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1. Introduction

Near-rings are generalization of rings. The fundamental concept of fuzzy set
was introduced by Zadeh[13]. After a decade the same author[14] initiated the
study of interval valued(i-v) fuzzy subsets where the values of membership functions
are the intervals instead of numbers. The study of fuzzy subgroups was initiated by
Rosenfeld[7]. Biswas[2] introduced the idea of anti fuzzy subgroups. Abou-Zaid[1]
discussed the concept of fuzzy subnear-rings and ideals. Saeid et al.[9] introduced
the notion of besideness(<) and non-quasi-coincidence(γ) with fuzzy subsets and
anti fuzzy points. Davvaz[3, 4] discussed the idea of i-v fuzzy sets applied to fuzzy
ideals of near-rings and generalized fuzzy Hv-submodules and investigated some of
their properties. Kim et al.[5] introduced the notion of anti fuzzy ideals of near-rings.
Kyung Ho Kim et al.[6] initiated the concept of anti fuzzy R-subgroups of near-rings.
Shabir et al.[8] introduced different types of anti fuzzy ideals in ternary semigroups.
Recently, Tariq Anwar et al.[10] have introduced the notion of generalized anti fuzzy
ideals of near-rings. Thillaigovindan et al.[12] have initiated the study of i-v anti
fuzzy ideals of near-rings and gave some characterizations. In this paper, we in-
troduce the concept of i-v (<,<)-fuzzy ideals (subnear-rings) and (<,< ∨γ)-fuzzy
ideals (subnear-rings). We have also obtained some characterizations of these ideals.
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2. Preliminaries

Throughout this paper R stands for left near-ring unless otherwise specified. In
this section we recall some basic definitions and results.

A near-ring is an algebraic system (R,+, ·) consisting of a non empty set R to-
gether with two binary operations + and · such that (R,+) is a group, not necessar-
ily abelian and (R, ·) is a semigroup connected by the distributive law:x · (y + z) =
x · y + x · z valid for all x, y, z ∈ R. We will use the word ‘near-ring’ to mean ‘left
near-ring ’. We denote xy instead of x · y.

An ideal I of a near-ring R is a subset of R such that
(i) (I,+) is a normal subgroup of (R,+),
(ii) RI ⊆ I,
(iii) (x+ a)y − xy ∈ I, for any a ∈ I and x, y ∈ R.

Note that I is called a left ideal of R if I satisfies (i) and (ii) and a right ideal of R
if I satisfies (i) and (iii).

Definition 2.1 ([4, 11]). By an interval number a, we mean an interval [a−, a+]
such that 0 ≤ a− ≤ a+ ≤ 1 where a− and a+ are the lower and upper limits of
a respectively. The set of all closed subintervals of [0, 1] is denoted by D[0, 1]. We
also identify the interval [a, a] by the number a ∈ D[0, 1]. For any interval numbers
aj = [a−j , a

+
j ], bj = [b−j , b

+
j ] ∈ D[0, 1], j ∈ J, we define

max{aj , bj} = [max{a−j , b
−
j },max{a+

j , b
+
j }],

min{aj , bj} = [min{a−j , b
−
j },min{a+

j , b
+
j }],

inf aj =

⋂
j∈I

a−j ,
⋂
j∈I

a+
j

 , sup aj =

⋃
j∈I

a−j ,
⋃
j∈I

a+
j


and put

(i) a ≤ b⇐⇒ a− ≤ b− and a+ ≤ b+,
(ii) a = b⇐⇒ a− = b− and a+ = b+,
(iii) a < b⇐⇒ a ≤ b and a 6= b,
(iv) ka = [ka−, ka+], whenever 0 ≤ k ≤ 1.

Definition 2.2. For any two interval numbers, a = [a−, a+] and b = [b−, b+] addi-
tion, subtraction, multiplication and division are defined as

a+ b =

{
[a− + b−, a+ + b+] if [a− + b−, a+ + b+] ≤ 1

[max{a−, b−},max{a+, b+}] if [a− + b−, a+ + b+] > 1,

a− b =

{
[a− − b+, a+ − b−] if [a− − b+, a+ − b−] ≥ [0, 0]

[min{a−, b−},min{a+, b+}] if [a− − b+, a+ − b−] < [0, 0],

a · b = [min{a− · b−, a+ · b+},max{a− · b−, a+ · b+}],

a/b =


[min(a

−

b− ,
a+

b+ ),max(a
−

b− ,
a+

b+ )] if a ≤ b 6= [0, 0][
1

max( a−
b−

, a
+

b+
)
, 1

min( a−
b−

, a
+

b+
)

]
if a > b

Not defined if a = b = [0, 0].
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Definition 2.3 ([11]). Let X be a non-empty set. A mapping µ : X → D[0, 1] is
called an i-v fuzzy subset of X. For all x ∈ X, µ(x) = [µ−(x), µ+(x)], where µ−

and µ+ are fuzzy subsets of X such that µ−(x) ≤ µ+(x). Thus µ(x) is an interval(a
closed subinterval of [0, 1]) and not a number from the interval [0, 1] as in the case
of a fuzzy set.

Let µ, ν be i-v fuzzy subsets of X. Then
(i) µ ≤ ν ⇔ µ(x) ≤ ν(x).
(ii) µ = ν ⇔ µ(x) = ν(x).
(iii) (µ ∪ ν)(x) = max{µ(x), ν(x)}.
(iv) (µ ∩ ν)(x) = min{µ(x), ν(x)}.
(v) µc(x) = 1− µ(x) = [1− µ+(x), 1− µ−(x)].

Definition 2.4 ([11]). Let µ be an i-v fuzzy subset of X and [t1, t2] ∈ D[0, 1]. Then
U(µ : [t1, t2]) = {x ∈ X| µ(x) ≥ [t1, t2]} is called the upper level set of µ

and
L(µ : [t1, t2]) = {x ∈ X| µ(x) ≤ [t1, t2]} is called the lower level set of µ.

Definition 2.5 ([12]). An i-v fuzzy subset µ of a near-ring R is called an i-v anti
fuzzy subnear-ring of R, if

(i) µ(x− y) ≤ max{µ(x), µ(y)},
(ii) µ(xy) ≤ max{µ(x), µ(y)} for all x, y ∈ R.

Definition 2.6 ([12]). An i-v fuzzy subset µ of a near-ring R is called an i-v anti
fuzzy ideal of R, if µ is an i-v anti fuzzy subnear-ring of R and

(iii) µ(y + x− y) ≤ µ(x),
(iv) µ(xy) ≤ µ(y),
(v) µ((x+ z)y − xy) ≤ µ(z) for all x, y, z ∈ R.
Note that µ is an i-v anti fuzzy left ideal of R, if it satisfies (i),(ii),(iii) and (iv),

and µ is an i-v anti fuzzy right ideal of R, if it satisfies (i),(ii),(iii) and (v).

3. (<,< ∨γ) Fuzzy ideals

In this section, we introduce the concept of i-v (<,< ∨γ) fuzzy ideals of near-ring
and study some of their theoretical properties.

Definition 3.1. An i-v fuzzy subset µ of R of the form

µ(y) =

{
s ∈ D[0, 1] 6= 1 if y = x

1 if y 6= x

is called an i-v anti fuzzy point with support x and value s and is denoted by xs.
An i-v fuzzy subset µ of X is said to be non unit if there exists x ∈ X such that

µ(x) < 1.

Definition 3.2. An i-v anti fuzzy point xs is said to be beside to (resp. be non-quasi
coincident with) a fuzzy subset µ, denoted by xs < µ (resp. xsγµ), if µ(x) ≤ s (resp.
µ(x) + s < 1). We say that < (resp.γ) is a beside to (resp. non-quasi coincident
with) relation between i-v anti fuzzy points and i-v fuzzy subsets. If xs < µ or
xsγµ, we say that xs < ∨γµ and xs<µ (resp. xsγ µ, xs< ∨γµ) means xs < µ (resp.
xsγµ, xs < ∨γµ) does not hold.
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Definition 3.3. An i-v fuzzy subset µ of R is called an i-v (<,<)-fuzzy subnear-ring
of R, if for all x, y ∈ R and s, t ∈ D[0, 1] 6= 1,

(i) xs < µ, yt < µ⇒ (x− y)max{s,t} < µ,

(ii) xs < µ, yt < µ⇒ (xy)max{s,t} < µ.

Definition 3.4. An i-v fuzzy subset µ of R is called an i-v (<,<)-fuzzy left (right)
ideal of R, if for all x, y ∈ R and s, t ∈ D[0, 1] 6= 1,

(i)xs < µ, yt < µ⇒ (x− y)max{s,t} < µ,

(ii)xs < µ, y ∈ R⇒ (y + x− y)s < µ,
(iii) ys < µ, x ∈ R⇒ (xy)s < µ, (resp. as < µ, x, y ∈ R⇒ ((x+ a)y − xy)s < µ).
An i-v fuzzy subset which is (<,<) fuzzy left and right ideal of R is called i-v

(<,<) fuzzy ideal of R.

Example 3.5. Let R = {0, a, b, c} be a set with two binary operations ′+′ and ′·′
defined as follows:

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 0 0
c 0 0 a a

Then (R,+, ·) is a left near-ring. Let µ : R → D[0, 1] be an i-v fuzzy subset of R
defined by µ(0) = [0.1, 0.2], µ(a) = [0.4, 0.5] and µ(b) = [0.7, 0.8] = µ(c). Then µ is
an i-v (<,<)-fuzzy ideal of R.

The following theorem gives the connection between i-v (<,<)-fuzzy ideal and
i-v anti fuzzy ideal.

Theorem 3.6. An i-v fuzzy subset µ of R is an i-v (<,<)-fuzzy ideal of R if and
only if it is an i-v anti fuzzy ideal of R.

Proof. Assume that µ is an i-v anti fuzzy ideal of R. Let x, y ∈ R and t, r ∈ D[0, 1]
with t, r 6= 1 be such that xt, yr < µ. Then µ(x) ≤ t and µ(y) ≤ r. Since µ is
an i-v anti fuzzy ideal of R, we have µ(x − y) ≤ max{µ(x), µ(y)} ≤ max{t, r}. It
follows that (x − y)max{t,r} < µ. Now let x, y ∈ R and t ∈ D[0, 1] with t 6= 1.

Then xt < µ and thus µ(x) ≤ t. Since µ is an i-v anti fuzzy ideal of R, we have
µ(y + x − y) ≤ µ(x) ≤ t. So (y + x − y)t < µ. Let x, y ∈ R and t ∈ D[0, 1] with
t 6= 1 such that yt < µ. Then µ(y) ≤ t. Thus µ(xy) ≤ µ(y) ≤ t, because µ is
an i-v anti fuzzy ideal of R.So (xy)t < µ. Again let x, y, z ∈ R and t ∈ D[0, 1]
with t 6= 1 such that zt < µ. Then µ(z) ≤ t. Since µ is an i-v anti fuzzy ideal of
R, µ((x + z)y − xy) ≤ µ(z) ≤ t. Thus ((x + z)y − xy)t < µ. Hence µ is an i-v
(<,<)-fuzzy ideal of R.

Conversely, assume that µ is an i-v (<,<)-fuzzy ideal of R. On the contrary,
assume that there exist x, y ∈ R such that µ(x − y) > max{µ(x), µ(y)}. Choose t
such that µ(x − y) > t > max{µ(x), µ(y)}. Then xt, yt < µ and (x − y)t<µ. This
is a contradiction to our assumption that µ is an i-v (<,<)-fuzzy ideal of R. Thus
µ(x− y) ≤ max{µ(x), µ(y)}. Suppose that µ(y + x− y) > µ(x), for some x, y ∈ R.
Choose t such that µ(y+x− y) > t > µ(x). Then xt < µ and (y+x− y)t<µ, which
is a contradiction and hence µ(y+ x− y) ≤ µ(x). Let us assume that µ(xy) > µ(y),

322



V. Chinnadurai et al. /Ann. Fuzzy Math. Inform. 12 (2016), No. 3, 319–333

for some x, y ∈ R. Then there exist t such that µ(xy) > t > µ(y). This implies that
yt < µ but (xy)t<µ. This again contradicts our hypothesis. Thus µ(xy) ≤ µ(y).
Again assume that there exist x, y, z ∈ R such that µ((x + z)y − xy) > µ(z). Let t
be such that µ((x + z)y − xy) > t > µ(z). Then zt < µ but ((x + z)y − xy)t<µ,
which is a contradiction and so µ((x+ z)y−xy) ≤ µ(z). Hence µ is an i-v anti fuzzy
ideal of R. �

Definition 3.7. An i-v fuzzy subset µ of R is called an i-v (<,< ∨γ)-fuzzy subnear-
ring of R, if for all x, y ∈ R and s, t ∈ D[0, 1] 6= 1,

(i) xs < µ, yt < µ =⇒ (x− y)max{s,t} < ∨γµ,

(ii) xs < µ, yt < µ =⇒ (xy)max{s,t} < ∨γµ.

Definition 3.8. An i-v fuzzy subset µ of R is called an i-v (<,< ∨γ)-fuzzy left
(right) ideal of R, if for all x, y ∈ R and s, t ∈ D[0, 1] 6= 1,

(i) xs < µ, yt < µ =⇒ (x− y)max{s,t} < ∨γµ,

(ii) xs < µ, y ∈ R =⇒ (y + x− y)s < ∨γµ,
(iii) ys < µ, x ∈ R =⇒ (xy)s < ∨γµ,

(resp. as < µ, x, y ∈ R =⇒ ((x+ a)y − xy)s < ∨γµ).
An i-v fuzzy subset which is an i-v (<,< ∨γ) fuzzy left and right ideal of R is called
an i-v (<,< ∨γ) fuzzy ideal of R.

Example 3.9. Consider the Example 3.5, it can be verified that µ is an i-v (<,<
∨γ)-fuzzy ideal of R.

Theorem 3.10. Let µ be an i-v (<,< ∨γ)-fuzzy ideal (subnear-ring) of R. Then
the set R1 = {x ∈ R|µ(x) < 1} 6= ∅ is an ideal (subnear-ring) of R.

Proof. Let x, y ∈ R1. Then µ(x) < 1 and µ(y) < 1. Assume that x− y /∈ R1. Then
µ(x − y) = 1. Thus xµ(x) < µ and yµ(y) < µ but (x − y)max{µ(x),µ(y)}< ∨γµ, a
contradiction. So x− y ∈ R1.

Let x ∈ R1 and y ∈ R. Then µ(x) < 1. Suppose that y + x − y /∈ R1. Then
µ(y + x − y) = 1. Thus xµ(x) < µ but (y + x − y)µ(x)< ∨γµ, a contradiction. So
y + x− y ∈ R1.

Let y ∈ R1 and x ∈ R. Then µ(y) < 1. Suppose that xy /∈ R1. Then µ(xy) = 1.
Thus yµ(y) < µ but (xy)µ(y)< ∨γµ, is a contradiction. So xy ∈ R1 and R1 is a left
ideal of R.

Let a ∈ R1 and x, y ∈ R. Then µ(a) < 1. Suppose that ((x+a)y−xy) /∈ R1. Then
µ((x+a)y−xy) = 1. Thus aµ(a) < µ but ((x+a)y−xy)µ(a)< ∨γµ, a contradiction.

So µ((x+ a)y − xy) < 1. Hence ((x+ a)y − xy) ∈ R1 and R1 is a right ideal. �

Theorem 3.11. Let I be an ideal of R and µ be an i-v fuzzy subset of R such that

µ(x) =

{
≤ 0.5 for all x ∈ I
1 otherwise.

Then µ is an i-v (<,< ∨γ)-fuzzy ideal of R.

Proof. Let x, y ∈ R and s, t ∈ D[0, 1] 6= 1 be such that xs, yt < µ. Then µ(x) ≤ s
and µ(y) ≤ t. Thus x, y ∈ I and so x− y ∈ I, i.e., µ(x− y) ≤ 0.5. If max{s, t} ≥ 0.5,
then µ(x − y) ≤ 0.5 ≤ max{s, t}. Hence (x − y)max{s,t} < µ. If max{s, t} < 0.5,
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then µ(x − y) + max{s, t} < 0.5 + 0.5 = 1. Hence (x − y)max{s,t}γµ. Therefore

(x− y)max{s,t} < ∨γµ.
Let x, y ∈ R and s ∈ D[0, 1] 6= 1 be such that xs < µ. Then µ(x) ≤ s. Thus

x ∈ I and y ∈ R and so y + x − y ∈ I, since I is an ideal of R. Consequently
µ(y + x− y) ≤ 0.5. If s ≥ 0.5, then µ(y + x− y) ≤ 0.5 ≤ s and so (y + x− y)s < µ.
If s < 0.5, then µ(y + x − y) + s < 0.5 + 0.5 = 1 and so (y + x − y)sγµ. Hence
(y + x− y)s < ∨γµ.

Let x, y ∈ R and s ∈ D[0, 1] 6= 1 be such that ys < µ. Then µ(y) ≤ s. Clearly
y ∈ I and x ∈ R and so xy ∈ I, since I is an ideal of R. Consequently µ(xy) ≤ 0.5.
If s ≥ 0.5, then µ(xy) ≤ 0.5 ≤ s and so (xy)s < µ. If s < 0.5 then µ(xy) + s <
0.5 + 0.5 = 1 and so (xy)sγµ. Hence (xy)s < ∨γµ. Therefore µ is an i-v (<,< ∨γ)-
fuzzy left ideal of R.

Now let a, x, y ∈ R and s ∈ D[0, 1] 6= 1 be such that as < µ. Then µ(a) ≤ s.
This means that a ∈ I and x, y ∈ R and so ((x + a)y − xy) ∈ I. Consequently
µ((x + a)y − xy) ≤ 0.5. If s ≥ 0.5, then µ((x + a)y − xy) ≤ 0.5 ≤ s and so
((x + a)y − xy)s < µ. If s < 0.5, then µ((x + a)y − xy) + s < 0.5 + 0.5 = 1
and so ((x + a)y − xy)sγµ. Hence ((x + a)y − xy)s < ∨γµ. Therefore µ is an i-v
(<,< ∨γ)-fuzzy ideal of R. �

Lemma 3.12. Let µ be an i-v fuzzy subset of R. Then the following are equivalent:
(1) xs, yt < µ =⇒ (x− y)max{s,t} < ∨γµ.
(2) µ(x− y) ≤ max{µ(x), µ(y), 0.5} for all x, y ∈ R and s, t ∈ D[0, 1] 6= 1.

Proof. (1) =⇒ (2): Suppose there exist x, y ∈ R such that

µ(x− y) > max{µ(x), µ(y), 0.5}.

If max{µ(x), µ(y)} > 0.5, then µ(x−y) > max{µ(x), µ(y)}. Choose s ∈ D[0, 1] 6=
1 such that µ(x − y) > s > max{µ(x), µ(y)}. Then xs, ys < µ but (x − y)s< ∨γµ,
which is a contradiction.

If max{µ(x), µ(y)} ≤ 0.5, then µ(x − y) > 0.5. Thus x0.5 < µ and y0.5 < µ but
(x− y)0.5< ∨γµ, which is a contradiction. So, µ(x− y) ≤ max{µ(x), µ(y), 0.5}.

(2) =⇒ (1): Let xs, yt < µ. Then µ(x) ≤ s and µ(y) ≤ t.
If max{s, t} ≥ 0.5, then µ(x− y) ≤ max{s, t}, that is, (x− y)max{s,t} < µ.

If max{s, t} < 0.5, then µ(x−y) < 0.5, which implies that, µ(x−y)+max{s, t} <
0.5 + 0.5 = 1. Thus, (x− y)max{s,t}γµ. So (x− y)max{s,t} < ∨γµ. �

Lemma 3.13. Let µ be an i-v fuzzy subset of R. Then the following conditions are
equivalent:

(1) xs, yt < µ =⇒ (xy)max{s,t} < ∨γµ.
(2) µ(xy) ≤ max{µ(x), µ(y), 0.5} for all x, y ∈ R and s, t ∈ D[0, 1] 6= 1.

Proof. (1) =⇒ (2): Suppose that µ(xy) > max{µ(x), µ(y), 0.5} for some x, y ∈ R.
If max{µ(x), µ(y)} > 0.5, then µ(xy) > max{µ(x), µ(y)}. Choose s ∈ D[0, 1] 6=

1 such that µ(xy) > s > max{µ(x), µ(y)}. This implies that xs, ys < µ but
(xy)s< ∨γµ, which is a contradiction to our assumption.

If max{µ(x), µ(y)} ≤ 0.5, then µ(xy) > 0.5. Thus x0.5, y0.5 < µ but (xy)0.5< ∨γµ,
a contradiction. So, µ(xy) ≤ max{µ(x), µ(y), 0.5}.
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(2) =⇒ (1): Let x, y ∈ R and s, t ∈ D[0, 1] with s, t 6= 1 be such that xs, yt < µ.
Then µ(x) ≤ s and µ(y) ≤ t. By (2),

µ(xy) ≤ max{µ(x), µ(y), 0.5} ≤ max{s, t, 0.5}.

If max{s, t} ≥ 0.5, then µ(x− y) ≤ max{s, t}. Thus (x− y)max{s,t} < µ.

If max{s, t} < 0.5, then µ(x− y) < 0.5. Thus, (x− y)max{s,t}γµ.

So, (x− y)max{s,t} < ∨γµ. �

Lemma 3.14. Let µ be an i-v fuzzy subset of R. Then the following conditions are
equivalent: for all x, y ∈ R and s ∈ D[0, 1] 6= 1,

(1) (a) x ∈ R and ys < µ =⇒ (xy)s < ∨γµ,
(2) µ(xy) ≤ max{µ(y), 0.5}.

Proof. (1) =⇒ (2): Let x, y ∈ R and suppose that µ(xy) > max{µ(y), 0.5}.
If µ(y) > 0.5, then µ(xy) > µ(y). Choose s ∈ D[0, 1] 6= 1 such that µ(xy) > s >

µ(y). Then ys < µ but (xy)s< ∨γµ, which is a contradiction to our assumption.
If µ(y) ≤ 0.5, then µ(xy) > 0.5. This implies that y0.5 < µ but (xy)0.5< ∨γµ, a

contradiction. Thus µ(xy) ≤ max{µ(y), 0.5}.
(2) =⇒ (1): Let x, y ∈ R and s ∈ D[0, 1] 6= 1 be such that ys < µ. Then µ(y) ≤ s.

By (2),

µ(xy) ≤ max{µ(y), 0.5} ≤ max{s, 0.5}.
If s ≥ 0.5, then µ(xy) ≤ s, that is, (xy)s < µ.
If s < 0.5, then µ(xy) ≤ 0.5 implies µ(xy) + s < 0.5 + 0.5 = 1. Thus (xy)sγµ. So,

(xy)s < ∨γµ. Hence (1) holds. �

Lemma 3.15. An i-v fuzzy subset µ of R the following conditions are equivalent:
for all x, y ∈ R and s ∈ D[0, 1] 6= 1,

(1) y ∈ R and xs < µ =⇒ (y + x− y)s < ∨γµ,
(2) µ(y + x− y) ≤ max{µ(x), 0.5}.

Proof. (1) =⇒ (2): Let x, y ∈ R. Assume that µ(y + x− y) > max{µ(x), 0.5}.
If µ(x) > 0.5, then µ(y + x − y) > µ(x). Choose s ∈ D[0, 1] 6= 1 such that

µ(y + x− y) > s > µ(x). Then xs < µ but (y + x− y)s< ∨γµ, a contradiction.
If µ(x) ≤ 0.5, then µ(y + x − y) > 0.5 ≥ µ(x). This implies x0.5 < µ but

(y + x− y)0.5< ∨γµ, a contradiction.
In both cases, it is clear that, µ(y + x− y) ≤ max{µ(x), 0.5}.
(2) =⇒ (1): Let xs < µ and y ∈ R such that µ(x) ≤ s. By our assumption,

µ(y + x− y) ≤ max{µ(x), 0.5} ≤ max{s, 0.5}.
If s ≥ 0.5, then µ(y + x− y) ≤ s. Thus (y + x− y)s < µ.
If s < 0.5, then µ(y + x− y) ≤ 0.5. Thus µ(y + x− y) + s < 0.5 + 0.5 = 1, that

is, (y + x− y)sγµ. So (y + x− y)s < ∨γµ. �

Lemma 3.16. If µ is an i-v fuzzy subset of R, then the following conditions are
equivalent: for all x, y, a ∈ R and s ∈ D[0, 1] 6= 1

(1) x, y ∈ R and as < µ =⇒ ((x+ a)y − xy)s < ∨γµ,
(2) µ((x+ a)y − xy) ≤ max{µ(a), 0.5}.

Proof. (1) =⇒ (2): Let x, y, a ∈ R and suppose that µ((x+a)y−xy) > max{µ(a), 0.5}.
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If µ(a) > 0.5, then µ((x+ a)y − xy) > µ(a). Choose s ∈ D[0, 1] 6= 1 such that

µ((x+ a)y − xy) > s > µ(a).

This implies that as < µ but ((x+ a)y − xy)s< ∨γµ, which is a contradiction.
If µ(a) ≤ 0.5, then µ((x + a)y − xy) > 0.5. This implies that a0.5 < µ but ((x +

a)y−xy)0.5< ∨γµ, which is a contradiction. Thus µ((x+a)y−xy) ≤ max{µ(a), 0.5}.
(2) =⇒ (1): Let x, y, a ∈ R and s ∈ D[0, 1] 6= 1 such that as < µ. Then µ(a) ≤ s.

On one hand,

µ((x+ a)y − xy) ≤ max{µ(a), 0.5} ≤ max{s, 0.5}.

If s ≥ 0.5, then µ((x+ a)y − xy) ≤ s and so ((x+ a)y − xy)s < µ.
If s < 0.5, then µ((x+a)y−xy) ≤ 0.5. Thus µ((x+a)y−xy)+s < 0.5+0.5 = 1.

So ((x+ a)y − xy)sγµ. Hence ((x+ a)y − xy)s < ∨γµ. �

Theorem 3.17. Let µ be an i-v fuzzy subset of R. Then µ is an i-v (<,< ∨γ)-fuzzy
subnear-ring if and only if

(1) µ(x− y) ≤ max{µ(x), µ(y), 0.5}.
(2)µ(xy) ≤ max{µ(x), µ(y), 0.5}, for all x, y ∈ R.

Proof. Straightforward from Lemma 3.12 and Lemma 3.13. �

Theorem 3.18. Let µ be an i-v fuzzy subset of R. Then µ is an i-v (<,< ∨γ)-fuzzy
ideal if and only if for all x, y ∈ R,

(1) µ(x− y) ≤ max{µ(x), µ(y), 0.5},
(2) µ(y + x− y) ≤ max{µ(x), 0.5},
(3) µ(xy) ≤ max{µ(y), 0.5},
(4) µ((x+ a)y − xy) ≤ max{µ(a), 0.5}.

Proof. The proof follows from Lemmas 3.12, 3.14, 3.15 and 3.16. �

Theorem 3.19. An i-v fuzzy subset µ of R is an i-v (<,< ∨γ)-fuzzy ideal (subnear-
ring) of R if and only if the level subset L(µ : t) is an ideal of R, for all 0.5 ≤ t < 1.

Proof. Let µ be an i-v (<,< ∨γ)-fuzzy ideal of R and 0.5 ≤ t < 1. Let x, y ∈ L(µ : t).
Then µ(x) ≤ t and µ(y) ≤ t. By Theorem 3.18,

µ(x− y) ≤ max{µ(x), µ(y), 0.5} ≤ max{t, 0.5} = t,

that is x− y ∈ L(µ : t).
Let x ∈ L(µ : t) and y ∈ R. Then µ(x) ≤ t. Thus, µ(y+x−y) ≤ max{µ(x), 0.5} ≤

max{t, 0.5} = t. So, (y + x − y) ∈ L(µ : t). Let x ∈ R and y ∈ L(µ : t) such that
µ(y) ≤ t. Since µ is an i-v (<,< ∨γ)-fuzzy ideal of R, we have

µ(xy) ≤ max{µ(y), 0.5} ≤ max{t, 0.5} = t.

Thus, xy ∈ L(µ : t).
Similarly, ((x+ a)y − xy) ∈ L(µ : t).
Conversely, assume that L(µ : t) is an ideal of R for all 0.5 ≤ t < 1. If there exist

x, y ∈ R such that µ(x− y) > max{µ(x), µ(y), 0.5}. Choose t such that

µ(x− y) > t > max{µ(x), µ(y), 0.5}.
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Then x, y ∈ L(µ : t). Since L(µ : t) is an ideal of R, x − y ∈ L(µ : t). Thus
µ(x−y) ≤ t, a contradiction to our assumption. So µ(x−y) ≤ max{µ(x), µ(y), 0.5},
for all x, y ∈ R.

Assume that µ(y + x − y) > max{µ(x), 0.5}, for some x, y ∈ R. Choose t such
that

µ(y + x− y) > t > max{µ(x), 0.5}.
Then x ∈ L(µ : t) but y + x− y /∈ L(µ : t), a contradiction to our assumption that
L(µ : t) is an ideal of R. Thus µ(y + x− y) ≤ max{µ(x), 0.5}.

Assume that µ(xy) > max{µ(y), 0.5}. Choose t such that

µ(xy) > t > max{µ(y), 0.5}.

Then y ∈ L(µ : t) but xy /∈ L(µ : t), a contradiction to our assumption. Thus
µ(xy) ≤ max{µ(y), 0.5}.

Similarly, we prove that µ((x + a)y − xy) ≤ max{µ(a), 0.5}. Thus µ is an i-v
(<,< ∨γ)-fuzzy ideal of R. �

Definition 3.20. Let I be a non empty subset of a near-ring R. The i-v anti
characteristic function f I : R→ D[0, 1] is defined such that,

f I(x) =

{
0 for all x ∈ I
1 otherwise.

Theorem 3.21. A non empty subset I of R is an ideal of R if and only if f I is an
i-v (<,< ∨γ)- fuzzy ideal of R.

Proof. Assume that I is an ideal of R. Suppose that

f I(x− y) > max{f I(x), f I(y), [0.5, 0.5]}.

Then f I(x − y) = 1 and f I(x) = f I(y) = 0. This implies x, y ∈ I but x − y /∈ I,
which is a contradiction. Thus f I(x− y) ≤ max{f I(x), f I(y), 0.5}.

Suppose that f I(y + x − y) > max{f I(x), 0.5}. Then f I(y + x − y) = 1 and
f I(x) = 0. This implies x ∈ I but y + x − y /∈ I, which is a contradiction to our
assumption. Thus f I(y + x− y) ≤ max{f I(x), 0.5}.

Suppose that f I(xy) > max{f I(y), 0.5} for all x, y ∈ R, that is, f I(xy) = 1 and
f I(y) = 0. Then this implies y ∈ I but xy /∈ I, which is a contradiction. Thus
f I(xy) ≤ max{f I(y), 0.5}.

Suppose that f I((x+ a)y − xy) > max{f I(a), 0.5}. Then f I((x+ a)y − xy) = 1
and f I(a) = 0. This implies a ∈ I but (x + a)y − xy /∈ I, which is a contradiction.
Thus f I((x+ a)y − xy) ≤ max{f I(a), 0.5}.

Conversely, let f I be an i-v (<,< ∨γ)-fuzzy ideal of R. For any x, y ∈ I, we have

f I(x− y) ≤ max{f(x), f(y), 0.5}
= max{0, 0, 0.5}
= 0.5 6= 1.

Then f I(x− y) = 0. Thus x− y ∈ I.
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Let y ∈ R and x ∈ I. Then

f I(y + x− y) ≤ max{f(x), 0.5}
= max{0, 0.5}
= 0.5 6= 1.

Thus f I(y + x − y) = 0. This shows that y + x − y ∈ I and therefore (I,+) is a
normal subgroup of (R,+).

Now let x ∈ R and y ∈ I. Then

f I(xy) ≤ max{f(y), 0.5}
= max{0, 0.5}
= 0.5 6= 1.

Thus xy ∈ I.
Finally, let x, y ∈ R and a ∈ I. Then

f I((x+ a)y − xy) ≤ max{f(a), 0.5}
= max{0, 0.5}
= 0.5 6= 1.

Thus (x+ a)y − xy ∈ I. So I is an ideal of R. �

Theorem 3.22. Every i-v (<,<)-fuzzy ideal of R is an i-v (<,< ∨γ)-fuzzy ideal(subnear-
ring) of R.

Proof. The proof is straightforward. �

The converse of Theorem 3.22 is not true in general as shown in the following
example.

Example 3.23. Let R = {0, a, b, c} be a set with two binary operation ′+′ and ′·′
defined as follows:

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

· 0 a b c
0 0 a 0 a
a 0 a 0 a
b 0 a 0 a
c 0 a b c

Then clearly (R,+, ·) is a left near-ring. Let µ : R→ D[0, 1] be an i-v fuzzy subset
of R and defined by µ(0) = [0.2, 0.3], µ(a) = [0.6, 0.7] = µ(c) and µ(b) = [0, 0.1].
Then µ is an i-v (<,< ∨γ)-fuzzy ideal of R, but not i-v (<,<)-fuzzy ideal of R,
since b[0.11,0.12] < µ =⇒ (b− b)[0.11,0.12] = 0[0.11,0.12]<µ.

In next Theorem, we give a condition for an i-v (<,< ∨γ)-fuzzy ideal of R to be
an i-v (<,<)-fuzzy ideal of R.

Theorem 3.24. Let µ be an i-v (<,< ∨γ)-fuzzy ideal of R such that µ(x) > 0.5 for
all x ∈ R. Then µ is an i-v (<,<)-fuzzy ideal of R.
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Proof. Let µ be an i-v (<,< ∨γ) fuzzy ideal of R such that µ(x) > 0.5, for all x ∈ R.
Let x, y ∈ R and s, t ∈ D[0, 1] 6= 1 be such that xs, yt < µ. Then µ(x) ≤ s and
µ(y) ≤ t. Thus

µ(x− y) ≤ max{µ(x), µ(y), 0.5} = max{µ(x), µ(y)} ≤ max{s, t}.

This implies that (x− y)max{s,t} < µ.

Let x, y ∈ R and s ∈ D[0, 1] 6= 1 be such that xs < µ. Then µ(x) ≤ s. Since µ is
an i-v (<,< ∨q)-fuzzy ideal of R, we have

µ(y + x− y) ≤ max{µ(x), 0.5} ≤ s.

Thus (y + x− y)s < µ.
Now let x, y ∈ R and s ∈ D[0, 1] 6= 1 such that ys < µ. Then µ(y) ≤ s. By

assumption, µ(xy) ≤ max{µ(y), 0.5} ≤ s implies (xy)s < µ.
Let x, y, a ∈ R and s ∈ D[0, 1] 6= 1 such that as < µ. Then µ(a) ≤ s. Thus

µ((x+ a)y − xy) ≤ max{µ(a), 0.5} ≤ s. This implies that ((x+ a)y − xy)s < µ. So
µ is an i-v (<,<)-fuzzy ideal of R. �

Theorem 3.25. The union of any family of i-v (<,< ∨γ)-fuzzy ideals of R is an
i-v (<,< ∨γ)-fuzzy ideal of R.

Proof. Let {µj}j∈Ω be any family of i-v (<,< ∨γ)-fuzzy ideals of R and µ =
⋃
j∈Ω

µj .

Let x, y, a ∈ R. Then,

µ(x− y) = (
⋃
j∈Ω

µj)(x− y)

=
⋃
j∈Ω

(µj(x− y))

≤
⋃
j∈Ω

(max{µj(x), µj(y), 0.5})

= max{(
⋃
j∈Ω

µj)(x), (
⋃
j∈Ω

µj)(y), 0.5}.

Thus µ(x− y) ≤ max{µ(x), µ(y), 0.5}.
Now,

µ(y + x− y) = (
⋃
j∈Ω

µj)(y + x− y)

=
⋃
j∈Ω

(µj(y + x− y))

≤
⋃
j∈Ω

(max{µj(x), 0.5})

= max{(
⋃
j∈Ω

µj)(x), 0.5}

= max{µ(x), 0.5}.
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Next,

µ(xy) = (
⋃
j∈Ω

µj)(xy)

=
⋃
j∈Ω

(µj(xy))

≤
⋃
j∈Ω

{max{µj(y), 0.5}}

= max{(
⋃
j∈Ω

µj)(y), 0.5}

= max{µ(y), 0.5}.
Further,

µ((x+ a)y − xy) = (
⋃
j∈Ω

µj)((x+ a)y − xy)

=
⋃
j∈Ω

(µj((x+ a)y − xy))

≤
⋃
j∈Ω

{max{µj(a), 0.5}}

= max{(
⋃
j∈Ω

µj)(a), 0.5}

= max{µ(a), 0.5}.
So µ =

⋃
j∈Ω

µj is an i-v (<,< ∨γ)-fuzzy ideal of R. �

For any i-v fuzzy subset µ of R and t ∈ D[0, 1] 6= 1. Consider the sets
Q(µ : t) = {x ∈ R|xtγµ}

and
[µ]t = {x ∈ R|xt < ∨γµ}. Clearly, [µ]t = L(µ : t) ∪Q(µ, t).

We call [µ]t as a (< ∨γ)− level set and Q(µ : t) a γ-level set of µ.

Lemma 3.26. Every i-v fuzzy subset µ of R satisfies the following t ∈ D[0, 0.5], t 6=
0.5 implies [µ]t = Q(µ : t).

Proof. Clearly, Q(µ : t) ⊆ [µ]t, from the definition of Q(µ : t). Let x ∈ [µ]t and
0 ≤ t < 0.5. Then xt < µ or xtγµ. If xtγµ, then there is nothing to prove. If xt < µ,
then µ(x) ≤ t, that is, µ(x) + t < t+ t < 0.5 + 0.5 = 1. Thus x ∈ Q(µ : t). �

Lemma 3.27. Every i-v fuzzy subset µ of R satisfies the following t ∈ D[0.5, 1] 6= 1
implies [µ]t = L(µ : t).

Proof. Clearly, L(µ : t) ⊆ [µ]t, from the definition of L(µ : t). Let x ∈ [µ]t and
t ∈ D[0.5, 1] with t 6= 1 be such that xt < µ or xtγµ. If xt < µ, there is nothing to
prove. If xtγµ, then µ(x) + t < 1, implies that, µ(x) ≤ t. Thus x ∈ L(µ : t). �

Theorem 3.28. Let µ be an i-v fuzzy subset of R. Then, µ is an i-v (<,< ∨γ)-fuzzy
ideal (subnear-ring) of R if and only if [µ]t 6= ∅ is an ideal (subnear-ring) of R.
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Proof. Let µ be an i-v (<,< ∨γ)-fuzzy ideal of R and t ∈ D[0, 1] with t 6= 1. Let
x, y ∈ [µ]t. Then µ(x) ≤ t or µ(x) + t < 1 and µ(y) ≤ t or µ(y) + t < 1. We first
prove the condition (i) of Definition 3.4. Consider four cases:

(i) µ(x) ≤ t and µ(y) ≤ t,
(ii) µ(x) ≤ t and µ(y) + t < 1,
(iii) µ(x) + t < 1 and µ(y) ≤ t,
(iv) µ(x) + t < 1 and µ(y) + t < 1.
Case (i): Suppose µ(x) ≤ t and µ(y) ≤ t. Then

µ(x− y) ≤ max{µ(x), µ(y), 0.5} ≤ max{t, 0.5}.

If t < 0.5, then µ(x − y) < 0.5, that is, µ(x − y) + t < 0.5 + 0.5 = 1. This implies
that (x−y)tγµ. If t ≥ 0.5, then µ(x−y) ≤ t, that is, (x−y)t < µ. Thus x−y ∈ [µ]t.

Case (ii): Suppose µ(x) ≤ t and µ(y) + t < 1. Then,

µ(x− y) ≤ max{µ(x), µ(y), 0.5} ≤ max{t, 1− t, 0.5}.

If t < 0.5, then µ(x−y) ≤ 1− t. This implies that µ(x−y)+ t < 1. Thus, (x−y)tγµ.
If t ≥ 0.5, then µ(x− y) ≤ t, that is, (x− y)t < µ.

Similarly, we prove case (iii).
Case (iv): Suppose µ(x) + t < 1 and µ(y) + t < 1. Then

µ(x− y) ≤ max{µ(x), µ(y), 0.5} ≤ max{1− t, 0.5}.

If t < 0.5, then µ(x− y) ≤ 1− t. This implies (x− y)tγµ. If t ≥ 0.5, then µ(x− y) ≤
0.5 ≤ t. This implies (x− y)t < µ. Thus x− y ∈ [µ]t.

Let x ∈ [µ]t and y ∈ R. Then µ(x) ≤ t or µ(x) + t < 1.
We now prove condition (ii) of Definition 3.4. There are two cases:
Case (i): Let µ(x) ≤ t. Then

µ(y + x− y) ≤ max{µ(x), 0.5} ≤ max{t, 0.5}.

If t < 0.5, then µ(y+x−y) ≤ 0.5, that is, µ(y+x−y)+ t < 0.5+0.5 = 1. If t ≥ 0.5,
then µ(y + x− y) ≤ t. Thus (y + x− y)t < ∨γµ.

Case (ii): Let µ(x) + t < 1. Then

µ(y + x− y) ≤ max{µ(x), 0.5} ≤ max{1− t, 0.5}.

If t < 0.5, then µ(y + x − y) ≤ 1 − t, that is, µ(y + x − y) + t ≤ 1. If t ≥ 0.5, then
µ(y + x− y) ≤ 0.5 ≤ t. Thus (y + x− y)t < µ. So y + x− y ∈ [µ]t.

Let x ∈ R and y ∈ [µ]t. Then µ(y) ≤ t or µ(y) + t < 1. Next we prove the
condition for left ideal. There are two cases:

Case (i): Suppose µ(y) ≤ t. Then µ(xy) ≤ max{µ(y), 0.5} ≤ max{t, 0.5}. If
t < 0.5, then µ(xy) ≤ 0.5. This implies µ(xy) + t < 0.5 + 0.5 = 1. Thus (xy)tγµ. If
t ≥ 0.5, then µ(xy) ≤ t, that is, (xy)t ≤ µ. So (xy)t < ∨γµ.

Case (ii): Suppose µ(y) + t < 1. Then

µ(xy) ≤ max{µ(y), 0.5} ≤ max{1− t, 0.5}.

If t < 0.5, then µ(xy) ≤ 1 − t. This implies µ(xy) + t ≤ 1. If t ≥ 0.5, then
µ(xy) ≤ 0.5 ≤ t. Thus (xy)t < ∨γµ. So xy ∈ [µ]t.

Similarly, (x+a)y−xy ∈ [µ]t for all x, y ∈ R and at ∈ [µ]t. Hence, [µ]t is an ideal
of R.
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Conversely, assume that [µ]t is an ideal of R, for all 0 ≤ t < 1. If possible, let

µ(x− y) > max{µ(x), µ(y), 0.5}.

Choose t such that

µ(x− y) > t > max{µ(x), µ(y), 0.5}.
Then, 0.5 ≤ t < 1 and x, y ∈ L(µ : t) ⊆ [µ]t, but (x − y) /∈ L(µ : t), which is a
contradiction. Thus, µ(x− y) ≤ max{µ(x), µ(y), 0.5}.

Suppose that µ(y + x− y) > max{µ(x), 0.5}. Choose t such that

µ(y + x− y) > t > max{µ(x), 0.5}.

Then 0.5 ≤ t < 1, x ∈ L(µ : t) but (y + x − y) /∈ L(µ : t), a contradiction. Thus
µ(y + x− y) ≤ max{µ(x), 0.5}.

In a similar way, we can prove that µ(xy) ≤ max{µ(y), 0.5} and µ((x+a)y−xy) ≤
max{µ(a), 0.5}, for all x, y, a ∈ R. So µ is an i-v (<,< ∨γ)- fuzzy ideal of R. �
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