Annals of Fuzzy Mathematics and Informatics Volume 12, No. 2, (August 2016), pp. 309–318 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Anti fuzzy quasi-ideals of near-rings

N. THILLAIGOVINDAN, V. CHINNADURAI, K. LENIN MUTHU KUMARAN

Received 25 November 2015; Revised 9 January 2016; Accepted 1 March 2016

ABSTRACT. In this paper, we introduce the notion of anti fuzzy quasiideals of near-rings. We have discussed some of their theoretical properties in detail and obtained some characterizations.

2010 AMS Classification: 03E72, 08A72

Keywords: Near-ring, Quasi-ideal, Anti fuzzy quasi-ideal.

Corresponding Author: V. Chinnadurai (kv.chinnadurai@yahoo.com)

1. INTRODUCTION

Zadeh[10] introduced the concept of fuzzy sets in 1965. Rosenfeld[9] initiated the study of fuzzy subgroup and investigated some of its properties. In [1], Abou Zaid introduced the concept of fuzzy subnear-rings and ideals of near-rings. In 1990, Biwas[2] introduced the notion of anti fuzzy subgroups. Kim, Jun and Yon[5] have discussed the notion of anti fuzzy ideals of near-ring. Iwao Yakabe[4] initiated the idea of quasi-ideals in right near-rings. Kim and Jun[6] introduced the concept of anti fuzzy *R*-subgroups of near-rings. Narayanan[7] has studied the notion of fuzzy quasi-ideals in near-rings. Chinnadurai and Kadalarasi[3] has studied the concept of interval valued fuzzy quasi-ideals of near-rings. In this paper, we introduce the notion of anti fuzzy quasi-ideals of a near-ring. We investigate some of their theoretical properties and provide examples. It is shown that every anti fuzzy ideal (*R*-subgroup) of a near-ring is an anti fuzzy quasi-ideal, but the converse is not true in general.

2. Preliminaries

Throughout this paper R will denote a left near-ring. In this section, we present some basic definitions and results used in this paper.

Definition 2.1 ([8]). A near-ring is an algebraic system $(R, +, \cdot)$ consisting of a non empty set R together with two binary operations + and \cdot such that (R, +) is a group, not necessarily abelian and (R, \cdot) is a semigroup in which the distributive law: $x \cdot (y+z) = x \cdot y + x \cdot z$ holds for all $x, y, z \in R$. We will use the word 'near-ring 'to mean 'left near-ring '. We denote xy instead of $x \cdot y$.

An ideal I of a near-ring R is a subset of R such that

(i) (I, +) is a normal subgroup of (R, +),

(ii) $RI \subseteq I$,

(iii) $(x+a)y - xy \in I$, for any $a \in I$ and $x, y \in R$.

Note that I is a left ideal of R, if I satisfies (i) and (ii), and a right ideal of R if it satisfies (i) and (iii).

Definition 2.2 ([6]). A nonempty subset H of R is said to be a two sided R-subgroup of R if

(i) (H, +) is a subgroup of (R, +),
(ii) RH ⊂ H,
(iii) HR ⊂ H.

If H satisfies (i) and (ii), it is called a left R-subgroup of R. If H satisfies (i) and (iii), it is called a right R-subgroup of R.

Definition 2.3 ([8]). Let A and B be any two non-empty subsets of R. We define $AB = \{ab \mid a \in A, b \in B\}$

and

 $A * B = \{ (a + c)b - ab \,|\, a, b \in A, c \in B \}.$

A near-ring R is called zero-symmetric, if 0x = 0 for all $x \in R$.

Definition 2.4 ([8]). An additive subgroup Q of (R, +) is said to be a quasi-ideal of R if $QR \cap RQ \cap Q * R \subseteq Q$.

Definition 2.5 ([6]). A fuzzy subset μ of R is a function $\mu : R \to [0, 1]$. For $t \in [0, 1]$, the set $\mu_t = \{x \in R | \mu(x) \le t\}$ is called a t lower *t*-level set of μ .

Definition 2.6 ([8]). The characteristic function of R is denoted by \mathbf{R} , that is $\mathbf{R}(x) = 1$ for all $x \in R$.

Definition 2.7 ([8]). Let μ and λ be any two fuzzy subsets of R. Then sum $\mu + \lambda$, product $\mu \cdot \lambda$, and product $\mu * \lambda$ are fuzzy subsets of R defined by

 $(\mu*\lambda)(x) = \begin{cases} \sup_{x=(a+c)b-ab} \min\{\mu(c),\lambda(b)\} & \text{if } x \text{ can be expressed as } x=(a+c)b-ab\\ 0 & \text{otherwise,} \end{cases}$

where $x \in R$.

Definition 2.8 ([7]). A fuzzy subgroup μ of R is called a fuzzy quasi-ideal of R, if $(\mu \cdot \mathbf{R}) \cap (\mathbf{R} \cdot \mu) \cap (\mu * \mathbf{R}) \subseteq \mu$.

Definition 2.9 ([6]). A fuzzy subset μ of R is called an anti fuzzy left(resp. right)R-subgroup of R, if

(i) $\mu(x-y) \le \max\{\mu(x), \mu(y)\},\$

(ii) $\mu(xy) \le \mu(y)$ (resp. $\mu(xy) \le \mu(x)$) for all $x, y \in R$.

Definition 2.10 ([5]). A fuzzy subset μ of R is called an anti fuzzy left(resp. right)ideal of R, if

 $\begin{array}{l} ({\rm i}) \ \mu(x-y) \leq \max\{\mu(x), \mu(y)\}, \\ ({\rm ii}) \ \mu(y+x-y) \leq \mu(x), \\ ({\rm iii}) \ \mu(xy) \leq \mu(y) \ ({\rm resp.} \ \mu((x+z)y-xy) \leq \mu(z)) \ {\rm for \ all} \ x,y,z \in R. \end{array}$

3. ANTI FUZZY QUASI-IDEALS OF NEAR-RINGS

In this section, we introduce the notion of anti fuzzy quasi-ideals of near-rings and establish some of their properties and characterizations.

Definition 3.1. Let μ and λ be any two fuzzy subsets of R. Then $\mu \cup \lambda, \mu \cap \lambda$, anti sum $\mu +_a \lambda$, anti product $\mu \cdot_a \lambda$, and anti $*_a$ product $\mu *_a \lambda$ are fuzzy subsets of R defined by

$$\begin{aligned} (\mu \cup \lambda)(x) &= \max\{\mu(x), \lambda(x)\}, \\ (\mu \cap \lambda)(x) &= \min\{\mu(x), \lambda(x)\}, \\ (\mu +_a \lambda)(x) &= \begin{cases} \inf_{x=y+z} \max\{\mu(y), \lambda(z)\} & \text{if } x \text{ can be expressed as } x = y + z \\ 1 & \text{otherwise,} \end{cases} \\ (\mu \cdot_a \lambda)(x) &= \begin{cases} \inf_{x=yz} \max\{\mu(y), \lambda(z)\} & \text{if } x \text{ can be expressed as } x = yz \\ 1 & \text{otherwise,} \end{cases} \\ &\int_{1} \inf_{x=yz} \max\{\mu(c), \lambda(b)\} & \text{if } x \text{ can be expressed as } x = (a+c)b - z \end{cases} \end{aligned}$$

 $(\mu *_a \lambda)(x) = \begin{cases} \inf_{\substack{x = (a+c)b-ab}} \max\{\mu(c), \lambda(b)\} & \text{if } x \text{ can be expressed as } x = (a+c)b-ab\\ 1 & \text{otherwise,} \end{cases}$

where $x \in R$.

Definition 3.2. The anti-characteristic function of R is denoted by \mathcal{R} , that is, $\mathcal{R}(x) = 0$ for all $x \in R$.

Definition 3.3. A fuzzy subset μ of R is called an anti fuzzy subgroup of R, if $\mu(x-y) \leq \max\{\mu(x), \mu(y)\}$ for all $x, y \in R$.

Definition 3.4. An anti fuzzy subgroup μ of R is called an anti fuzzy quasi-ideal of R, if

$$(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu \ast_a \mathcal{R}) \supseteq \mu.$$

Note that if R is a zero-symmetric near-ring then $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \supseteq \mu$.

Lemma 3.5. Every anti fuzzy quasi-ideal of a zero-symmetric near-ring R is an anti fuzzy subnear-ring of R.

Proof. Let μ be an anti fuzzy quasi-ideal of a zero-symmetric near-ring R. Choose $a, b, c, x, y, z \in R$ such that a = bc = (x + z)y - xy. Then

$$\begin{split} \mu(bc) &= \mu(a) \leq \max\{(\mu \cdot_a \mathcal{R})(a), (\mathcal{R} \cdot_a \mu)(a)(\mu *_a \mathcal{R})(a)\} \\ &= \max\{\inf_{a=bc} \max\{\mu(b), \mathcal{R}(c)\}, \inf_{a=bc} \max\{\mathcal{R}(b), \mu(c)\}, \\ &\inf_{a=(x+z)y-xy} \max\{\mu(z), \mathcal{R}(y)\}\} \\ &\leq \max\{\inf_{a=bc} \max\{\mu(b), \mathcal{R}(c)\}, \inf_{a=bc} \max\{\mathcal{R}(b), \mu(c)\}, \\ &\inf_{a=(0+b)c-0c} \max\{\mu(b), \mathcal{R}(c)\}\} \\ &= \max\{\mu(b), \mu(c), \mu(b)\} \\ &= \max\{\mu(b), \mu(c)\}. \end{split}$$

Thus $\mu(bc) \leq \max\{\mu(b), \mu(c)\}$. Since μ is an anti fuzzy quasi-ideal of a zero-symmetric near-ring R, we have $\mu(b-c) \leq \max\{\mu(b), \mu(c)\}$ for all $b, c \in R$. So μ is an anti fuzzy subnear-ring of R.

Lemma 3.6. Every anti fuzzy left ideal of R is an anti fuzzy quasi-ideal of R.

Proof. Let μ be anti fuzzy left ideal of R. For $x' \in R$, let $a, b, x, y, z \in R$ such that x' = ab = (x + z)y - xy. Then

$$\begin{split} &((\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}))(x') \\ &= \max\{(\mu \cdot_a \mathcal{R})(x'), (\mathcal{R} \cdot_a \mu)(x'), (\mu *_a \mathcal{R})(x')\} \\ &= \max\{\inf_{x'=ab} \max\{\mu(a), \mathcal{R}(b)\}, \inf_{x'=ab} \max\{\mathcal{R}(a), \mu(b)\}, \\ &\inf_{x'=(x+z)y-xy} \max\{\mu(z), \mathcal{R}(y)\}\} \\ &= \max\{\inf\{\mu(a)\}, \inf\{\mu(b)\}, \inf\{\mu(z)\}\}, \\ & [\text{Since } \mu \text{ is an anti fuzzy left ideal of } \mathcal{R}, \mu(ab) \leq \mu(b).] \\ &\geq \max\{\mathcal{R}(a), \mu(ab), \mathcal{R}(z)\} \\ &= \max\{0, \mu(ab), 0\} = \mu(ab) = \mu(x'). \end{split}$$

If x' is not expressible as x' = ab = (x + z)y - xy, then

$$(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu \ast_a \mathcal{R})(x') = 1 \ge \mu(x').$$

Thus $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}) \supseteq \mu$. So μ is an anti fuzzy quasi-ideal of \mathcal{R} . \Box

Lemma 3.7. Every anti fuzzy right ideal of R is an anti fuzzy quasi-ideal of R. 312 *Proof.* Let μ is an anti fuzzy right ideal of R. For $x' \in R$, let x' = ab = (x+z)y - xy, where $a, b, x, y, z \in R$. Then,

$$\begin{split} &((\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}))(x') \\ &= \max\{(\mu \cdot_a \mathcal{R})(x'), (\mathcal{R} \cdot_a \mu)(x'), (\mu *_a \mathcal{R})(x')\} \\ &= \max\{\inf_{\substack{x'=ab}} \max\{\mu(a), \mathcal{R}(b)\}, \inf_{\substack{x'=ab}} \max\{\mathcal{R}(a), \mu(b)\}, \\ &\inf_{\substack{x'=(x+z)y-xy}} \max\{\mu(z), \mathcal{R}(y)\}\} \\ &= \max\{\inf \mu(a), \inf \mu(b), \inf \mu(z)\}, \\ & [\text{Since } \mu \text{ is an anti fuzzy right ideal of } \mathcal{R}, \mu((x+z)y-xy) \leq \mu(z).] \\ &\geq \max\{\mathcal{R}(a), \mathcal{R}(b), \mu((x+z)y-xy)\} \\ &= \max\{0, 0, \mu((x+z)y-xy)\} \\ &= \mu((x+z)y-xy) = \mu(x'). \end{split}$$

If x' is not expressible as x' = ab = (x + z)y - xy, then

$$(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu \ast_a \mathcal{R})(x') = 1 \ge \mu(x').$$

Thus $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}) \supseteq \mu$. So μ is an anti fuzzy quasi-ideal of \mathcal{R} . \Box

Theorem 3.8. Every anti fuzzy ideal of R is an anti fuzzy quasi-ideal of R.

Proof. The proof is straight forward from Lemmas 3.6 and 3.7.

Lemma 3.9. Every anti fuzzy left R-subgroup of R is an anti fuzzy quasi-ideal of R.

Proof. Let μ be an anti fuzzy left *R*-subgroup of *R*. Let $a, b, c, x, y, z \in R$ such that x = ab = (y + c)z - yz. Then

$$\begin{split} &((\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}))(x) \\ &= \max\{(\mu \cdot_a \mathcal{R})(x), (\mathcal{R} \cdot_a \mu)(x), (\mu *_a \mathcal{R})(x)\} \\ &= \max\{\inf_{x=ab} \max\{\mu(a), \mathcal{R}(b)\}, \inf_{x=ab} \max\{\mathcal{R}(a), \mu(b)\}, \\ &\quad (\mu *_a \mathcal{R})((y+c)z-yz)\} \\ &= \max\{\inf_{x=ab} \mu(a), \inf_{x=ab} \mu(b), (\mu *_a \mathcal{R})((y+c)z-yz)\}, \\ &\quad [\text{Since } \mu \text{ is an anti fuzzy left } R\text{-subgroup of } R, \ \mu(ab) \leq \mu(b).] \\ &\geq \max\{\mathcal{R}(a), \mu(ab), \mathcal{R}((y+c)z-yz)\} \\ &= \max\{0, \mu(ab), 0\} = \mu(ab) = \mu(x). \end{split}$$

Thus $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}) \supseteq \mu$. So μ is an anti fuzzy quasi-ideal of R. \Box

Lemma 3.10. Every anti fuzzy right R-subgroup of R is an anti fuzzy quasi-ideal of R.

Proof. Let μ be an anti fuzzy right *R*-subgroup of *R*. Let $a, b, c, x, y, z \in R$ such that x = ab = (y + c)z - yz. Then

$$\begin{split} &((\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}))(x) \\ &= \max\{(\mu \cdot_a \mathcal{R})(x), (\mathcal{R} \cdot_a \mu)(x), (\mu *_a \mathcal{R})(x)\} \\ &= \max\{\inf_{x=ab} \max\{\mu(a), \mathcal{R}(b)\}, \inf_{x=ab} \max\{\mathcal{R}(a), \mu(b)\}, \\ &\quad (\mu *_a \mathcal{R})((y+c)z-yz)\} \\ &= \max\{\inf_{x=ab} \mu(a), \inf_{x=ab} \mu(b), (\mu *_a \mathcal{R})((y+c)z-yz)\}, \\ &[\text{Since } \mu \text{ is an anti fuzzy right } R\text{-subgroup of } R, \mu(ab) \leq \mu(a).] \\ &\geq \max\{\mu(ab), \mathcal{R}(b), \mathcal{R}((y+c)z-yz)\} \\ &= \max\{\mu(ab), 0, 0\} = \mu(ab) = \mu(x). \end{split}$$

Thus $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}) \supseteq \mu$. So μ is an anti fuzzy quasi-ideal of \mathcal{R} . \Box

Theorem 3.11. Every anti fuzzy two-sided R-subgroup of R is an anti fuzzy quasiideal of R.

Proof. The proof is straightforward from Lemma 3.9 and Lemma 3.10.

The converses of Theorem 3.8 and Theorem 3.11 are not true in general as shown by the following example .

Example 3.12. Let $R = \{0, a, b, c\}$ be a set with two binary operations '+' and '.' defined as

+	0	a	b	С	•	0			С
0	0	a	b	С	0	0	a	0	a
a			c		a	0	a	0	a
b	b	c	0	a	b	0	a	b	c
с	c	b	a	0	c	0	a	b	c

Let $\mu : R \to [0,1]$ be a fuzzy set defined by $\mu(0) = 0.2, \mu(a) = \mu(b) = 0.7$ and $\mu(c) = 0.3$. Then

$(\mu \cdot_a \mathcal{R})(0) = 0.2$	$(\mathcal{R} \cdot_a \mu)(0) = 0.2$	$(\mu *_a \mathcal{R})(0) = 0.2$
$(\mu \cdot_a \mathcal{R})(a) = 0.2$	$(\mathcal{R} \cdot_a \mu)(a) = 0.3$	$(\mu *_a \mathcal{R})(a) = 1$
$(\mu \cdot_a \mathcal{R})(b) = 0.3$	$(\mathcal{R} \cdot_a \mu)(b) = 0.7$	$(\mu *_a \mathcal{R})(b) = 0.3$
$(\mu \cdot_a \mathcal{R})(c) = 0.3$	$(\mathcal{R} \cdot_a \mu)(c) = 0.3$	$(\mu *_a \mathcal{R})(c) = 1.$
1		

Thus μ is an anti fuzzy quasi-ideal of R. But μ is not an anti fuzzy ideal of R, since $\mu(0c) = \mu(a) = 0.7 \leq 0.3 = \max\{\mu(0), \mu(c)\}$. Also μ is not an anti fuzzy R-subgroup of R, since $\mu(0c) = \mu(a) = 0.7 \leq 0.3 = \mu(c)$ and $\mu(0c) = \mu(a) = 0.7 \leq 0.2 = \mu(0)$.

Note 3.13. The conditions $(\mu \cdot_a \mathcal{R})^c = \mu^c \cdot \mathbf{R}; \ (\mathcal{R} \cdot_a \mu)^c = \mathbf{R} \cdot \mu^c; \ (\mu *_a \mathcal{R})^c = \mu^c * \mathbf{R}$ are true.

Consider

$$(\mu \cdot_a \mathcal{R})^c(x) = 1 - (\mu \cdot_a \mathcal{R})(x)$$

= $1 - \inf_{\substack{x=ab}} \max\{\mu(a), \mathcal{R}(b)\}$
= $\sup_{\substack{x=ab}} \min\{1 - \mu(a), 1 - \mathcal{R}(b)\}$
= $\sup_{\substack{x=ab}} \min\{\mu^c(a), \mathbf{R}(b)\}$
= $(\mu^c \cdot \mathbf{R})(x).$

Similarly, $(\mathcal{R} \cdot_a \mu)^c = \mathbf{R} \cdot \mu^c; \ (\mu *_a \mathcal{R})^c = \mu^c * \mathbf{R}.$

Theorem 3.14. A fuzzy subset μ of R is an anti fuzzy quasi-ideal of R if and only if its complement μ^c is a fuzzy quasi-ideal of R.

Proof. Assume that μ is an anti fuzzy quasi-ideal of R. Let $x, y \in R$. Then

$$\mu^{c}(x-y) = 1 - \mu(x-y)$$

$$\geq 1 - \max\{\mu(x), \mu(y)\}$$

$$= \min\{1 - \mu(x), 1 - \mu(y)\}$$

$$= \min\{\mu^{c}(x), \mu^{c}(y)\}.$$

Let $x \in R$. Then

$$((\mu^{c} \cdot R) \cap (R \cdot \mu^{c}) \cap (\mu^{c} * R))(x)$$

$$= ((\mu \cdot_{a} \mathcal{R})^{c} \cap (\mathcal{R} \cdot_{a} \mu)^{c} \cap (\mu *_{a} \mathcal{R})^{c})(x)$$

$$= \min\{(\mu \cdot_{a} \mathcal{R})^{c}(x), (\mathcal{R} \cdot_{a} \mu)^{c}(x), (\mu *_{a} \mathcal{R})^{c}(x)\}$$

$$= \min\{1 - (\mu \cdot_{a} \mathcal{R})(x), 1 - (\mathcal{R} \cdot_{a} \mu)(x), 1 - (\mu *_{a} \mathcal{R})(x)\}$$

$$= 1 - \max\{(\mu \cdot_{a} \mathcal{R})(x), (\mathcal{R} \cdot_{a} \mu)(x), (\mu *_{a} \mathcal{R})(x)\}$$

$$\leq 1 - \mu(x) \leq \mu^{c}(x).$$

Thus $(\mu \cdot_a \mathcal{R})^c \cap (\mathcal{R} \cdot_a \mu)^c \cap (\mu *_a \mathcal{R})^c \subseteq \mu^c$. So μ^c is a fuzzy quasi-ideal of R. Conversely, assume that μ^c is a fuzzy quasi-ideal of R. Let $x, y \in R$. Then

$$1 - \mu(x - y) = \mu^{c}(x - y) \geq \min\{\mu^{c}(x), \mu^{c}(y)\} \\ = 1 - \max\{1 - \mu^{c}(x), 1 - \mu^{c}(y)\} \\ = 1 - \max\{\mu(x), \mu(y)\}.$$

Thus $\mu(x-y) \le \max\{\mu(x), \mu(y)\}$. On the other hand $1 = \max\{(\mu, \mathcal{R})(x) \mid (\mathcal{R} + \mu)(x) \mid (\mu + \mathcal{R})(x)\}$

$$1 - \max\{(\mu \cdot_a \mathcal{R})(x), (\mathcal{R} \cdot_a \mu)(x), (\mu *_a \mathcal{R})(x)\}$$

= $1 - \max\{1 - (\mu \cdot_a \mathcal{R})^c(x), 1 - (\mathcal{R} \cdot_a \mu)^c(x), 1 - (\mu *_a \mathcal{R})^c(x)\}$
= $\min\{(\mu \cdot_a \mathcal{R})^c(x), (\mathcal{R} \cdot_a \mu)^c(x), (\mu *_a \mathcal{R})^c(x)\}$
= $\min\{(\mu^c \cdot \mathcal{R})(x), (\mathcal{R} \cdot \mu^c)(x), (\mu^c * \mathcal{R})(x)\}$
 $\leq \mu^c(x)$
= $1 - \mu(x).$

So, $\max\{(\mu \cdot \mathcal{R})(x), (\mathcal{R} \cdot_a \mu)(x), (\mu *_a \mathcal{R})(x)\} \ge \mu(x).$ Hence, $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}) \supseteq \mu.$ 315

Theorem 3.15. A nonempty subset Q of R is a quasi-ideal of R if and only if the complement of the characteristic function f_Q is an anti fuzzy quasi-ideal of R.

Proof. Assume that Q is a quasi-ideal of R. By Theorem 5.4.5[7], f_Q is a fuzzy quasi-ideal of R. By Theorem 3.14 f_Q^c is an anti fuzzy quasi-ideal of R.

Conversely, assume that f_Q^c is a fuzzy quasi-ideal of R. Then, by Theorem 5.4.5 [7], Q is quasi-ideal of R.

Theorem 3.16. Let μ be a fuzzy subset of R. Then μ is an anti fuzzy quasi-ideal of R if and only if the lower level subset $L(\mu : t)$ is a quasi-ideal of R, for all $t \in (0, 1]$.

Proof. Assume that μ is an anti fuzzy quasi-ideal of R. Let $t \in (0,1]$ and $x, y \in L(\mu:t)$. Then $\mu(x) \leq t$ and $\mu(y) \leq t$. By hypothesis, μ is an anti fuzzy quasi-ideal of R, and so $\mu(x-y) \leq \max\{\mu(x), \mu(y)\} \leq \max\{t, t\} = t$, that is, $x - y \in L(\mu:t)$. Let $x \in R$ and $x \in (L(\mu:t) \cdot_a \mathcal{R}) \cap (\mathcal{R} \cdot_a L(\mu:t)) \cap (L(\mu:t) *_a \mathcal{R})$. Then there exist $a, b_1, c \in L(\mu:t)$ and $a_1, b, y, z \in R$ such that $x = ab = a_1b_1 = (y+c)z - yz$, which implies that $\mu(a) \leq t, \mu(b_1) \leq t$ and $\mu(c) \leq t$. Consider

Then $x \in L(\mu : t)$. Thus $(L(\mu : t) \cdot_a \mathcal{R}) \cap (\mathcal{R} \cdot_a L(\mu : t)) \cap (L(\mu : t) *_a \mathcal{R}) \subseteq L(\mu : t)$. Thus $L(\mu : t)$ is a quasi ideal of R.

Conversely, assume that $L(\mu : t)$ is a quasi-ideal of R, for all $t \in (0, 1]$. Let $x \in R$ and assume that $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R})(x) < \mu(x)$. Choose $t \in (0, 1]$ such that $((\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}))(x) < t < \mu(x)$. Then, $(\mu \cdot_a \mathcal{R})(x) < t$, $(\mathcal{R} \cdot_a \mu)(x) < t$ and $(\mu *_a \mathcal{R})(x) < t$. Then

$$\begin{aligned} (\mu \cdot_a \mathcal{R})(x) &= \inf_{x=ab} \max\{\mu(a), \mathcal{R}(b)\} = \inf_{x=ab} \max\{\mu(a)\} < t \\ (\mathcal{R} \cdot_a \mu)(x) &= \inf_{x=a_1b_1} \max\{\mathcal{R}(a_1), \mu(b_1)\} = \inf_{x=a_1b_1} \max\{\mu(b_1)\} < t \text{ and} \\ (\mu *_a \mathcal{R})(x) &= \inf_{x=(y+c)z-yz} \max\{\mu(c), \mathcal{R}(z)\} = \inf_{x=(y+c)z-yz} \mu(c) < t. \end{aligned}$$

Thus $a, b_1, c \in L(\mu : t)$. So $x = ab \in L(\mu : t) \cdot_a \mathcal{R}$, $x = a_1b_1 \in \mathcal{R} \cdot_a L(\mu : t)$ and $x = (y + c)z - yz \in L(\mu : t) *_a \mathcal{R}$, since $L(\mu : t)$ is a quasi-ideal of \mathcal{R} . So $x \in (L(\mu : t) \cdot_a \mathcal{R}) \cap (\mathcal{R} \cdot_a L(\mu : t)) \cap (L(\mu : t) *_a \mathcal{R})$, which implies that $x \in L(\mu : t)$ that is, $\mu(x) \leq t$, which is a contradiction. Hence, $(\mu \cdot_a \mathcal{R}) \cup (\mathcal{R} \cdot_a \mu) \cup (\mu *_a \mathcal{R}) \supseteq \mu$. Therefore μ is an anti fuzzy quasi-ideal of \mathcal{R} .

Theorem 3.17. Let μ and λ be any two anti fuzzy quasi ideals of R. Then $\mu \cup \lambda$ is also an anti fuzzy quasi ideal of R.

Proof. Assume that μ and λ are any two anti fuzzy quasi-ideal of R. For $x, y \in R$, we have

$$\begin{aligned} (\mu \cup \lambda)(x-y) &= \max\{\mu(x-y), \lambda(x-y)\} \\ &\leq \max\{\max\{\mu(x), \mu(y)\}, \max\{\lambda(x), \lambda(y)\}\} \\ &= \max\{\max\{\mu(x), \lambda(x)\}, \max\{\mu(y), \lambda(y)\}\} \\ &= \max\{(\mu \cup \lambda)(x), (\mu \cup \lambda)(y)\}. \end{aligned}$$

Let $x \in R$ and select $a, b, c, y, z \in R$ such that x = ab = (y + c)z - yz. Then

$$\max\{\inf_{x=ab} \max\{\mu(a), \mathcal{R}(b)\},\$$
$$\inf_{x=ab} \max\{\mathcal{R}(a), \mu(b)\}\$$

and

$$\inf_{x=(y+c)z-yz} \max\{\mu(c), \mathcal{R}(z)\}\} \ge \mu(x).$$

Thus

(3.1)
$$\max\{\inf_{x=ab}\mu(a), \inf_{x=ab}\mu(b), \inf_{x=(y+c)z-yz}\mu(c)\} \geq \mu(x).$$

Similarly,

(3.2)
$$\max\{\inf_{x=ab}\lambda(a),\inf_{x=ab}\lambda(b),\inf_{x=(y+c)z-yz}\lambda(c)\} \geq \lambda(x).$$

 So

Hence $\mu \cup \lambda$ is an anti fuzzy quasi-ideal of R.

Intersection of any two anti fuzzy quasi ideals of near-ring need not be an anti fuzzy quasi ideal as shown in the following example.

Example 3.18. consider Example 3.12. In this near-ring R, let $\mu : R \to [0, 1]$ be a fuzzy set defined by $\mu(0) = 0.2, \mu(a) = \mu(c) = 0.6, \mu(b) = 0.4$. Then

$$\begin{array}{ll} (\mu \cdot_a \mathcal{R})(0) = 0.2 & (\mathcal{R} \cdot_a \mu)(0) = 0.2 & (\mu \ast_a \mathcal{R})(0) = 0.2 \\ (\mu \cdot_a \mathcal{R})(a) = 0.2 & (\mathcal{R} \cdot_a \mu)(a) = 0.6 & (\mu \ast_a \mathcal{R})(a) = 1 \\ (\mu \cdot_a \mathcal{R})(b) = 0.4 & (\mathcal{R} \cdot_a \mu)(b) = 0.4 & (\mu \ast_a \mathcal{R})(b) = 0.4 \\ & 317 \end{array}$$

 $(\mu \cdot_a \mathcal{R})(c) = 0.4$ $(\mathcal{R} \cdot_a \mu)(c) = 0.6$ $(\mu *_a \mathcal{R})(c) = 1.$ Thus μ is an anti fuzzy quasi ideal of R. Similarly, let $\lambda : R \to [0,1]$ be a fuzzy set defined by $\lambda(0) = 0.1, \lambda(a) = 0.5, \lambda(b) = \lambda(c) = 0.8$. Then

 $\begin{array}{ll} (\lambda \cdot_a \mathcal{R})(0) = 0.1 & (\mathcal{R} \cdot_a \lambda)(0) = 0.1 & (\lambda \ast_a \mathcal{R})(0) = 0.1 \\ (\lambda \cdot_a \mathcal{R})(a) = 0.1 & (\mathcal{R} \cdot_a \lambda)(a) = 0.5 & (\lambda \ast_a \mathcal{R})(a) = 1 \\ (\lambda \cdot_a \mathcal{R})(b) = 0.8 & (\mathcal{R} \cdot_a \lambda)(b) = 0.8 & (\lambda \ast_a \mathcal{R})(b) = 0.8 \\ (\lambda \cdot_a \mathcal{R})(c) = 0.8 & (\mathcal{R} \cdot_a \lambda)(c) = 0.8 & (\lambda \ast_a \mathcal{R})(c) = 0.8. \end{array}$

Thus λ is an anti fuzzy quasi ideal of R. But $\mu \cap \lambda$ is not an anti fuzzy quasi ideal, since $(\mu \cap \lambda)(a - b) = (\mu \cap \lambda)(c) = .6 \leq 0.5 = \max\{0.5, 0.4\} = \max\{(\mu \cap \lambda)(a), (\mu \cap \lambda)(b)\}.$

4. ACKNOWLEDGMENT

The research of the third author is partially supported by UGC-BSR grant # F4-1/2006(BSR)/7-254/2009(BSR) in India.

References

- [1] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy sets and Systems 44 (1991) 139–146.
- [2] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35 (1990) 121–124.
- [3] V. Chinnadurai and S. Kadalarasi, Interval valued fuzzy quasi ideas of near-rings, Ann. Fuzzy Math. Inform.(accepted).
- [4] Iwao Yakabe, Quasi-ideals in near-rings, Math. Rep. kyushu univ. 14 (1983) 41-46.
- [5] K. H. Kim, Y. B. Jun and Y. H. Yon, On anti fuzzy ideals in near-rings, Iranian Journal of Fuzzy Systems 2 (2005) 71–80.
- [6] Kyung Ho Kim and Y. B. Jun, On anti fuzzy *R*-subgroups of near-rings, Scientiae Mathematicae 2 (1999) 147–153.
- [7] AL. Narayanan, Contributions to the algebraic structures in fuzzy theory, Ph.D Thesis, Annamalai University 2001.
- [8] AL. Narayanan and T. Manikandan, (∈, ∈ ∨q)-fuzzy subnear-rings and (∈, ∈ ∨q)-fuzzy ideals of near-rings, J. Appl. Math. and Computing 18 (2005) 419–430.
- [9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>N.THILLAIGOVINDAN</u> (thillaigovindan.natesan@gmail.com) Department of mathematics, Arba Minch University, Ethiopia

<u>V.CHINNADURAI</u> (kv.chinnadurai@yahoo.com)

Department of mathematics, Annamalai University, Annamalainagar, postal code 608 002, India

<u>K.LENIN MUTHU KUMARAN</u> (leninmuthukumaran@gmail.com) Department of mathematics, Annamalai University, Annamalainagar, postal code 608 002, India