Annals of Fuzzy Mathematics and Informatics Volume 12, No. 3, (September 2016), pp. 319–333

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Generalized interval valued anti fuzzy ideals in near-rings

N. THILLAIGOVINDAN, V. CHINNADURAI, K. LENIN MUTHU KUMARAN

Received 25 December 2015; Revised 15 February 2016; Accepted 2 March 2016

ABSTRACT. In this paper, we introduce the new notion of generalized interval valued anti fuzzy subnear-rings and ideals of near-rings. We have also discussed some theoretical properties of these algebraic structures and obtained some characterizations.

2010 AMS Classification: 03E72, 08A72

Keywords: Near-ring, Fuzzy set, Interval valued anti fuzzy point, Interval valued $(<, < \vee \gamma)$ fuzzy ideals.

Corresponding Author: V. Chinnadurai (kv.chinnadurai@yahoo.com)

1. Introduction

Near-rings are generalization of rings. The fundamental concept of fuzzy set was introduced by Zadeh[13]. After a decade the same author[14] initiated the study of interval valued(i-v) fuzzy subsets where the values of membership functions are the intervals instead of numbers. The study of fuzzy subgroups was initiated by Rosenfeld[7]. Biswas[2] introduced the idea of anti fuzzy subgroups. Abou-Zaid[1] discussed the concept of fuzzy subnear-rings and ideals. Saeid et al.[9] introduced the notion of besideness(<) and non-quasi-coincidence(γ) with fuzzy subsets and anti fuzzy points. Davvaz[3, 4] discussed the idea of i-v fuzzy sets applied to fuzzy ideals of near-rings and generalized fuzzy H_v -submodules and investigated some of their properties. Kim et al.[5] introduced the notion of anti fuzzy ideals of near-rings. Kyung Ho Kim et al. [6] initiated the concept of anti fuzzy R-subgroups of near-rings. Shabir et al.[8] introduced different types of anti fuzzy ideals in ternary semigroups. Recently, Tariq Anwar et al. [10] have introduced the notion of generalized anti fuzzy ideals of near-rings. Thillaigovindan et al.[12] have initiated the study of i-v anti fuzzy ideals of near-rings and gave some characterizations. In this paper, we introduce the concept of i-v (<, <)-fuzzy ideals (subnear-rings) and (<, < $\lor\gamma$)-fuzzy ideals (subnear-rings). We have also obtained some characterizations of these ideals.

2. Preliminaries

Throughout this paper R stands for left near-ring unless otherwise specified. In this section we recall some basic definitions and results.

A near-ring is an algebraic system $(R,+,\cdot)$ consisting of a non empty set R together with two binary operations + and \cdot such that (R,+) is a group, not necessarily abelian and (R,\cdot) is a semigroup connected by the distributive law: $x\cdot (y+z)=x\cdot y+x\cdot z$ valid for all $x,y,z\in R$. We will use the word 'near-ring' to mean 'left near-ring'. We denote xy instead of $x\cdot y$.

An ideal I of a near-ring R is a subset of R such that

- (i) (I, +) is a normal subgroup of (R, +),
- (ii) $RI \subseteq I$,
- (iii) $(x+a)y xy \in I$, for any $a \in I$ and $x, y \in R$.

Note that I is called a left ideal of R if I satisfies (i) and (ii) and a right ideal of R if I satisfies (i) and (iii).

Definition 2.1 ([4, 11]). By an interval number \overline{a} , we mean an interval $[a^-, a^+]$ such that $0 \le a^- \le a^+ \le 1$ where a^- and a^+ are the lower and upper limits of \overline{a} respectively. The set of all closed subintervals of [0,1] is denoted by D[0,1]. We also identify the interval [a,a] by the number $\overline{a} \in D[0,1]$. For any interval numbers $\overline{a}_j = [a_j^-, a_j^+], \overline{b}_j = [b_j^-, b_j^+] \in D[0,1], j \in J$, we define

$$\max\{\overline{a}_j, \overline{b}_j\} = [\max\{a_j^-, b_j^-\}, \max\{a_j^+, b_j^+\}],$$

$$\min\{\overline{a}_j, \overline{b}_j\} = [\min\{a_j^-, b_j^-\}, \min\{a_j^+, b_j^+\}],$$

$$\inf\overline{a}_j = \left[\bigcap_{j \in I} a_j^-, \bigcap_{j \in I} a_j^+\right], \sup\overline{a}_j = \left[\bigcup_{j \in I} a_j^-, \bigcup_{j \in I} a_j^+\right]$$

and put

- (i) $\overline{a} \leq \overline{b} \iff a^- \leq b^- \text{ and } a^+ \leq b^+,$
- (ii) $\overline{a} = \overline{b} \iff a^- = b^- \text{ and } a^+ = b^+,$
- (iii) $\overline{a} < \overline{b} \iff \overline{a} \le \overline{b} \text{ and } \overline{a} \ne \overline{b}$,
- (iv) $k\overline{a} = [ka^-, ka^+]$, whenever $0 \le k \le 1$.

Definition 2.2. For any two interval numbers, $\bar{a} = [a^-, a^+]$ and $\bar{b} = [b^-, b^+]$ addition, subtraction, multiplication and division are defined as

$$\overline{a} + \overline{b} = \begin{cases} [a^- + b^-, a^+ + b^+] & \text{if } [a^- + b^-, a^+ + b^+] \leq \overline{1} \\ [\max\{a^-, b^-\}, \max\{a^+, b^+\}] & \text{if } [a^- + b^-, a^+ + b^+] > \overline{1}, \end{cases}$$

$$\overline{a} - \overline{b} = \begin{cases} [a^- - b^+, a^+ - b^-] & \text{if } [a^- - b^+, a^+ - b^-] \geq [0, 0] \\ [\min\{a^-, b^-\}, \min\{a^+, b^+\}] & \text{if } [a^- - b^+, a^+ - b^-] < [0, 0], \end{cases}$$

$$\overline{a} \cdot \overline{b} = [\min\{a^- \cdot b^-, a^+ \cdot b^+\}, \max\{a^- \cdot b^-, a^+ \cdot b^+\}],$$

$$\overline{a} / \overline{b} = \begin{cases} [\min(\frac{a^-}{b^-}, \frac{a^+}{b^+}), \max(\frac{a^-}{b^-}, \frac{a^+}{b^+})] & \text{if } \overline{a} \leq \overline{b} \neq [0, 0] \\ [\frac{1}{\max(\frac{a^-}{b^-}, \frac{a^+}{b^+})}, \frac{1}{\min(\frac{a^-}{b^-}, \frac{a^+}{b^+})}] & \text{if } \overline{a} > \overline{b} \\ \text{Not defined} & \text{if } \overline{a} = \overline{b} = [0, 0]. \end{cases}$$

Definition 2.3 ([11]). Let X be a non-empty set. A mapping $\overline{\mu}: X \to D[0,1]$ is called an i-v fuzzy subset of X. For all $x \in X$, $\overline{\mu}(x) = [\mu^-(x), \mu^+(x)]$, where μ^- and μ^+ are fuzzy subsets of X such that $\mu^-(x) \leq \mu^+(x)$. Thus $\overline{\mu}(x)$ is an interval (a closed subinterval of [0,1]) and not a number from the interval [0,1] as in the case of a fuzzy set.

Let $\overline{\mu}, \overline{\nu}$ be i-v fuzzy subsets of X. Then

- (i) $\overline{\mu} \le \overline{\nu} \Leftrightarrow \overline{\mu}(x) \le \overline{\nu}(x)$.
- (ii) $\overline{\mu} = \overline{\nu} \Leftrightarrow \overline{\mu}(x) = \overline{\nu}(x)$.
- (iii) $(\overline{\mu} \cup \overline{\nu})(x) = \max{\{\overline{\mu}(x), \overline{\nu}(x)\}}.$
- (iv) $(\overline{\mu} \cap \overline{\nu})(x) = \min{\{\overline{\mu}(x), \overline{\nu}(x)\}}.$
- (v) $\overline{\mu}^c(x) = \overline{1} \overline{\mu}(x) = [1 \mu^+(x), 1 \mu^-(x)].$

Definition 2.4 ([11]). Let $\overline{\mu}$ be an i-v fuzzy subset of X and $[t_1, t_2] \in D[0, 1]$. Then $\overline{U}(\overline{\mu} : [t_1, t_2]) = \{x \in X | \overline{\mu}(x) \geq [t_1, t_2]\}$ is called the upper level set of $\overline{\mu}$ and

 $\overline{L}(\overline{\mu}:[t_1,t_2])=\{x\in X|\ \overline{\mu}(x)\leq [t_1,t_2]\}$ is called the lower level set of $\overline{\mu}$.

Definition 2.5 ([12]). An i-v fuzzy subset $\overline{\mu}$ of a near-ring R is called an i-v anti fuzzy subnear-ring of R, if

- (i) $\overline{\mu}(x-y) \le \max{\{\overline{\mu}(x), \overline{\mu}(y)\}},$
- (ii) $\overline{\mu}(xy) \leq \max{\{\overline{\mu}(x), \overline{\mu}(y)\}}$ for all $x, y \in R$.

Definition 2.6 ([12]). An i-v fuzzy subset $\overline{\mu}$ of a near-ring R is called an i-v antifuzzy ideal of R, if $\overline{\mu}$ is an i-v antifuzzy subnear-ring of R and

- (iii) $\overline{\mu}(y+x-y) \leq \overline{\mu}(x)$,
- (iv) $\overline{\mu}(xy) \leq \overline{\mu}(y)$,
- (v) $\overline{\mu}((x+z)y-xy) \leq \overline{\mu}(z)$ for all $x,y,z \in R$.

Note that $\overline{\mu}$ is an i-v anti fuzzy left ideal of R, if it satisfies (i),(ii),(iii) and (iv), and $\overline{\mu}$ is an i-v anti fuzzy right ideal of R, if it satisfies (i),(ii),(iii) and (v).

3.
$$(<, < \lor \gamma)$$
 Fuzzy ideals

In this section, we introduce the concept of i-v (<, $< \lor \gamma$) fuzzy ideals of near-ring and study some of their theoretical properties.

Definition 3.1. An i-v fuzzy subset $\overline{\mu}$ of R of the form

$$\overline{\mu}(y) = \begin{cases} \overline{s} \in D[0,1] \neq \overline{1} & \text{if } y = x \\ \overline{1} & \text{if } y \neq x \end{cases}$$

is called an i-v anti fuzzy point with support x and value \overline{s} and is denoted by $x_{\overline{s}}$.

An i-v fuzzy subset $\overline{\mu}$ of X is said to be non unit if there exists $x \in X$ such that $\overline{\mu}(x) < \overline{1}$.

Definition 3.2. An i-v anti fuzzy point $x_{\overline{s}}$ is said to be beside to (resp. be non-quasi coincident with) a fuzzy subset $\overline{\mu}$, denoted by $x_{\overline{s}} < \overline{\mu}$ (resp. $x_{\overline{s}}\gamma\overline{\mu}$), if $\overline{\mu}(x) \leq \overline{s}$ (resp. $\overline{\mu}(x) + \overline{s} < \overline{1}$). We say that < (resp. γ) is a beside to (resp. non-quasi coincident with) relation between i-v anti fuzzy points and i-v fuzzy subsets. If $x_{\overline{s}} < \overline{\mu}$ or $x_{\overline{s}}\gamma\overline{\mu}$, we say that $x_{\overline{s}} < \sqrt{\gamma}\overline{\mu}$ and $x_{\overline{s}}\overline{<\overline{\mu}}$ (resp. $x_{\overline{s}}\overline{\gamma}\overline{\mu}, x_{\overline{s}}\overline{<\sqrt{\gamma}\overline{\mu}}$) means $x_{\overline{s}} < \overline{\mu}$ (resp. $x_{\overline{s}}\gamma\overline{\mu}, x_{\overline{s}} < \sqrt{\gamma}\overline{\mu}$) does not hold.

Definition 3.3. An i-v fuzzy subset $\overline{\mu}$ of R is called an i-v (<, <)-fuzzy subnear-ring of R, if for all $x, y \in R$ and $\overline{s}, \overline{t} \in D[0, 1] \neq \overline{1}$,

- (i) $x_{\overline{s}} < \overline{\mu}, y_{\overline{t}} < \overline{\mu} \Rightarrow (x y)_{\max{\{\overline{s}, \overline{t}\}}} < \overline{\mu},$
- (ii) $x_{\overline{s}} < \overline{\mu}, y_{\overline{t}} < \overline{\mu} \Rightarrow (xy)_{\max\{\overline{s},\overline{t}\}} < \overline{\mu}.$

Definition 3.4. An i-v fuzzy subset $\overline{\mu}$ of R is called an i-v (<, <)-fuzzy left (right) ideal of R, if for all $x, y \in R$ and $\overline{s}, \overline{t} \in D[0, 1] \neq \overline{1}$,

- (i) $x_{\overline{s}} < \overline{\mu}, y_{\overline{t}} < \overline{\mu} \Rightarrow (x y)_{\max\{\overline{s}, \overline{t}\}} < \overline{\mu},$
- (ii) $x_{\overline{s}} < \overline{\mu}, y \in R \Rightarrow (y + x y)_{\overline{s}} < \overline{\mu},$
- (iii) $y_{\overline{s}} < \overline{\mu}, x \in R \Rightarrow (xy)_{\overline{s}} < \overline{\mu}, \text{ (resp. } a_{\overline{s}} < \overline{\mu}, x, y \in R \Rightarrow ((x+a)y xy)_{\overline{s}} < \overline{\mu}).$

An i-v fuzzy subset which is (<,<) fuzzy left and right ideal of R is called i-v (<,<) fuzzy ideal of R.

Example 3.5. Let $R = \{0, a, b, c\}$ be a set with two binary operations '+' and $'\cdot'$ defined as follows:

+	0	a	b	c	•	0	a	b	c
0		a		с	0	0	0	0	0
a	a	0	c	b	a	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
b	b	$^{\mathrm{c}}$	0	a	b	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0
c	c	b	a	0	\mathbf{c}	0	0		

Then $(R,+,\cdot)$ is a left near-ring. Let $\overline{\mu}:R\to D[0,1]$ be an i-v fuzzy subset of R defined by $\overline{\mu}(0)=[0.1,0.2], \overline{\mu}(a)=[0.4,0.5]$ and $\overline{\mu}(b)=[0.7,0.8]=\overline{\mu}(c)$. Then $\overline{\mu}$ is an i-v (<,<)-fuzzy ideal of R.

The following theorem gives the connection between i-v (<,<)-fuzzy ideal and i-v anti fuzzy ideal.

Theorem 3.6. An i-v fuzzy subset $\overline{\mu}$ of R is an i-v (<, <)-fuzzy ideal of R if and only if it is an i-v anti fuzzy ideal of R.

Proof. Assume that $\overline{\mu}$ is an i-v anti fuzzy ideal of R. Let $x,y\in R$ and $\overline{t},\overline{r}\in D[0,1]$ with $\overline{t},\overline{r}\neq \overline{1}$ be such that $x_{\overline{t}},y_{\overline{r}}<\overline{\mu}$. Then $\overline{\mu}(x)\leq \overline{t}$ and $\overline{\mu}(y)\leq \overline{r}$. Since $\overline{\mu}$ is an i-v anti fuzzy ideal of R, we have $\overline{\mu}(x-y)\leq \max\{\overline{\mu}(x),\overline{\mu}(y)\}\leq \max\{\overline{t},\overline{r}\}$. It follows that $(x-y)_{\max\{\overline{t},\overline{r}\}}<\overline{\mu}$. Now let $x,y\in R$ and $\overline{t}\in D[0,1]$ with $\overline{t}\neq \overline{1}$. Then $x_{\overline{t}}<\overline{\mu}$ and thus $\overline{\mu}(x)\leq \overline{t}$. Since $\overline{\mu}$ is an i-v anti fuzzy ideal of R, we have $\overline{\mu}(y+x-y)\leq \overline{\mu}(x)\leq \overline{t}$. So $(y+x-y)_{\overline{t}}<\overline{\mu}$. Let $x,y\in R$ and $\overline{t}\in D[0,1]$ with $\overline{t}\neq \overline{1}$ such that $y_{\overline{t}}<\overline{\mu}$. Then $\overline{\mu}(y)\leq \overline{t}$. Thus $\overline{\mu}(xy)\leq \overline{\mu}(y)\leq \overline{t}$, because $\overline{\mu}$ is an i-v anti fuzzy ideal of R. So $(xy)_{\overline{t}}<\overline{\mu}$. Again let $x,y,z\in R$ and $\overline{t}\in D[0,1]$ with $\overline{t}\neq \overline{1}$ such that $z_{\overline{t}}<\overline{\mu}$. Then $\overline{\mu}(z)\leq \overline{t}$. Since $\overline{\mu}$ is an i-v anti fuzzy ideal of R, $\overline{\mu}((x+z)y-xy)\leq \overline{\mu}(z)\leq \overline{t}$. Thus $((x+z)y-xy)_{\overline{t}}<\overline{\mu}$. Hence $\overline{\mu}$ is an i-v (<,<)-fuzzy ideal of R.

Conversely, assume that $\overline{\mu}$ is an i-v (<,<)-fuzzy ideal of R. On the contrary, assume that there exist $x,y\in R$ such that $\overline{\mu}(x-y)>\max\{\overline{\mu}(x),\overline{\mu}(y)\}$. Choose \overline{t} such that $\overline{\mu}(x-y)>\overline{t}>\max\{\overline{\mu}(x),\overline{\mu}(y)\}$. Then $x_{\overline{t}},y_{\overline{t}}<\overline{\mu}$ and $(x-y)_{\overline{t}}<\overline{\mu}$. This is a contradiction to our assumption that $\overline{\mu}$ is an i-v (<,<)-fuzzy ideal of R. Thus $\overline{\mu}(x-y)\leq\max\{\overline{\mu}(x),\overline{\mu}(y)\}$. Suppose that $\overline{\mu}(y+x-y)>\overline{\mu}(x)$, for some $x,y\in R$. Choose \overline{t} such that $\overline{\mu}(y+x-y)>\overline{t}>\overline{\mu}(x)$. Then $x_{\overline{t}}<\overline{\mu}$ and $(y+x-y)_{\overline{t}}<\overline{\mu}$, which is a contradiction and hence $\overline{\mu}(y+x-y)\leq\overline{\mu}(x)$. Let us assume that $\overline{\mu}(xy)>\overline{\mu}(y)$,

for some $x, y \in R$. Then there exist \overline{t} such that $\overline{\mu}(xy) > \overline{t} > \overline{\mu}(y)$. This implies that $y_{\overline{t}} < \overline{\mu}$ but $(xy)_{\overline{t}} < \overline{\mu}$. This again contradicts our hypothesis. Thus $\overline{\mu}(xy) \leq \overline{\mu}(y)$. Again assume that there exist $x, y, z \in R$ such that $\overline{\mu}((x+z)y-xy) > \overline{\mu}(z)$. Let \overline{t} be such that $\overline{\mu}((x+z)y-xy) > \overline{t} > \overline{\mu}(z)$. Then $z_{\overline{t}} < \overline{\mu}$ but $((x+z)y-xy)_{\overline{t}} < \overline{\mu}$, which is a contradiction and so $\overline{\mu}((x+z)y-xy) \leq \overline{\mu}(z)$. Hence $\overline{\mu}$ is an i-v anti fuzzy ideal of R.

Definition 3.7. An i-v fuzzy subset $\overline{\mu}$ of R is called an i-v $(<, < \vee \gamma)$ -fuzzy subnearing of R, if for all $x, y \in R$ and $\overline{s}, \overline{t} \in D[0, 1] \neq \overline{1}$,

- (i) $x_{\overline{s}} < \overline{\mu}, y_{\overline{t}} < \overline{\mu} \implies (x y)_{\max\{\overline{s}, \overline{t}\}} < \forall \gamma \overline{\mu},$
- (ii) $x_{\overline{s}} < \overline{\mu}, y_{\overline{t}} < \overline{\mu} \implies (xy)_{\max\{\overline{s},\overline{t}\}} < \forall \gamma \overline{\mu}.$

Definition 3.8. An i-v fuzzy subset $\overline{\mu}$ of R is called an i-v (<, $< \lor \gamma$)-fuzzy left (right) ideal of R, if for all $x, y \in R$ and $\overline{s}, \overline{t} \in D[0, 1] \neq \overline{1}$,

- (i) $x_{\overline{s}} < \overline{\mu}, y_{\overline{t}} < \overline{\mu} \implies (x y)_{\max\{\overline{s}, \overline{t}\}} < \forall \gamma \overline{\mu},$
- (ii) $x_{\overline{s}} < \overline{\mu}, y \in R \implies (y + x y)_{\overline{s}} < \forall \gamma \overline{\mu},$
- (iii) $y_{\overline{s}} < \overline{\mu}, x \in R \implies (xy)_{\overline{s}} < \forall \gamma \overline{\mu},$

(resp. $a_{\overline{s}} < \overline{\mu}, x, y \in R \implies ((x+a)y - xy)_{\overline{s}} < \forall \gamma \overline{\mu}$).

An i-v fuzzy subset which is an i-v $(<, < \lor \gamma)$ fuzzy left and right ideal of R is called an i-v $(<, < \lor \gamma)$ fuzzy ideal of R.

Example 3.9. Consider the Example 3.5, it can be verified that $\overline{\mu}$ is an i-v (<, < $\vee \gamma$)-fuzzy ideal of R.

Theorem 3.10. Let $\overline{\mu}$ be an i-v $(<, < \vee \gamma)$ -fuzzy ideal (subnear-ring) of R. Then the set $R_1 = \{x \in R | \overline{\mu}(x) < \overline{1}\} \neq \emptyset$ is an ideal (subnear-ring) of R.

Proof. Let $x, y \in R_1$. Then $\overline{\mu}(x) < \overline{1}$ and $\overline{\mu}(y) < \overline{1}$. Assume that $x - y \notin R_1$. Then $\overline{\mu}(x - y) = \overline{1}$. Thus $x_{\overline{\mu}(x)} < \overline{\mu}$ and $y_{\overline{\mu}(y)} < \overline{\mu}$ but $(x - y)_{\max{\{\overline{\mu}(x),\overline{\mu}(y)\}}} < \overline{\vee}\gamma\overline{\mu}$, a contradiction. So $x - y \in R_1$.

Let $x \in R_1$ and $y \in R$. Then $\overline{\mu}(x) < \overline{1}$. Suppose that $y + x - y \notin R_1$. Then $\overline{\mu}(y + x - y) = \overline{1}$. Thus $x_{\overline{\mu}(x)} < \overline{\mu}$ but $(y + x - y)_{\overline{\mu}(x)} < \overline{\vee} \gamma \overline{\mu}$, a contradiction. So $y + x - y \in R_1$.

Let $y \in R_1$ and $x \in R$. Then $\overline{\mu}(y) < \overline{1}$. Suppose that $xy \notin R_1$. Then $\overline{\mu}(xy) = \overline{1}$. Thus $y_{\overline{\mu}(y)} < \overline{\mu}$ but $(xy)_{\overline{\mu}(y)} < \overline{\vee} \gamma \overline{\mu}$, is a contradiction. So $xy \in R_1$ and R_1 is a left ideal of R.

Let $a \in R_1$ and $x, y \in R$. Then $\overline{\mu}(a) < \overline{1}$. Suppose that $((x+a)y-xy) \notin R_1$. Then $\overline{\mu}((x+a)y-xy) = \overline{1}$. Thus $a_{\overline{\mu}(a)} < \overline{\mu}$ but $((x+a)y-xy)_{\overline{\mu}(a)} < \overline{\vee}\gamma\overline{\mu}$, a contradiction. So $\overline{\mu}((x+a)y-xy) < \overline{1}$. Hence $((x+a)y-xy) \in R_1$ and R_1 is a right ideal.

Theorem 3.11. Let I be an ideal of R and $\overline{\mu}$ be an i-v fuzzy subset of R such that

$$\overline{\mu}(x) = \begin{cases} \leq \overline{0.5} & \text{for all } x \in I \\ \overline{1} & \text{otherwise.} \end{cases}$$

Then $\overline{\mu}$ is an i-v (<, < $\vee \gamma$)-fuzzy ideal of R.

Proof. Let $x, y \in R$ and $\overline{s}, \overline{t} \in D[0, 1] \neq \overline{1}$ be such that $x_{\overline{s}}, y_{\overline{t}} < \overline{\mu}$. Then $\overline{\mu}(x) \leq \overline{s}$ and $\overline{\mu}(y) \leq \overline{t}$. Thus $x, y \in I$ and so $x - y \in I$, i.e., $\overline{\mu}(x - y) \leq \overline{0.5}$. If $\max\{\overline{s}, \overline{t}\} \geq \overline{0.5}$, then $\overline{\mu}(x - y) \leq \overline{0.5} \leq \max\{\overline{s}, \overline{t}\}$. Hence $(x - y)_{\max\{\overline{s}, \overline{t}\}} < \overline{\mu}$. If $\max\{\overline{s}, \overline{t}\} < \overline{0.5}$,

then $\overline{\mu}(x-y) + \max\{\overline{s},\overline{t}\} < \overline{0.5} + \overline{0.5} = \overline{1}$. Hence $(x-y)_{\max\{\overline{s},\overline{t}\}}\gamma\overline{\mu}$. Therefore $(x-y)_{\max\{\overline{s},\overline{t}\}} < \forall \gamma\overline{\mu}$.

Let $x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ be such that $x_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(x) \leq \overline{s}$. Thus $x \in I$ and $y \in R$ and so $y + x - y \in I$, since I is an ideal of R. Consequently $\overline{\mu}(y + x - y) \leq \overline{0.5}$. If $\overline{s} \geq \overline{0.5}$, then $\overline{\mu}(y + x - y) \leq \overline{0.5} \leq \overline{s}$ and so $(y + x - y)_{\overline{s}} < \overline{\mu}$. If $\overline{s} < \overline{0.5}$, then $\overline{\mu}(y + x - y) + \overline{s} < \overline{0.5} + \overline{0.5} = \overline{1}$ and so $(y + x - y)_{\overline{s}} \gamma \overline{\mu}$. Hence $(y + x - y)_{\overline{s}} < \sqrt{\gamma} \overline{\mu}$.

Let $x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ be such that $y_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(y) \leq \overline{s}$. Clearly $y \in I$ and $x \in R$ and so $xy \in I$, since I is an ideal of R. Consequently $\overline{\mu}(xy) \leq \overline{0.5}$. If $\overline{s} \geq \overline{0.5}$, then $\overline{\mu}(xy) \leq \overline{0.5} \leq \overline{s}$ and so $(xy)_{\overline{s}} < \overline{\mu}$. If $\overline{s} < \overline{0.5}$ then $\overline{\mu}(xy) + \overline{s} < \overline{0.5} + \overline{0.5} = \overline{1}$ and so $(xy)_{\overline{s}} \gamma \overline{\mu}$. Hence $(xy)_{\overline{s}} < \forall \gamma \overline{\mu}$. Therefore $\overline{\mu}$ is an i-v $(<, < \forall \gamma)$ -fuzzy left ideal of R.

Now let $a, x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ be such that $a_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(a) \leq \overline{s}$. This means that $a \in I$ and $x, y \in R$ and so $((x+a)y-xy) \in I$. Consequently $\overline{\mu}((x+a)y-xy) \leq \overline{0.5}$. If $\overline{s} \geq \overline{0.5}$, then $\overline{\mu}((x+a)y-xy) \leq \overline{0.5} \leq \overline{s}$ and so $((x+a)y-xy)_{\overline{s}} < \overline{\mu}$. If $\overline{s} < \overline{0.5}$, then $\overline{\mu}((x+a)y-xy)+\overline{s} < \overline{0.5}+\overline{0.5}=\overline{1}$ and so $((x+a)y-xy)_{\overline{s}}\gamma\overline{\mu}$. Hence $((x+a)y-xy)_{\overline{s}} < \sqrt{\gamma}\overline{\mu}$. Therefore $\overline{\mu}$ is an i-v $(<,<\sqrt{\gamma})$ -fuzzy ideal of R.

Lemma 3.12. Let $\overline{\mu}$ be an i-v fuzzy subset of R. Then the following are equivalent:

- $(1) x_{\overline{s}}, y_{\overline{t}} < \overline{\mu} \implies (x y)_{\max\{\overline{s}, \overline{t}\}} < \vee \gamma \overline{\mu}.$
- $(2) \ \overline{\mu}(x-y) \leq \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\} \ for \ all \ x,y \in R \ and \ \overline{s}, \overline{t} \in D[0,1] \neq \overline{1}.$

Proof. (1) \Longrightarrow (2): Suppose there exist $x, y \in R$ such that

$$\overline{\mu}(x-y) > \max{\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}}.$$

If $\max\{\overline{\mu}(x),\overline{\mu}(y)\} > \overline{0.5}$, then $\overline{\mu}(x-y) > \max\{\overline{\mu}(x),\overline{\mu}(y)\}$. Choose $\overline{s} \in D[0,1] \neq \overline{1}$ such that $\overline{\mu}(x-y) > \overline{s} > \max\{\overline{\mu}(x),\overline{\mu}(y)\}$. Then $x_{\overline{s}},\ y_{\overline{s}} < \overline{\mu}$ but $(x-y)_{\overline{s}} < \overline{\vee} \gamma \overline{\mu}$, which is a contradiction.

If $\max\{\overline{\mu}(x), \overline{\mu}(y)\} \leq \overline{0.5}$, then $\overline{\mu}(x-y) > \overline{0.5}$. Thus $x_{\overline{0.5}} < \overline{\mu}$ and $y_{\overline{0.5}} < \overline{\mu}$ but $(x-y)_{\overline{0.5}} < \overline{\vee} \gamma \overline{\mu}$, which is a contradiction. So, $\overline{\mu}(x-y) \leq \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}$.

(2) \Longrightarrow (1): Let $x_{\overline{s}}, y_{\overline{t}} < \overline{\mu}$. Then $\overline{\mu}(x) \leq \overline{s}$ and $\overline{\mu}(y) \leq \overline{t}$.

If $\max\{\overline{s},\overline{t}\} \geq \overline{0.5}$, then $\overline{\mu}(x-y) \leq \max\{\overline{s},\overline{t}\}$, that is, $(x-y)_{\max\{\overline{s},\overline{t}\}} < \overline{\mu}$.

If $\max\{\overline{s},\overline{t}\} < \overline{0.5}$, then $\overline{\mu}(x-y) < \overline{0.5}$, which implies that, $\overline{\mu}(x-y) + \max\{\overline{s},\overline{t}\} < \overline{0.5} + \overline{0.5} = \overline{1}$. Thus, $(x-y)_{\max\{\overline{s},\overline{t}\}} \gamma \overline{\mu}$. So $(x-y)_{\max\{\overline{s},\overline{t}\}} < \forall \gamma \overline{\mu}$.

Lemma 3.13. Let $\overline{\mu}$ be an i-v fuzzy subset of R. Then the following conditions are equivalent:

- $(1) x_{\overline{s}}, y_{\overline{t}} < \overline{\mu} \implies (xy)_{\max\{\overline{s},\overline{t}\}} < \forall \gamma \overline{\mu}.$
- (2) $\overline{\mu}(xy) \leq \max{\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}}$ for all $x, y \in R$ and $\overline{s}, \overline{t} \in D[0, 1] \neq \overline{1}$.

Proof. (1) \Longrightarrow (2): Suppose that $\overline{\mu}(xy) > \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}$ for some $x, y \in R$. If $\max\{\overline{\mu}(x), \overline{\mu}(y)\} > \overline{0.5}$, then $\overline{\mu}(xy) > \max\{\overline{\mu}(x), \overline{\mu}(y)\}$. Choose $\overline{s} \in D[0, 1] \neq \overline{1}$ such that $\overline{\mu}(xy) > \overline{s} > \max\{\overline{\mu}(x), \overline{\mu}(y)\}$. This implies that $x_{\overline{s}}, y_{\overline{s}} < \overline{\mu}$ but $(xy)_{s} < \overline{\vee} \gamma \overline{\mu}$, which is a contradiction to our assumption.

If $\max\{\overline{\mu}(x), \overline{\mu}(y)\} \leq \overline{0.5}$, then $\overline{\mu}(xy) > \overline{0.5}$. Thus $x_{\overline{0.5}}, y_{\overline{0.5}} < \overline{\mu}$ but $(xy)_{\overline{0.5}} < \overline{\vee} \gamma \overline{\mu}$, a contradiction. So, $\overline{\mu}(xy) \leq \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}$.

(2) \Longrightarrow (1): Let $x, y \in R$ and $\overline{s}, \overline{t} \in D[0, 1]$ with $\overline{s}, \overline{t} \neq \overline{1}$ be such that $x_{\overline{s}}, y_{\overline{t}} < \overline{\mu}$. Then $\overline{\mu}(x) \leq \overline{s}$ and $\overline{\mu}(y) \leq \overline{t}$. By (2),

$$\overline{\mu}(xy) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\} \le \max\{\overline{s}, \overline{t}, \overline{0.5}\}.$$

 $\text{If } \max\{\overline{s},\overline{t}\} \geq \overline{0.5} \text{, then } \overline{\mu}(x-y) \leq \max\{\overline{s},\overline{t}\} \text{. Thus } (x-y)_{\max\{\overline{s},\overline{t}\}} < \overline{\mu}.$

If
$$\max\{\overline{s},\overline{t}\}<\overline{0.5}$$
, then $\overline{\mu}(x-y)<\overline{0.5}$. Thus, $(x-y)_{\max\{\overline{s},\overline{t}\}}\gamma\overline{\mu}$. So, $(x-y)_{\max\{\overline{s},\overline{t}\}}<\forall\gamma\overline{\mu}$.

Lemma 3.14. Let $\overline{\mu}$ be an i-v fuzzy subset of R. Then the following conditions are equivalent: for all $x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$,

- (1) (a) $x \in R$ and $y_{\overline{s}} < \overline{\mu} \implies (xy)_{\overline{s}} < \forall \gamma \overline{\mu}$,
- $(2) \ \overline{\mu}(xy) \le \max\{\overline{\mu}(y), \overline{0.5}\}.$

Proof. (1) \Longrightarrow (2): Let $x, y \in R$ and suppose that $\overline{\mu}(xy) > \max\{\overline{\mu}(y), \overline{0.5}\}$.

If $\overline{\mu}(y) > \overline{0.5}$, then $\overline{\mu}(xy) > \overline{\mu}(y)$. Choose $\overline{s} \in D[0,1] \neq \overline{1}$ such that $\overline{\mu}(xy) > \overline{s} > \overline{\mu}(y)$. Then $y_{\overline{s}} < \overline{\mu}$ but $(xy)_{\overline{s}} < \overline{\vee} \gamma \overline{\mu}$, which is a contradiction to our assumption.

If $\overline{\mu}(y) \leq \overline{0.5}$, then $\overline{\mu}(xy) > \overline{0.5}$. This implies that $y_{\overline{0.5}} < \overline{\mu}$ but $(xy)_{\overline{0.5}} < \overline{\vee} \gamma \overline{\mu}$, a contradiction. Thus $\overline{\mu}(xy) \leq \max{\{\overline{\mu}(y), \overline{0.5}\}}$.

(2) \Longrightarrow (1): Let $x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ be such that $y_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(y) \leq \overline{s}$. By (2),

$$\overline{\mu}(xy) \le \max\{\overline{\mu}(y), \overline{0.5}\} \le \max\{\overline{s}, \overline{0.5}\}.$$

If $\overline{s} \geq \overline{0.5}$, then $\overline{\mu}(xy) \leq \overline{s}$, that is, $(xy)_{\overline{s}} < \overline{\mu}$.

If $\overline{s} < \overline{0.5}$, then $\overline{\mu}(xy) \leq \overline{0.5}$ implies $\overline{\mu}(xy) + \overline{s} < \overline{0.5} + \overline{0.5} = \overline{1}$. Thus $(xy)_{\overline{s}}\gamma\overline{\mu}$. So, $(xy)_{\overline{s}} < \sqrt{\gamma}\overline{\mu}$. Hence (1) holds.

Lemma 3.15. An i-v fuzzy subset $\overline{\mu}$ of R the following conditions are equivalent: for all $x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$,

- (1) $y \in R$ and $x_{\overline{s}} < \overline{\mu} \implies (y + x y)_{\overline{s}} < \forall \gamma \overline{\mu}$,
- (2) $\overline{\mu}(y+x-y) \le \max{\{\overline{\mu}(x), \overline{0.5}\}}.$

Proof. (1) \Longrightarrow (2): Let $x, y \in R$. Assume that $\overline{\mu}(y + x - y) > \max\{\overline{\mu}(x), \overline{0.5}\}$.

If $\overline{\mu}(x) > \overline{0.5}$, then $\overline{\mu}(y+x-y) > \overline{\mu}(x)$. Choose $\overline{s} \in D[0,1] \neq \overline{1}$ such that $\overline{\mu}(y+x-y) > \overline{s} > \overline{\mu}(x)$. Then $x_{\overline{s}} < \overline{\mu}$ but $(y+x-y)_{\overline{s}} < \overline{\vee} \gamma \overline{\mu}$, a contradiction.

If $\overline{\mu}(x) \leq \overline{0.5}$, then $\overline{\mu}(y+x-y) > \overline{0.5} \geq \overline{\mu}(x)$. This implies $x_{\overline{0.5}} < \overline{\mu}$ but $(y+x-y)_{\overline{0.5}} < \overline{\vee} \gamma \overline{\mu}$, a contradiction.

In both cases, it is clear that, $\overline{\mu}(y+x-y) \leq \max\{\overline{\mu}(x), \overline{0.5}\}.$

(2) \Longrightarrow (1): Let $x_{\overline{s}} < \overline{\mu}$ and $y \in R$ such that $\overline{\mu}(x) \leq \overline{s}$. By our assumption, $\overline{\mu}(y+x-y) \leq \max\{\overline{\mu}(x), \overline{0.5}\} \leq \max\{\overline{s}, \overline{0.5}\}.$

If $\overline{s} \geq \overline{0.5}$, then $\overline{\mu}(y+x-y) \leq \overline{s}$. Thus $(y+x-y)_{\overline{s}} < \overline{\mu}$.

If $\overline{s} < \overline{0.5}$, then $\overline{\mu}(y+x-y) \leq \overline{0.5}$. Thus $\overline{\mu}(y+x-y) + \overline{s} < \overline{0.5} + \overline{0.5} = \overline{1}$, that is, $(y+x-y)_{\overline{s}}\gamma\overline{\mu}$. So $(y+x-y)_{\overline{s}} < \sqrt{\gamma}\overline{\mu}$.

Lemma 3.16. If $\overline{\mu}$ is an i-v fuzzy subset of R, then the following conditions are equivalent: for all $x, y, a \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$

- (1) $x, y \in R$ and $a_{\overline{s}} < \overline{\mu} \implies ((x+a)y xy)_{\overline{s}} < \forall \gamma \overline{\mu}$,
- $(2) \ \overline{\mu}((x+a)y xy) \le \max\{\overline{\mu}(a), \overline{0.5}\}.$

Proof. (1) \Longrightarrow (2): Let $x, y, a \in R$ and suppose that $\overline{\mu}((x+a)y-xy) > \max\{\overline{\mu}(a), \overline{0.5}\}.$

If $\overline{\mu}(a) > \overline{0.5}$, then $\overline{\mu}((x+a)y - xy) > \overline{\mu}(a)$. Choose $\overline{s} \in D[0,1] \neq \overline{1}$ such that $\overline{\mu}((x+a)y - xy) > \overline{s} > \overline{\mu}(a)$.

This implies that $a_{\overline{s}} < \overline{\mu}$ but $((x+a)y - xy)_{\overline{s}} < \overline{\vee \gamma} \overline{\mu}$, which is a contradiction.

If $\overline{\mu}(a) \leq \overline{0.5}$, then $\overline{\mu}((x+a)y-xy) > \overline{0.5}$. This implies that $a_{\overline{0.5}} < \overline{\mu}$ but $((x+a)y-xy)_{\overline{0.5}} < \overline{\vee} \gamma \overline{\mu}$, which is a contradiction. Thus $\overline{\mu}((x+a)y-xy) \leq \max\{\overline{\mu}(a),\overline{0.5}\}$.

(2) \Longrightarrow (1): Let $x, y, a \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ such that $a_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(a) \leq \overline{s}$. On one hand,

$$\overline{\mu}((x+a)y - xy) \le \max\{\overline{\mu}(a), \overline{0.5}\} \le \max\{\overline{s}, \overline{0.5}\}.$$

If
$$\overline{s} \geq \overline{0.5}$$
, then $\overline{\mu}((x+a)y - xy) \leq \overline{s}$ and so $((x+a)y - xy)_{\overline{s}} < \overline{\mu}$.

If
$$\overline{s} < \overline{0.5}$$
, then $\overline{\mu}((x+a)y - xy) \le \overline{0.5}$. Thus $\overline{\mu}((x+a)y - xy) + \overline{s} < \overline{0.5} + \overline{0.5} = \overline{1}$. So $((x+a)y - xy)_{\overline{s}}\gamma\overline{\mu}$. Hence $((x+a)y - xy)_{\overline{s}} < \sqrt{\gamma}\overline{\mu}$.

Theorem 3.17. Let $\overline{\mu}$ be an i-v fuzzy subset of R. Then $\overline{\mu}$ is an i-v $(<, < \vee \gamma)$ -fuzzy subnear-ring if and only if

- $(1) \ \overline{\mu}(x-y) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}.$
- $(2)\overline{\mu}(xy) \leq \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}, \text{ for all } x, y \in R.$

Proof. Straightforward from Lemma 3.12 and Lemma 3.13.

Theorem 3.18. Let $\overline{\mu}$ be an i-v fuzzy subset of R. Then $\overline{\mu}$ is an i-v $(<, < \lor \gamma)$ -fuzzy ideal if and only if for all $x, y \in R$,

- $(1) \ \overline{\mu}(x-y) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\},\$
- $(2) \ \overline{\mu}(y+x-y) \le \max\{\overline{\mu}(x), \overline{0.5}\},\$
- (3) $\overline{\mu}(xy) \le \max{\{\overline{\mu}(y), \overline{0.5}\}},$
- $(4) \ \overline{\mu}((x+a)y xy) \le \max\{\overline{\mu}(a), \overline{0.5}\}.$

Proof. The proof follows from Lemmas 3.12, 3.14, 3.15 and 3.16.

Theorem 3.19. An i-v fuzzy subset $\overline{\mu}$ of R is an i-v $(<, < \vee \gamma)$ -fuzzy ideal (subnearring) of R if and only if the level subset $\overline{L}(\overline{\mu}:\overline{t})$ is an ideal of R, for all $\overline{0.5} \le \overline{t} < \overline{1}$.

Proof. Let $\overline{\mu}$ be an i-v $(<, < \vee \gamma)$ -fuzzy ideal of R and $\overline{0.5} \leq \overline{t} < \overline{1}$. Let $x, y \in \overline{L}(\overline{\mu} : \overline{t})$. Then $\overline{\mu}(x) \leq \overline{t}$ and $\overline{\mu}(y) \leq \overline{t}$. By Theorem 3.18,

$$\overline{\mu}(x-y) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\} \le \max\{\overline{t}, \overline{0.5}\} = \overline{t},$$

that is $x - y \in \overline{L}(\overline{\mu} : \overline{t})$.

Let $x \in \overline{L}(\overline{\mu} : \overline{t})$ and $y \in R$. Then $\overline{\mu}(x) \leq \overline{t}$. Thus, $\overline{\mu}(y+x-y) \leq \max\{\overline{\mu}(x), \overline{0.5}\} \leq \max\{\overline{t}, \overline{0.5}\} = \overline{t}$. So, $(y+x-y) \in \overline{L}(\overline{\mu} : \overline{t})$. Let $x \in R$ and $y \in \overline{L}(\overline{\mu} : \overline{t})$ such that $\overline{\mu}(y) \leq \overline{t}$. Since $\overline{\mu}$ is an i-v (<, < $\vee \gamma$)-fuzzy ideal of R, we have

$$\overline{\mu}(xy) \leq \max{\{\overline{\mu}(y), \overline{0.5}\}} \leq \max{\{\overline{t}, \overline{0.5}\}} = \overline{t}.$$

Thus, $xy \in \overline{L}(\overline{\mu} : \overline{t})$.

Similarly, $((x+a)y - xy) \in \overline{L}(\overline{\mu} : \overline{t}).$

Conversely, assume that $\overline{L}(\overline{\mu}:\overline{t})$ is an ideal of R for all $\overline{0.5} \leq \overline{t} < \overline{1}$. If there exist $x, y \in R$ such that $\overline{\mu}(x-y) > \max{\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}}$. Choose \overline{t} such that

$$\overline{\mu}(x-y) > \overline{t} > \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}.$$

Then $x, y \in \overline{L}(\overline{\mu} : \overline{t})$. Since $\overline{L}(\overline{\mu} : \overline{t})$ is an ideal of $R, x - y \in \overline{L}(\overline{\mu} : \overline{t})$. Thus $\overline{\mu}(x-y) \leq \overline{t}$, a contradiction to our assumption. So $\overline{\mu}(x-y) \leq \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}$, for all $x, y \in R$.

Assume that $\overline{\mu}(y+x-y) > \max\{\overline{\mu}(x), \overline{0.5}\}$, for some $x,y \in R$. Choose \overline{t} such that

$$\overline{\mu}(y+x-y) > \overline{t} > \max\{\overline{\mu}(x), \overline{0.5}\}.$$

Then $x \in \overline{L}(\overline{\mu} : \overline{t})$ but $y + x - y \notin \overline{L}(\overline{\mu} : \overline{t})$, a contradiction to our assumption that $\overline{L}(\overline{\mu} : \overline{t})$ is an ideal of R. Thus $\overline{\mu}(y + x - y) \leq \max{\{\overline{\mu}(x), \overline{0.5}\}}$.

Assume that $\overline{\mu}(xy) > \max{\{\overline{\mu}(y), \overline{0.5}\}}$. Choose \overline{t} such that

$$\overline{\mu}(xy) > \overline{t} > \max\{\overline{\mu}(y), \overline{0.5}\}.$$

Then $y \in \overline{L}(\overline{\mu} : \overline{t})$ but $xy \notin \overline{L}(\overline{\mu} : \overline{t})$, a contradiction to our assumption. Thus $\overline{\mu}(xy) \leq \max{\{\overline{\mu}(y), \overline{0.5}\}}$.

Similarly, we prove that $\overline{\mu}((x+a)y-xy) \leq \max\{\overline{\mu}(a),\overline{0.5}\}$. Thus $\overline{\mu}$ is an i-v $(<, < \vee \gamma)$ -fuzzy ideal of R.

Definition 3.20. Let I be a non empty subset of a near-ring R. The i-v anti-characteristic function $\overline{f}_I: R \to D[0,1]$ is defined such that,

$$\overline{f}_I(x) = \begin{cases} \overline{0} & \text{for all } x \in I \\ \overline{1} & \text{otherwise.} \end{cases}$$

Theorem 3.21. A non empty subset I of R is an ideal of R if and only if \overline{f}_I is an i-v (<, < $\lor \gamma$)- fuzzy ideal of R.

Proof. Assume that I is an ideal of R. Suppose that

$$\overline{f}_I(x-y) > \max\{\overline{f}_I(x), \overline{f}_I(y), [0.5, 0.5]\}.$$

Then $\overline{f}_I(x-y)=\overline{1}$ and $\overline{f}_I(x)=\overline{f}_I(y)=\overline{0}$. This implies $x,y\in I$ but $x-y\notin I$, which is a contradiction. Thus $\overline{f}_I(x-y)\leq \max\{\overline{f}_I(x),\overline{f}_I(y),\overline{0.5}\}$.

Suppose that $\overline{f}_I(y+x-y) > \max\{\overline{f}_I(x),\overline{0.5}\}$. Then $\overline{f}_I(y+x-y) = \overline{1}$ and $\overline{f}_I(x) = \overline{0}$. This implies $x \in I$ but $y+x-y \notin I$, which is a contradiction to our assumption. Thus $\overline{f}_I(y+x-y) \leq \max\{\overline{f}_I(x),\overline{0.5}\}$.

Suppose that $\overline{f}_I(xy) > \max\{\overline{f}_I(y), \overline{0.5}\}$ for all $x, y \in R$, that is, $\overline{f}_I(xy) = \overline{1}$ and $\overline{f}_I(y) = \overline{0}$. Then this implies $y \in I$ but $xy \notin I$, which is a contradiction. Thus $\overline{f}_I(xy) \leq \max\{\overline{f}_I(y), \overline{0.5}\}$.

Suppose that $\overline{f}_I((x+a)y-xy)>\max\{\overline{f}_I(a),\overline{0.5}\}$. Then $\overline{f}_I((x+a)y-xy)=\overline{1}$ and $\overline{f}_I(a)=\overline{0}$. This implies $a\in I$ but $(x+a)y-xy\notin I$, which is a contradiction. Thus $\overline{f}_I((x+a)y-xy)\leq \max\{\overline{f}_I(a),\overline{0.5}\}$.

Conversely, let \overline{f}_I be an i-v (<, $< \lor \gamma$)-fuzzy ideal of R. For any $x, y \in I$, we have

$$\begin{split} \overline{f}_I(x-y) &\leq \max\{\overline{f}(x), \overline{f}(y), \overline{0.5}\} \\ &= \max\{\overline{0}, \overline{0}, \overline{0.5}\} \\ &= \overline{0.5} \neq \overline{1}. \end{split}$$

Then $\overline{f}_I(x-y) = \overline{0}$. Thus $x-y \in I$.

Let $y \in R$ and $x \in I$. Then

$$\begin{split} \overline{f}_I(y+x-y) &\leq \max\{\overline{f}(x), \overline{0.5}\} \\ &= \max\{\overline{0}, \overline{0.5}\} \\ &= \overline{0.5} \neq \overline{1}. \end{split}$$

Thus $\overline{f}_I(y+x-y)=\overline{0}$. This shows that $y+x-y\in I$ and therefore (I,+) is a normal subgroup of (R,+).

Now let $x \in R$ and $y \in I$. Then

$$\begin{split} \overline{f}_I(xy) &\leq \max\{\overline{f}(y), \overline{0.5}\} \\ &= \max\{\overline{0}, \overline{0.5}\} \\ &= \overline{0.5} \neq \overline{1}. \end{split}$$

Thus $xy \in I$.

Finally, let $x, y \in R$ and $a \in I$. Then

$$\begin{split} \overline{f}_I((x+a)y - xy) &\leq \max\{\overline{f}(a), \overline{0.5}\} \\ &= \max\{\overline{0}, \overline{0.5}\} \\ &= \overline{0.5} \neq \overline{1}. \end{split}$$

Thus $(x + a)y - xy \in I$. So I is an ideal of R.

Theorem 3.22. Every i-v (<, <)-fuzzy ideal of R is an i-v (<, < $\forall \gamma$)-fuzzy ideal(subnearring) of R.

Proof. The proof is straightforward.

The converse of Theorem 3.22 is not true in general as shown in the following example.

Example 3.23. Let $R = \{0, a, b, c\}$ be a set with two binary operation '+' and $'\cdot'$ defined as follows:

+	0	a	b	c	•	0	a	b	c
0	0	a	b	c	0	0	a	0	a
a	a	0	c	b	a	0	a	0	a
b	b	c	0	a	b	0	a	0	a
c	c	b	a	0	c	0	a	b	c

Then clearly $(R,+,\cdot)$ is a left near-ring. Let $\overline{\mu}:R\to D[0,1]$ be an i-v fuzzy subset of R and defined by $\overline{\mu}(0)=[0.2,0.3],\overline{\mu}(a)=[0.6,0.7]=\overline{\mu}(c)$ and $\overline{\mu}(b)=[0,0.1].$ Then $\overline{\mu}$ is an i-v $(<,<\vee\gamma)$ -fuzzy ideal of R, but not i-v (<,<)-fuzzy ideal of R, since $b_{[0.11,0.12]}<\overline{\mu}$ \Longrightarrow $(b-b)_{[0.11,0.12]}=0_{[0.11,0.12]}\overline{<\mu}$.

In next Theorem, we give a condition for an i-v $(<, < \lor \gamma)$ -fuzzy ideal of R to be an i-v (<, <)-fuzzy ideal of R.

Theorem 3.24. Let $\overline{\mu}$ be an i-v (<, < $\vee \gamma$)-fuzzy ideal of R such that $\overline{\mu}(x) > \overline{0.5}$ for all $x \in R$. Then $\overline{\mu}$ is an i-v (<, <)-fuzzy ideal of R.

Proof. Let $\overline{\mu}$ be an i-v $(<,<\vee\gamma)$ fuzzy ideal of R such that $\overline{\mu}(x)>\overline{0.5}$, for all $x\in R$. Let $x,y\in R$ and $\overline{s},\overline{t}\in D[0,1]\neq \overline{1}$ be such that $x_{\overline{s}},y_{\overline{t}}<\overline{\mu}$. Then $\overline{\mu}(x)\leq \overline{s}$ and $\overline{\mu}(y)\leq \overline{t}$. Thus

$$\overline{\mu}(x-y) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\} = \max\{\overline{\mu}(x), \overline{\mu}(y)\} \le \max\{\overline{s}, \overline{t}\}.$$

This implies that $(x-y)_{\max\{\overline{s},\overline{t}\}} < \overline{\mu}$.

Let $x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ be such that $x_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(x) \leq \overline{s}$. Since $\overline{\mu}$ is an i-v $(<, < \vee q)$ -fuzzy ideal of R, we have

$$\overline{\mu}(y+x-y) \le \max\{\overline{\mu}(x), \overline{0.5}\} \le \overline{s}.$$

Thus $(y+x-y)_{\overline{s}} < \overline{\mu}$.

Now let $x, y \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ such that $y_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(y) \leq \overline{s}$. By assumption, $\overline{\mu}(xy) \leq \max\{\overline{\mu}(y), \overline{0.5}\} \leq \overline{s}$ implies $(xy)_{\overline{s}} < \overline{\mu}$.

Let $x, y, a \in R$ and $\overline{s} \in D[0, 1] \neq \overline{1}$ such that $a_{\overline{s}} < \overline{\mu}$. Then $\overline{\mu}(a) \leq \overline{s}$. Thus $\overline{\mu}((x+a)y-xy) \leq \max\{\overline{\mu}(a), \overline{0.5}\} \leq \overline{s}$. This implies that $((x+a)y-xy)_{\overline{s}} < \overline{\mu}$. So $\overline{\mu}$ is an i-v (<,<)-fuzzy ideal of R.

Theorem 3.25. The union of any family of i-v $(<, < \lor \gamma)$ -fuzzy ideals of R is an i-v $(<, < \lor \gamma)$ -fuzzy ideal of R.

Proof. Let $\{\overline{\mu}_j\}_{j\in\Omega}$ be any family of i-v $(<,<\vee\gamma)$ -fuzzy ideals of R and $\overline{\mu}=\bigcup_{j\in\Omega}\overline{\mu}_j$. Let $x,y,a\in R$. Then,

$$\begin{split} \overline{\mu}(x-y) &= (\bigcup_{j \in \Omega} \overline{\mu}_j)(x-y) \\ &= \bigcup_{j \in \Omega} (\overline{\mu}_j(x-y)) \\ &\leq \bigcup_{j \in \Omega} (\max\{\overline{\mu}_j(x), \overline{\mu}_j(y), \overline{0.5}\}) \\ &= \max\{(\bigcup_{j \in \Omega} \overline{\mu}_j)(x), (\bigcup_{j \in \Omega} \overline{\mu}_j)(y), \overline{0.5}\}. \end{split}$$

Thus $\overline{\mu}(x-y) \leq \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}.$ Now,

$$\begin{split} \overline{\mu}(y+x-y) &= (\bigcup_{j\in\Omega} \overline{\mu}_j)(y+x-y) \\ &= \bigcup_{j\in\Omega} (\overline{\mu}_j(y+x-y)) \\ &\leq \bigcup_{j\in\Omega} (\max\{\overline{\mu}_j(x), \overline{0.5}\}) \\ &= \max\{(\bigcup_{j\in\Omega} \overline{\mu}_j)(x), \overline{0.5}\} \\ &= \max\{\overline{\mu}(x), \overline{0.5}\}. \\ &= 329 \end{split}$$

Next,

$$\begin{split} \overline{\mu}(xy) &= (\bigcup_{j \in \Omega} \overline{\mu}_j)(xy) \\ &= \bigcup_{j \in \Omega} (\overline{\mu}_j(xy)) \\ &\leq \bigcup_{j \in \Omega} \{ \max\{\overline{\mu}_j(y), \overline{0.5}\} \} \\ &= \max\{(\bigcup_{j \in \Omega} \overline{\mu}_j)(y), \overline{0.5}\} \\ &= \max\{\overline{\mu}(y), \overline{0.5}\}. \end{split}$$

Further,

$$\begin{split} \overline{\mu}((x+a)y-xy) &= (\bigcup_{j\in\Omega}\overline{\mu}_j)((x+a)y-xy) \\ &= \bigcup_{j\in\Omega}(\overline{\mu}_j((x+a)y-xy)) \\ &\leq \bigcup_{j\in\Omega}\{\max\{\overline{\mu}_j(a),\overline{0.5}\}\} \\ &= \max\{(\bigcup_{j\in\Omega}\overline{\mu}_j)(a),\overline{0.5}\} \\ &= \max\{\overline{\mu}(a),\overline{0.5}\}. \end{split}$$

So $\overline{\mu} = \bigcup_{j \in \Omega} \overline{\mu}_j$ is an i-v (<, < $\vee \gamma$)-fuzzy ideal of R.

For any i-v fuzzy subset $\overline{\mu}$ of R and $\overline{t} \in D[0,1] \neq \overline{1}$. Consider the sets $\overline{Q}(\overline{\mu}:\overline{t}) = \{x \in R | x_{\overline{t}} \gamma \overline{\mu}\}$

and

$$[\overline{\mu}]_{\overline{t}} = \{x \in R | x_{\overline{t}} < \vee \gamma \overline{\mu}\}.$$
 Clearly, $[\overline{\mu}]_{\overline{t}} = \overline{L}(\overline{\mu} : \overline{t}) \cup \overline{Q}(\overline{\mu}, \overline{t}).$ We call $[\overline{\mu}]_{\overline{t}}$ as a $(< \vee \gamma)$ — level set and $\overline{Q}(\overline{\mu} : \overline{t})$ a γ -level set of $\overline{\mu}$.

Lemma 3.26. Every i-v fuzzy subset $\overline{\mu}$ of R satisfies the following $\overline{t} \in D[0, 0.5], \overline{t} \neq \overline{0.5}$ implies $[\overline{\mu}]_{\overline{t}} = \overline{Q}(\overline{\mu} : \overline{t}).$

Proof. Clearly, $\overline{Q}(\overline{\mu}:\overline{t})\subseteq [\overline{\mu}]_{\overline{t}}$, from the definition of $\overline{Q}(\overline{\mu}:\overline{t})$. Let $x\in [\overline{\mu}]_{\overline{t}}$ and $\overline{0}\leq \overline{t}<\overline{0.5}$. Then $x_{\overline{t}}<\overline{\mu}$ or $x_{\overline{t}}\gamma\overline{\mu}$. If $x_{\overline{t}}\gamma\overline{\mu}$, then there is nothing to prove. If $x_{\overline{t}}<\overline{\mu}$, then $\overline{\mu}(x)\leq \overline{t}$, that is, $\overline{\mu}(x)+\overline{t}<\overline{t}+\overline{t}<\overline{0.5}+\overline{0.5}=\overline{1}$. Thus $x\in \overline{Q}(\overline{\mu}:\overline{t})$.

Lemma 3.27. Every i-v fuzzy subset $\overline{\mu}$ of R satisfies the following $\overline{t} \in D[0.5, 1] \neq \overline{1}$ implies $[\overline{\mu}]_{\overline{t}} = \overline{L}(\overline{\mu} : \overline{t})$.

Proof. Clearly, $\overline{L}(\overline{\mu}:\overline{t}) \subseteq [\overline{\mu}]_{\overline{t}}$, from the definition of $\overline{L}(\overline{\mu}:\overline{t})$. Let $x \in [\overline{\mu}]_{\overline{t}}$ and $\overline{t} \in D[0.5,1]$ with $\overline{t} \neq \overline{1}$ be such that $x_{\overline{t}} < \overline{\mu}$ or $x_{\overline{t}}\gamma\overline{\mu}$. If $x_{\overline{t}} < \overline{\mu}$, there is nothing to prove. If $x_{\overline{t}}\gamma\overline{\mu}$, then $\overline{\mu}(x) + \overline{t} < \overline{1}$, implies that, $\overline{\mu}(x) \leq \overline{t}$. Thus $x \in \overline{L}(\overline{\mu}:\overline{t})$.

Theorem 3.28. Let $\overline{\mu}$ be an i-v fuzzy subset of R. Then, $\overline{\mu}$ is an i-v $(<, < \vee \gamma)$ -fuzzy ideal (subnear-ring) of R if and only if $[\overline{\mu}]_{\overline{t}} \neq \emptyset$ is an ideal (subnear-ring) of R.

Proof. Let $\overline{\mu}$ be an i-v $(<, < \vee \gamma)$ -fuzzy ideal of R and $\overline{t} \in D[0,1]$ with $\overline{t} \neq \overline{1}$. Let $x, y \in [\overline{\mu}]_{\overline{t}}$. Then $\overline{\mu}(x) \leq \overline{t}$ or $\overline{\mu}(x) + \overline{t} < \overline{1}$ and $\overline{\mu}(y) \leq \overline{t}$ or $\overline{\mu}(y) + \overline{t} < \overline{1}$. We first prove the condition (i) of Definition 3.4. Consider four cases:

- (i) $\overline{\mu}(x) \leq \overline{t}$ and $\overline{\mu}(y) \leq \overline{t}$,
- (ii) $\overline{\mu}(x) \leq \overline{t}$ and $\overline{\mu}(y) + \overline{t} < \overline{1}$,
- (iii) $\overline{\mu}(x) + \overline{t} < \overline{1}$ and $\overline{\mu}(y) \leq \overline{t}$,
- (iv) $\overline{\mu}(x) + \overline{t} < \overline{1}$ and $\overline{\mu}(y) + \overline{t} < \overline{1}$.

Case (i): Suppose $\overline{\mu}(x) \leq \overline{t}$ and $\overline{\mu}(y) \leq \overline{t}$. Then

$$\overline{\mu}(x-y) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\} \le \max\{\overline{t}, \overline{0.5}\}.$$

If $\overline{t} < \overline{0.5}$, then $\overline{\mu}(x-y) < \overline{0.5}$, that is, $\overline{\mu}(x-y) + \overline{t} < \overline{0.5} + \overline{0.5} = \overline{1}$. This implies that $(x-y)_{\overline{t}}\gamma\overline{\mu}$. If $\overline{t} \geq \overline{0.5}$, then $\overline{\mu}(x-y) \leq \overline{t}$, that is, $(x-y)_{\overline{t}} < \overline{\mu}$. Thus $x-y \in [\overline{\mu}]_{\overline{t}}$. Case (ii): Suppose $\overline{\mu}(x) \leq \overline{t}$ and $\overline{\mu}(y) + \overline{t} < \overline{1}$. Then,

$$\overline{\mu}(x-y) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\} \le \max\{\overline{t}, \overline{1} - \overline{t}, \overline{0.5}\}.$$

If $\overline{t} < \overline{0.5}$, then $\overline{\mu}(x-y) \leq \overline{1} - \overline{t}$. This implies that $\overline{\mu}(x-y) + \overline{t} < \overline{1}$. Thus, $(x-y)_{\overline{t}} \gamma \overline{\mu}$. If $\overline{t} \geq \overline{0.5}$, then $\overline{\mu}(x-y) \leq \overline{t}$, that is, $(x-y)_{\overline{t}} < \overline{\mu}$.

Similarly, we prove case (iii).

Case (iv): Suppose $\overline{\mu}(x) + \overline{t} < \overline{1}$ and $\overline{\mu}(y) + \overline{t} < \overline{1}$. Then

$$\overline{\mu}(x-y) \le \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\} \le \max\{\overline{1} - \overline{t}, \overline{0.5}\}.$$

If $\overline{t} < \overline{0.5}$, then $\overline{\mu}(x-y) \leq \overline{1} - \overline{t}$. This implies $(x-y)_{\overline{t}}\gamma\overline{\mu}$. If $\overline{t} \geq \overline{0.5}$, then $\overline{\mu}(x-y) \leq \overline{0.5} \leq \overline{t}$. This implies $(x-y)_{\overline{t}} < \overline{\mu}$. Thus $x-y \in [\overline{\mu}]_{\overline{t}}$.

Let $x \in [\overline{\mu}]_{\overline{t}}$ and $y \in R$. Then $\overline{\mu}(x) \leq \overline{t}$ or $\overline{\mu}(x) + \overline{t} < \overline{1}$.

We now prove condition (ii) of Definition 3.4. There are two cases:

Case (i): Let $\overline{\mu}(x) \leq \overline{t}$. Then

$$\overline{\mu}(y+x-y) \le \max\{\overline{\mu}(x), \overline{0.5}\} \le \max\{\overline{t}, \overline{0.5}\}.$$

If $\overline{t} < \overline{0.5}$, then $\overline{\mu}(y+x-y) \leq \overline{0.5}$, that is, $\overline{\mu}(y+x-y) + \overline{t} < \overline{0.5} + \overline{0.5} = \overline{1}$. If $\overline{t} \geq \overline{0.5}$, then $\overline{\mu}(y+x-y) \leq \overline{t}$. Thus $(y+x-y)_{\overline{t}} < \vee \gamma \overline{\mu}$.

Case (ii): Let $\overline{\mu}(x) + \overline{t} < \overline{1}$. Then

$$\overline{\mu}(y+x-y) \le \max\{\overline{\mu}(x), \overline{0.5}\} \le \max\{\overline{1}-\overline{t}, \overline{0.5}\}.$$

If $\overline{t} < \overline{0.5}$, then $\overline{\mu}(y+x-y) \leq \overline{1} - \overline{t}$, that is, $\overline{\mu}(y+x-y) + \overline{t} \leq \overline{1}$. If $\overline{t} \geq \overline{0.5}$, then $\overline{\mu}(y+x-y) \leq \overline{0.5} \leq \overline{t}$. Thus $(y+x-y)_{\overline{t}} < \overline{\mu}$. So $y+x-y \in [\overline{\mu}]_{\overline{t}}$.

Let $x \in R$ and $y \in [\overline{\mu}]_{\overline{t}}$. Then $\overline{\mu}(y) \leq \overline{t}$ or $\overline{\mu}(y) + \overline{t} < \overline{1}$. Next we prove the condition for left ideal. There are two cases:

Case (i): Suppose $\overline{\mu}(y) \leq \overline{t}$. Then $\overline{\mu}(xy) \leq \max\{\overline{\mu}(y), \overline{0.5}\} \leq \max\{\overline{t}, \overline{0.5}\}$. If $\overline{t} < \overline{0.5}$, then $\overline{\mu}(xy) \leq \overline{0.5}$. This implies $\overline{\mu}(xy) + \overline{t} < \overline{0.5} + \overline{0.5} = \overline{1}$. Thus $(xy)_{\overline{t}} \gamma \overline{\mu}$. If $\overline{t} \geq \overline{0.5}$, then $\overline{\mu}(xy) \leq \overline{t}$, that is, $(xy)_{\overline{t}} \leq \overline{\mu}$. So $(xy)_{\overline{t}} < \sqrt{\gamma}\overline{\mu}$.

Case (ii): Suppose $\overline{\mu}(y) + \overline{t} < \overline{1}$. Then

$$\overline{\mu}(xy) \le \max\{\overline{\mu}(y), \overline{0.5}\} \le \max\{\overline{1} - \overline{t}, \overline{0.5}\}.$$

If $\overline{t} < \overline{0.5}$, then $\overline{\mu}(xy) \leq \overline{1} - \overline{t}$. This implies $\overline{\mu}(xy) + \overline{t} \leq \overline{1}$. If $\overline{t} \geq \overline{0.5}$, then $\overline{\mu}(xy) \leq \overline{0.5} \leq \overline{t}$. Thus $(xy)_{\overline{t}} < \vee \gamma \overline{\mu}$. So $xy \in [\overline{\mu}]_{\overline{t}}$.

Similarly, $(x+a)y - xy \in [\overline{\mu}]_{\overline{t}}$ for all $x, y \in R$ and $a_{\overline{t}} \in [\overline{\mu}]_{\overline{t}}$. Hence, $[\overline{\mu}]_{\overline{t}}$ is an ideal of R.

Conversely, assume that $[\overline{\mu}]_{\overline{t}}$ is an ideal of R, for all $\overline{0} \leq \overline{t} < \overline{1}$. If possible, let

$$\overline{\mu}(x-y) > \max{\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}}.$$

Choose \bar{t} such that

$$\overline{\mu}(x-y) > \overline{t} > \max\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}.$$

Then, $\overline{0.5} \leq \overline{t} < \overline{1}$ and $x, y \in \overline{L}(\overline{\mu} : \overline{t}) \subseteq [\overline{\mu}]_{\overline{t}}$, but $(x - y) \notin \overline{L}(\overline{\mu} : \overline{t})$, which is a contradiction. Thus, $\overline{\mu}(x - y) \leq \max{\{\overline{\mu}(x), \overline{\mu}(y), \overline{0.5}\}}$.

Suppose that $\overline{\mu}(y+x-y) > \max\{\overline{\mu}(x), \overline{0.5}\}$. Choose \overline{t} such that

$$\overline{\mu}(y+x-y) > \overline{t} > \max\{\overline{\mu}(x), \overline{0.5}\}.$$

Then $\overline{0.5} \leq \overline{t} < \overline{1}$, $x \in \overline{L}(\overline{\mu} : \overline{t})$ but $(y + x - y) \notin \overline{L}(\overline{\mu} : \overline{t})$, a contradiction. Thus $\overline{\mu}(y + x - y) \leq \max{\{\overline{\mu}(x), \overline{0.5}\}}$.

In a similar way, we can prove that $\overline{\mu}(xy) \leq \max\{\overline{\mu}(y), \overline{0.5}\}$ and $\overline{\mu}((x+a)y-xy) \leq \max\{\overline{\mu}(a), \overline{0.5}\}$, for all $x, y, a \in R$. So $\overline{\mu}$ is an i-v $(<, < \vee \gamma)$ - fuzzy ideal of R.

4. ACKNOWLEDGMENT

The research of the third author is partially supported by UGC-BSR grant # F4-1/2006(BSR)/7-254/2009(BSR) in India.

References

- [1] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy sets and Systems 44 (1991) 139-146.
- [2] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzzy Sets and Systems 35 (1990) 121–124.
- [3] B. Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, Journals of Sciences, Islamic republic of Iran 12 (2) (2001) 171–175.
- [4] B. Davvaz, Jianming Zhan and K. P. Shum, Generalized fuzzy H_v-submodules endowed with interval valued membership functions, Inform. Sci. 178 (2008) 3147–3159.
- [5] K. H. Kim, Y. B. Jun and Y. H. Yon, On anti fuzzy ideals in near-rings, Iranian Journal of Fuzzy Systems 2 (2005) 71–80.
- [6] Kyung Ho Kim and Y. B. Jun, On anti fuzzy R-subgroups of near-rings, Scientiae Mathematicae 2 (1999) 147–153.
- [7] A. Rosenfeld, Fuzzy groups, J.f Math. Anal. Appl. 35 (1971) 512-517.
- [8] M. Shabir and N. Rehman, Characterizations of ternary semigroups by their anti-fuzzy ideals, Ann. Fuzzy Math. Inform. 2 (2) (2011) 227–238.
- [9] A. B. Saeid and Y.B. Jun, Redefined fuzzy subalgebras of BCK/BCI-algebras, Iranian Journal of Fuzzy Systems 5 (2) (2008) 63-70.
- [10] Tariq Anwar, Mammuhad Naeem and Saleem Abdullah, Generalizaed anti fuzzy ideals of near-rings, Indian Journal of Science and Technology 6 (8) (2013) 5143–5154.
- [11] N. Thillaigovindan and V. Chinnadurai, On Interval Valued Fuzzy Quasi-Ideals of Semigroups, East Asian Mathematics Journals 25 (4) (2009) 449–467.
- [12] N. Thillaigovindan, V. Chinnadurai and K. Lenin Muthu Kumaran, Interva valued anti fuzzy ideals of near-rings, Proceedings of the International Conference on Mathematical Sciences, published by Elsevier (2014) 422–425.
- [13] L. A. Zadeh, Fuzzy sets, Informatin and Control 8 (1965) 338-353.
- [14] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975) 199–249.

N. THILLAIGOVINDAN (thillaigovindan.natesan@gmail.com)

 $\underline{V.~C_{HINNADURAI}}~(\texttt{kv.chinnadurai@yahoo.com})$

Department of Mathematics, Annamalai University, Annamalainagar, India

 $\underline{\mathrm{K.\ LENIN\ MUTHU\ KUMARAN}}\ (\texttt{leninmuthukumaran@gmail.com})$

Department of Mathematics, Annamalai University, Annamalainagar, India