫ t

t0

ρ(s, x, Lx)

+∞∑
n=0

un(s, x)ds.

Following Adomian analysis, Adomian decomposition method uses the recursive
relations

(3.6)
u0(t, x) = q(x),

un(t, x) =
∫ t
t0
ρ(s, x, Lx)un−1(s, x)ds, n ≥ 1.

We assume ϕn(t, x) =
∑n
i=0 ui(t, x), obviously we have

u(t, x) = lim
n→+∞

ϕn(t, x),

therefore we rewrite successive iterations (3.6) as follows

(3.7)

ϕ0(t, x) = q(x),

ϕn+1(t, x) = q(x) +
∑n+1
i=1

∫ t
t0
ρ(s, x, Lx)ui−1(s, x)ds,

n = 0, 1, 2, ....

4. Fuzzy partial differential equation

In this section we discuss about existence and uniqueness of solution of a fuzzy
partial differential equation by the successive iterations Adomian decomposition
method. In this section

∑
means the sum of fuzzy numbers for each (t, x) in domain.

Consider the fuzzy partial differential equation

(4.1) ut(t, x) = ρ(t, x, Lx)u(t, x),

subject to

(4.2) u(t0, x) = f(x),

where Lx = ∂
∂x and (t, x) ∈M = [t0,+∞)×R with t0 ≥ 0. The operator ρ(t, x, Lx)

will be a polynomial, with continuous variable coefficient respect to t and x on M .
The Lx, Lx(Lx) = Lxx and so on, denote the order of partial derivative with respect
to x. Also f : R → E and u : M → E are continuous fuzzy-valued functions where
f is strongly generalized differentiable in the sense of Definition 5 in [9] and u is
strongly generalized partial differentiable with respect to t and x.

Theorem 4.1. Let us suppose the following conditions hold:
(a) f : R→ E be a continuous and bounded function.
(b) There exist γ > 0, β > 1 and e−βt0γ ≤ 1 such that

(4.3) D(ρ(t, x, Lx)u(t, x), ρ(t, x, Lx)v(t, x)) ≤ γe−βtD(u, v),
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and ρ(t, x, Lx)u(t, x) and ρ(t, x, Lx)v(t, x) are continuous.
Then the fuzzy partial differential equation (4.1) with the fuzzy initial condition
(4.2) has two solutions (one (1)-differentiable and the other one (2)-differentiable)
u, u : M → E with respect to t and the successive iterations

(4.4)

ϕ0(t, x) = f(x),

ϕn+1(t, x) = f(x)⊕
∑n+1
i=1

∫ t
t0
ρ(s, x, Lx)ui−1(s, x)ds,

(n = 0, 1, 2, ...),

and

(4.5)

ϕ0(t, x) = f(x),

ϕn+1(t, x) = f(x)− (−1)�∑n+1
i=1

∫ t
t0
ρ(s, x, Lx)ui−1(s, x)ds, (n = 0, 1, ...),

uniformly convergent to these two solutions, respectively.

Proof. The case (1)-differentiable is obtained as the case (2)-differentiable and is
omitted. To prove the case (2)-differentiable, by the invariance to translation of
distance D and the hypotheses for uniform convergence of the sequence {ϕn(t, x)}
we have

D(ϕn+1(t, x), ϕn(t, x))

= D(f(x)− ϕn+1(t, x), f(x)− ϕn(t, x))

= D((−1)�
∑n+1
i=1

∫ t
t0
ρ(s, x, Lx)ui−1(s, x)ds,

(−1)�
∑n
i=1

∫ t
t0
ρ(s, x, Lx)ui−1(s, x)ds)

= D((−1)�
∑n
i=1

∫ t
t0
ρ(s, x, Lx)ui−1(s, x)ds+

(−1)�
∫ t
t0
ρ(s, x, Lx)un(s, x)ds, (−1)

�
∑n
i=1

∫ t
t0
ρ(s, x, Lx)ui−1(s, x)ds)

= D((−1)�
∫ t
t0
ρ(s, x, Lx)un(s, x)ds, 0̃)

≤
∫ t
t0
D(ρ(s, x, Lx)un(s, x), 0̃)ds

≤ γ sup(t,x)∈M D(un(t, x), 0̃)
∫ t
t0
e−βsds

≤ γe−βt0

β sup(t,x)∈M D(un(t, x), 0̃)

≤ 1
β sup(t,x)∈M D(un(t, x), 0̃),

in result, we have

(4.6) D(ϕn+1(t, x), ϕn(t, x)) ≤ 1

β
sup

(t,x)∈M
D(un(t, x), 0̃).
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On the other hand, from (3.6) we can obtain for n ≥ 1,

D(un(t, x), 0̃)

= D((−1)�
∫ t
t0
ϕ(s, x, Lx)un−1(s, x)ds, 0̃)

≤
∫ t
t0
D(ϕ(s, x, Lx)un−1(s, x), 0̃)ds

≤ γe−βt0

β sup(t,x)∈M D(un−1(t, x), 0̃)

≤ 1
β sup(t,x)∈M D(un−1(t, x), 0̃)

...

≤ 1
βn sup(t,x)∈M D(u0(t, x), 0̃) = 1

βn supx∈RD(f(x), 0̃).

Thus, we have

(4.7) sup
(t,x)∈M

D(un(t, x), 0̃) ≤ Q

βn
,

where Q = supx∈RD(f(x), 0̃). In result, from (4.6) and (4.7), we get

sup
(t,x)∈M

D(ϕn+1(t, x), ϕn(t, x)) ≤ Q

βn+1
,

which denotes the series Q
β

∑+∞
n=0

1
βn is convergent. So the series

+∞∑
n=0

D(ϕn+1(t, x), ϕn(t, x)),

is uniformly convergent on M . If we show u(t, x) = limn→+∞ ϕn(t, x), then u(t, x)
satisfies (4.1).

To prove the uniqueness of solution by ϕn(t, x), assume u(t, x) and v(t, x) be two
solutions of (4.1) on M . Then

0 ≤ D(u(t, x), v(t, x))

= D(u(t, x) + ϕn(t, x), v(t, x) + ϕn(t, x))
≤ D(u(t, x), ϕn(t, x)) +D(v(t, x), ϕn(t, x)).

Since ϕn(t, x) is convergent to solution of (4.1),

D(u(t, x), ϕn(t, x))→ 0,

D(v(t, x), ϕn(t, x))→ 0,

when n→ +∞. Thus D(u(t, x), v(t, x)) = 0, i.e., u(t, x) = v(t, x).
Let t0 ≤ t < t+ h < +∞, we observe that

(4.8)
ϕn+1(t, x)− ϕn+1(t+ h, x)

= (−1)�
∑n+1
i=1

∫ t+h
t

ρ(s, x, Lx)ui−1(s, x)ds.
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Indeed, we have by direct computation

ϕn+1(t+ h, x)⊕ (−1)�
n+1∑
i=1

∫ t+h

t

ρ(s, x, Lx)ui−1(s, x)ds

= f(x)− (−1)�
n+1∑
i=1

∫ t+h

t0

ρ(s, x, Lx)ui−1(s, x)ds⊕

(−1)�
n+1∑
i=1

∫ t+h

t

ρ(s, x, Lx)ui−1(s, x)ds

= f(x)− (−1)�
n+1∑
i=1

∫ t+h

t0

ρ(s, x, Lx)ui−1(s, x)ds⊕

(−1)�
n+1∑
i=1

∫ t+h

t0

ρ(s, x, Lx)ui−1(s, x)ds

− (−1)�
n+1∑
i=1

∫ t

t0

ρ(s, x, Lx)ui−1(s, x)ds

= ϕn+1(t, x).

With multiplying 1
(−h) and passing to limit with h→ 0+ we have by Definition 2.7,

limh→0+
ϕn+1(t,x)−ϕn+1(t+h,x)

(−h)

= limh→0+
1
h �

∑n+1
i=1

∫ t+h
t

ρ(s, x, Lx)ui−1(s, x)ds

= limh→0+
1
h �

∑n
i=0

∫ t+h
t

ρ(s, x, Lx)ui(s, x)ds.

By ϕn(t, x) =
∑n
i=0 ui(t, x) we observe that

D( 1
h �

∑n
i=0

∫ t+h
t

ρ(s, x, Lx)ui(s, x)ds, ρ(t, x, Lx)ϕn(t, x))

= D( 1
h �

∫ t+h
t

ρ(s, x, Lx)ϕn(s, x)ds, ρ(t, x, Lx)ϕn(t, x))

= D( 1
h �

∫ t+h
t

ρ(s, x, Lx)ϕn(s, x)ds,

1
h �

∫ t+h
t

ρ(t, x, Lx)ϕn(t, x)ds)

≤ 1
h �

∫ t+h
t

D(ρ(s, x, Lx)ϕn(s, x), ρ(t, x, Lx)ϕn(t, x))ds

≤ sup|s−t|≤hD(ρ(s, x, Lx)ϕn(s, x), ρ(t, x, Lx)ϕn(t, x)),

and thus for h→ 0+ the last term ↘ 0+ where means that

lim
h→0+

ϕn+1(t, x)− ϕn+1(t+ h, x)

(−h)
= ρ(t, x, Lx)ϕn(t, x).

Analogous (4.8) we can obtain

ϕn+1(t− h, x)− ϕn+1(t, x)

= (−1)�
∑n+1
i=1

∫ t
t−h ρ(s, x, Lx)ui−1(s, x)ds,
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where by similar reasonings leads to

lim
h→0+

ϕn+1(t− h, x)− ϕn+1(t, x)

(−h)
= ρ(t, x, Lx)ϕn(t, x).

Finally, it follows that ϕn+1(t, x) is (2)-differentiable with respect to t and

(ϕn+1(t, x))t = ρ(t, x, Lx)ϕn(t, x), ∀(t, x) ∈M,

where this completes the proof of theorem. �

According to Theorem 4.1, we restrict our attention to functions which are (1) or
(2) differentiable on their domain except on a finite number of points.

Remark 4.2. In the Theorem 4.1 was introduced two solutions of the fuzzy dif-
ferential eequation (4.1) with respect to t. In the right hand of Eq. (4.1) exists
derivative with respect to x, that by attention to order derivative with respect to x
are added several states other to solutions. In particularly,

I: if the Eq. (4.1) be as the following

ut = ρ(t, x)u,

then it has two solutions by Theorem 2.9,
II: if the Eq. (4.1) be as the following

ut = ρ(t, x)uxx,

then it has four solutions by Theorem 2.9 and Theorem 2.15,
III: and so on states.

Notice that, all solutions or some of them may be valid [25].

Lemma 4.3. If the conditions of Theorem 4.1 hold and

u0(t, x) = f(x),

un(t, x) = (−1)�
∫ t
t0
ρ(s, x, Lx)un−1(s, x)ds, (n ≥ 1),

then
(1) un(t, x) is bounded on M ,
(2) un(t, x) is continuous on M .

Proof. (1) By the hypothesis, u0(t, x) = f(x) is bounded. Assume un−1(t, x) is
bounded. By Theorem 4.1(b), we observe that

D(un(t, x), 0̃)

= D((−1)�
∫ t
t0
ρ(s, x, Lx)un−1(s, x)ds, 0̃)

≤
∫ t
t0
D(ρ(s, x, Lx)un−1(s, x), 0̃)ds

≤ 1
β sup(t,x)∈M D(un−1(t, x), 0̃),

and by induction un(t, x) is bounded on M .
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(2) Suppose t0 < t ≤ t̂ < +∞ and −∞ < x ≤ x̂ < +∞. Then, we have

D(un(t, x), un(t̂, x̂))

= D((−1)�
∫ t
t0
ρ(s, x, Lx)un−1(s, x)ds,

(−1)�
∫ t̂
t0
ρ(s, x̂, Lx̂)un−1(s, x̂)ds)

= D(
∫ t
t0
ρ(s, x, Lx)un−1(s, x)ds,

∫ t
t0
ρ(s, x̂, Lx̂)un−1(s, x̂)ds

+
∫ t̂
t
ρ(s, x̂, Lx̂)un−1(s, x̂)ds)

≤ D(
∫ t
t0
ρ(s, x, Lx)un−1(s, x)ds,

∫ t
t0
ρ(s, x̂, Lx̂)un−1(s, x̂)ds)

+D(
∫ t̂
t
ρ(s, x̂, Lx̂)un−1(s, x̂)ds, 0̃)

≤
∫ t
t0
D(ρ(s, x, Lx)un−1(s, x), ρ(s, x̂, Lx̂)un−1(s, x̂))ds

+
∫ t̂
t
D(ρ(s, x̂, Lx̂)un−1(s, x̂), 0̃)ds

≤ (t− t0) supx,x̂∈R,t∈[t0,+∞)

D(ρ(t, x, Lx)un−1(t, x), ρ(t, x̂, Lx̂)un−1(t, x̂))

+γ supx̂∈R,t∈[t0,+∞)D(un−1(t, x̂), 0̃)
∫ t̂
t
e−βsds.

Thus, we obtain

D(un(t, x), u(t̂, x̂))→ 0 as (t, x)→ (t̂, x̂).

So un(t, x) is continuous on M . �

Lemma 4.4. If the conditions of Theorem 4.1 hold and

u0(t, x) = f(x),

un(t, x) =
∫ t
t0
ρ(s, x, Lx)un−1(s, x)ds, (n ≥ 1),

then
(1) un(t, x) is bounded on M ,
(2) un(t, x) is continuous on M .

Proof. It is an immediately consequence of Lemma 4.3. �

Theorem 4.5. If the conditions of Theorem 4.1 hold, then ϕn+1(t, x) and ϕn+1(t, x)
are bounded and continuous on M .

Proof. It is an immediately consequence of Lemma 4.3 and Lemma 4.4, respectively.
�

Theorem 4.6. If the conditions of Theorem 4.1 hold, then u(t, x), u(t, x) ∈ E for
each (t, x) ∈M .

Proof. In the same way Theorem 3.1 in [33], we can prove u(t, x), u(t, x) ∈ E for
each (t, x) ∈M . �
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Theorem 4.7. If the conditions of Theorem 4.1 hold, then the largest interval of
existence of any fuzzy solution u(t, x) of (4.1) is M and the limit

lim
x→±∞

lim
t→+∞

u(t, x) = ξ ∈ E,

exists. In the same way, we can also present for u(t, x).

Proof. By Theorem 4.5, u(t, x) is continuous and bounded on M . Then the limit

[ξ∗(r), ξ
∗(r)] = [limx→±∞ limt→+∞ u(t, x)∗(r),

limx→±∞ limt→+∞ u(t, x)∗(r)],

exists. On the other hand by Theorem 4.6, we can obtain that the intervals

[ξ∗(r), ξ
∗(r)], 0 < r ≤ 1,

define a fuzzy number ξ ∈ E. u(t, x) can similarly be proved. �

Theorem 4.8. Assume the following conditions hold:
(a) f : R→ E be a continuous and bounded function.

(b) There exist γ > 0, 0 < β ≤ 1 and e−βt0γ ≤ β2

2 such that

(4.9) D(ρ(t, x, Lx)u(t, x), ρ(t, x, Lx)v(t, x)) ≤ γe−βtD(u, v),

and ρ(t, x, Lx)u(t, x) and ρ(t, x, Lx)v(t, x) are continuous. Then the fuzzy partial
differential equation (4.1) with the fuzzy initial condition (4.2) has two solutions
(one (1)-differentiable and the other one (2)-differentiable) u, u : M → E with
respect to t and the successive iterations (4.4) and (4.5) uniformly convergent to
these two solutions, respectively.

Proof. Proving of theorem is similar to proving of Theorem 4.1. �

Remark 4.9. If we consider the conditions of Theorem 4.8 instead of Theorem 4.1,
we obtain that the results of Lemma 4.3, Lemma 4.4, Theorem 4.5, Theorem 4.6
and Theorem 4.7 are hold.

5. Example

In this section we denote application by two examples of fuzzy patrial differential
equations using fuzzy-valued functions.

Example 5.1. Let us consider the fuzzy partial differential equation

(5.1)
ut(t, x) = (−1)� u(t, x),

u(t0, x) = f(x), x ∈ R, t ≥ t0, t0 ≥ 0,

where u : [t0,+∞)×R→ E, the f : R→ E is the strongly generalized differentiable
[9] and bounded.

Case I: assume u be (1)-differentiable with respect to t. Therefore, the so-
lution of Eq. (5.1) is obtained by Adomian decomposition method as the
following

u(t, x) = [u(t, x, r)∗, u(t, x, r)∗]

= [f(x, r)∗cosht− f(x, r)∗sinht, f(x, r)∗cosht− f(x, r)∗sinht].
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Case II: assume u be (2)-differentiable with respect to t. In this case, if we
denote u(t, x) = e−(t−t0) � f(x), then u is the strongly generalized partial
differentiable with respect to all t, ut(t, x) = (−1)e−(t−t0) � f(x) (see [9],
and [36]) and u(t, x) satisfies the fuzzy partial differential equation (5.1).

On the other hand, because e−(t−t0) > 0 and (e−(t−t0))′ < 0, ∀t ∈
(t0,+∞), we cannot say nothing about the existence of ut(t, x) in the H-
differentiability sense, since there is not exist the H-difference u(t+ h, x)−
u(t, x), as u(t, x) ∈ E\R.

This denotes the advantage of the strongly generalized partial differentiability with
respect to the usual differentiability.

Example 5.2. Let us consider the fuzzy partial differential equation

(5.2)
ut(t, x) = α� ux(t, x),

u(t0, x) = c̃� f(x), x ∈ R+, t ≥ t0, t0 ≥ 0,

where c̃ ∈ E, α ∈ (0,+∞), the f : R→ R+ is continuous and bounded on R+.

Case I: assume u be (1)-differentiable with respect to t and x, or (2)-differentiable
with respect to t and x. So, the solution of Eq. (5.2) is obtained by Adomian
decomposition method as the following

u(t, x) = c̃�
∞∑
n=0

αntn

n!
f (n)(x).

Case II: assume u be (1)-differentiable with respect to t and (2)-differentiable
with respect to x, or (2)-differentiable with respect to t and (1)-differentiable
with respect to x. In this case, we have a system of partial differential
equations and solution of fuzzy partial differential equation as follows

u(t, x) = [u(t, x, r)∗, u(t, x, r)∗]

= [c(r)∗
∑∞
n=0

α2nt2n

(2n)! f
(2n)(x) + c(r)∗

∑∞
n=0

α2n+1t2n+1

(2n+1)! f (2n+1)(x),

c(r)∗
∑∞
n=0

α2nt2n

(2n)! f
(2n)(x) + c(r)∗

∑∞
n=0

α2n+1t2n+1

(2n+1)! f (2n+1)(x)].

6. Conclusions

In this article, we used the concept of strongly generalized directional derivative
for fuzzy-valued functions. By this concept, a fuzzy partial differential equation may
has several solutions (two solutions locally with respect to t). This is the advantage
of existence of the solutions and we can choose the solution that has a better reflex
on the behavior of the modelled real-world system.

As an application we represented the fuzzy partial differential equation to the
strongly generalized partial derivative and obtained the existence and convergence
theorems of solutions for this equations.

Acknowledgements. The author would like to appreciate the anonymous re-
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