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1. Introduction

In science, engineering, economics and environmental sciences, many scientists
seeks to develop a mathematical model to analyze the uncertainty. But we can-
not successfully use classical mathematical methods for those models. Firstly, L.A.
Zadeh [15] proposed fuzzy set theory which is important tool to solve problems that
contains vagueness. This theory has been studied by many scientists over the years.

Soft set theory, which is a completely new approach for modelling uncertainty, is
introduced by Molodtsov [11] in 1999. He established the fundamental results of this
theory and applied in analysis, game theory and probability theory. Set-theoretical
operations such as soft subset, soft union, soft intersection etc. [2, 9], soft algebraic
structures which are parametrized family of substructures of an algebraic structure
[1, 7], soft relation and its properties [4] were studied extensively. As Molodtsov
pointed out, soft set theory can be applied to many areas. In [13] and [6], it was
applied in information systems and decision making problems. Kharal and Ahmad
defined the concept of a mapping classes of soft sets and studied the properties of
soft image and soft inverse image of soft sets in [8].

Our decisions guide our life and decisions depends on the attributes or parame-
ters in life. Of course, the relationship among parameters affect our decisions. So
we need to choose appropriate parameters, and this choice is made according to
particular order of preferences of individual (or decision maker). Hence ordering of
the preferences according to attributes or parameters is very important in decision
making. Right here, soft set theory lend a helping hand to our decision making
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problems. Although this theory is very suitable, it does not order our preference
attributes or parameters for our decisions. Therefore, we need to build a new tool
ordering the parameters or according to ordered parameters.

In this paper, we have defined the concept of monotonic soft set to cope with the
above-mentioned problems and have studied its structural properties. In Section
4., we give specific examples and some results for monotonic soft sets. In the last
section, we suggest an algorithm of decision making very simply.

2. Preliminaries

In this section, we give in detail the materials to be used in following sections.
Throughout this paper U will be an initial universe, E will be the set of all possible
parameters which are attributes, characteristic or properties of the objects in U , and
the set of all subsets of U will be denoted by P(U).

Definition 2.1 ([11]). Let A be a subset of E. A pair (F,A) is called a soft set
over U where F : A −→ P(U) is a set-valued function.

As mentioned in [9], a soft set (F,A) can be viewed (F,A) = {a = F (a) | a ∈ A}
where the symbol “a = F (a)” indicates that the approximation for a ∈ A is F (a).

Definition 2.2 ([13]). For two soft sets (F,A) and (G,B) over a common universe
U , we say that (F,A) is a soft subset of (G,B), denoted by (F,A)⊂̃(G,B), if

(i) A ⊂ B and
(ii) ∀a ∈ A, F (a) ⊂ G(a).

Definition 2.3 ([13]). Two soft sets (F,A) and (G,B) over a common universe U
are said soft equal, denoted by (F,A) = (G,B), if (F,A)⊂̃(G,B) and (G,B)⊂̃(F,A).

Definition 2.4 ([13]). Let (F,A) and (G,B) be two soft sets over a common universe
U such that A ∩ B 6= ∅. The soft intersection of (F,A) and (G,B) is denoted by
(F,A)∩̃(G,B), and is defined as (F,A)∩̃(G,B) = (H,C), where C = A ∩B and for
all c ∈ C, H(c) = F (c) ∩G(c).

We will use this definition of intersection given in [13] instead of given in [9],
because generally F (c) andG(c) are not necessarily equal for c ∈ C. So this definition
is more applicable to soft sets.

Definition 2.5 ([9]). The soft union of two soft sets (F,A) and (G,B) over a
common universe U is the soft set (H,C) , denoted by (F,A)∪̃(G,B) = (H,C),
where C = A ∪B, and ∀c ∈ C,

H(c) =

 F (c) , if c ∈ A−B
G(c) , if c ∈ B −A
F (c) ∪G(c) , if c ∈ A ∩B.

Definition 2.6 ([2]). Let U be an initial universe set, E be the universe set of
parameters and A ⊂ E.

(i) (F,A) is called a relative null soft set (with respect to the parameter set A),
denoted by ΦA, if F (a) = ∅ for all a ∈ A.

(ii) (F,A) called a relative whole soft set (with respect to the parameter set A),
denoted by UA, if F (a) = U for all a ∈ A.
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The relative whole soft set UE with respect to the universe set of parameters E
and relative null soft set ΦE are called the absolute soft set and null soft set over U ,
respectively.

Definition 2.7 ([9]). Let (F,A) and (G,B) be two soft sets over the common
universe U . Then (F,A) AND (G,B) denoted by (F,A) ∧ (G,B) and is defined by
(F,A)∧ (G,B) = (H,A×B), where H((a, b)) = F (a)∩G(b), for all (a, b) ∈ A×B.

Definition 2.8 ([9]). Let (F,A) and (G,B) be two soft sets over the common
universe U . Then (F,A) OR (G,B) denoted by (F,A) ∨ (G,B) and is defined by
(F,A)∨ (G,B) = (H,A×B), where H((a, b)) = F (a)∪G(b), for all (a, b) ∈ A×B.

Definition 2.9 ([13]). The complement of a soft set (F,A) is denoted by (F,A)c

and is defined by (F,A)c = (F c, A), where F c : A → P(U) is a mapping given by
F c(a) = U − F (a) for all a ∈ A.

Example 2.10. Let U = {a, b, c} be universe, E = {1, 2, 3} be parameter set and
A = {1, 3} ⊂ E. From Definition 2.1, (F,A) = {1 = {a, b}, 3 = {b, c}} is a soft set
over U and its complement is (F,A)c = {1 = {c}, 3 = {a}} which is a soft set over
U .

Definition 2.11 ([4]). Let (F,A) and (G,B) be two soft set over U . Then the
cartesian product of (F,A) and (G,B) is defined as, (F,A)× (G,B) = (H,A×B),
where H : A×B → P(U × U) and H(a, b) = F (a)×G(b), where (a, b) ∈ A×B.

Let U be an initial universe and E be a parameters set, then the collection of all
soft sets over U via E is denoted by S(U,E). Now we can define the soft function
that given function between universes and between parameters sets.

Kharal and Ahmad [8] defined the concept of soft function as the follows. We
have modified appropriately.

Definition 2.12 ([8], Soft Mapping). Let U1, U2 be initial universes, E1, E2 be
parameters sets, ϕ be a function from U1 to U2 and ψ be a function from E1 to E2.
Then the pair (ϕ,ψ) is called a soft function from S(U1, E1) to S(U2, E2).

The image of each (F,A) ∈ S(U1, E1) under the soft function (ϕ,ψ) is denoted
by (ϕ,ψ)(F,A) = (ϕF,ψ(A)) and is defined as following:

(ϕF )(β) =

{
ϕ
(⋃

α∈ψ−1(β)∩A F (α)
)

, if ψ−1(β) ∩A 6= ∅
∅ , otherwise

for each β ∈ ψ(A).
Similarly, the inverse image of each (G,B) ∈ S(U2, E2) under the soft function

(ϕ,ψ) is denoted by (ϕ,ψ)−1(G,B) = (ϕ−1G,ψ−1(B)) and is defined as following;

(ϕ−1G)(α) =

{
ϕ−1(G(ψ(α))) , if ψ(α) ∈ B
∅ , otherwise

for each α ∈ ψ−1(B).

Min described the similarity in soft set theory and gave some results in [10]. He
gave the definition of similarity between two soft sets as follows.
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Definition 2.13 ([10]). Let (F,A) and (G,B) be soft sets over a common universe
set U . Then (F,A) is similar to (G,B) (simply (F,A) ∼= (G,B)) if there exists a
bijective function φ : A → B such that F (α) = (G ◦ φ)(α) for every α ∈ A, where
(G ◦ φ)(α) = G(φ(α)).

Now, we can give the definition of generalized form of similarity between soft sets
over different universes as follows;

Definition 2.14. Let E be a set of parameters, U and V be two universes and
(F,A) and (G,B) be soft sets over U and V respectively, where A,B ⊆ E. We
called that (F,A) is similar to (G,B) if there exist bijective functions f : U → V
and φ : A→ B such that (f ◦ F )(α) = (G ◦ φ)(α) for every α ∈ A.

Note that, the given functions in the above definition should not be confused with
the soft functions.

3. Monotonic soft sets

Ali et al. defined the concept of lattice ordered soft sets in [3]. They also discussed
some soft set-theoretical operations among them. But in their works, the parameter
set is taken as the lattice. So, this situation is very restricted.

We prefer to call monotonic soft set instead of lattice ordered soft sets. Because,
our definition is more general than their definition due to fact that we take a partial
ordered set for the parameter set. Now, we can define the monotonic soft set as
follows.

Definition 3.1. Let U be an initial universe, E be a parameters set and ≤⊆ E×E
be a partial order relation on E and let (F,E) be a soft set over U . Then (F,E)
is called monotonic (increasing) soft set over U if and only if for x, y ∈ E if x ≤ y,
then F (x) ⊆ F (y).

The dual of this definition is for monotonic (decreasing) soft set over an initial
universe U , i.e. (F,E) is monotonic (decreasing) soft set over U if and only if for
x, y ∈ E if x ≤ y, then F (x) ⊇ F (y).

Note that a monotonic soft set over a universe may be increasing or decreasing. It
depends on how it is defined. Ignoring the increasing or decreasing, we would prefer
to call monotonic soft set in general. But we would emphasize if it is important.

Example 3.2. Let U = {a, b, c} be an initial universe, E = {1, 2, 3} and ≤=
{(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} be a partial order relation on E. Then (F,E) =
{1 = {a}, 2 = {a, b}, 3 = {a, b}} is a monotonic soft set over U (of course it is
increasing) .

Aktaş et al. in [1] proved that every fuzzy set may be considered a soft set, i.e.
if F is a fuzzy set over U , then (F, [0, 1]) is a soft set over U . Now the interval [0, 1]
is total ordered set with respect to ordinary partial order relation. Then we obtain
the following example;

Example 3.3. Every fuzzy set may be considered a monotonic soft set. Actually,
for α1, α2 ∈ [0, 1], either α1 ≤ α2 or α2 ≤ α1, and if α1 ≤ α2 then F (α1) ⊃ F (α2).
Thus, (F, [0, 1]) is monotonic (decreasing) soft set over U .
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Example 3.4. Monotone sequences of subsets of a set can be regarded as a mono-
tonic soft set. So, let U be a set and {Ai}i∈I be a monotone sequence of subsets of
U . If we take the index set I as a parameter set and define F : I → P(U) mapping
such that F (i) = Ai, then we obtain the monotonic soft set (F, I) over U .

Soft set-theoretic operations between two monotonic soft sets can be given as
follows;

Theorem 3.5. If (F,E) and (G,E) are monotonic soft sets over U , then (F,E)∩̃(G,E)
is also monotonic soft set over U .

Proof. Suppose that (F,E)∩̃(G,E) = (H,E) and (H,E) is soft set over U . We take
x, y ∈ E and x ≤ y. Since (F,E) and (G,E) are monotonic soft sets,

H(x) = F (x) ∩G(x) ⊆ F (y) ∩G(y) = H(y).

Thus (H,E) is monotonic soft set over U . �

Theorem 3.6. If (F,E) and (G,E) are monotonic soft sets over U , then (F,E)∪̃(G,E)
is also monotonic soft set over U .

Proof. Suppose that (F,E)∪̃(G,E) = (H,E). As a result of Definition 2.5, for all
x ∈ E, H(x) = F (x) ∪ G(x). Let x, y ∈ E and x ≤ y. Since (F,E) and (G,E) are
monotonic soft sets,

H(x) = F (x) ∪G(x) ⊆ F (y) ∪G(y) = H(y).

Thus (H,E) is a monotonic soft set over U . �

Theorem 3.7. The null soft set ΦE and the absolute soft set UE are monotonic soft
sets over U .

Proof. Since ΦE = (F,E) is null soft set, then F (x) = ∅ for all x ∈ E. Let x ≤ y
for x, y ∈ E. Then F (x) = ∅ ⊆ ∅ = F (y). Thus ΦE is monotonic soft set over U .

Similarly, since UE = (F,E) is absolute soft set, F (x) = U for all x ∈ E. Let
x ≤ y for x, y ∈ E. Then F (x) = U ⊆ U = F (y). Thus UE is monotonic soft set
over U . �

Theorem 3.8. If (F,E) and (G,E) are monotonic soft sets over U , then (F,E) ∧
(G,E) is also monotonic soft set over U .

Proof. From Definition 2.7, suppose that (F,E)∧ (G,E) = (H,E×E) such that for
all (x, y) ∈ E × E, H(x, y) = F (x) ∩ G(y). Now we take (x1, y1), (x2, y2) ∈ E × E
and (x1, y1) ≤ (x2, y2) which is defined as (x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2

and y1 ≤ y2. Since (F,E) and (G,E) are monotonic soft sets, then

H(x1, y1) = F (x1) ∩G(y1) ⊆ F (x2) ∩G(y2) = H(x2, y2).

Thus (H,E × E) is a monotonic set over U . �

Theorem 3.9. If (F,E) and (G,E) are monotonic soft sets over U , then (F,E) ∨
(G,E) is also monotonic soft set over U .
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Proof. From Definition 2.8, suppose that (F,E)∨ (G,E) = (H,E×E) such that for
all (x, y) ∈ E × E, H(x, y) = F (x) ∪ G(y). Now we take (x1, y1), (x2, y2) ∈ E × E
and (x1, y1) ≤ (x2, y2). Since (F,E) and (G,E) are monotonic soft sets,

H(x1, y1) = F (x1) ∪G(y1) ⊆ F (x2) ∪G(y2) = H(x2, y2).

Then (H,E × E) is a monotonic set over U . �

Theorem 3.10. If (F,E) is monotonic increasing (respectively decreasing) soft set
over U , then its complement (F,E)c is also monotonic decreasing (respectively in-
creasing) soft set over U .

Proof. From Definition 2.7 for all x ∈ E, F c(x) = U − F (x). We take x, y ∈ E and
x ≤ y. Since (F,E) is monotonic increasing soft set, we obtain

F c(x) = U − F (x) ⊇ U − F (y) = F c(y).

Then (F,E)c is monotonic decreasing soft set over U .
Take the (F,E) is monotonic decreasing. Then x ≤ y. Thus F (x) ⊇ F (y). So for

its complement, we obtain that

F c(x) = U − F (x) ⊆ U − F (y) = F c(y).

Hence (F,E)c is a monotonic increasing soft set over U . �

Theorem 3.11. Let (F,E) be a monotonic soft set over U and (G,A)⊂̃(F,E).
Then (G,A) is monotonic soft set if and only if F |A= G.

Proof. Obvious. �

Theorem 3.12. If (F,E) and (G,E) are monotonic soft sets over U , then their
cartesian product (F,E)× (G,E) is a monotonic soft set over U × U .

Proof. From Definition 2.11, (F,E) × (G,E) = (H,E × E) such that H(x, y) =
F (x) × G(y) for each (x, y) ∈ E × E. Since (F,E) and (G,B) are monotonic soft
sets, we obtain

H(x1, y1) = F (x1)×G(y1) ⊆ F (x2)×G(y2) = H(x2, y2)

for each (x1, y1), (x2, y2) ∈ E × E which satisfy (x1, y1) ≤ (x2, y2). �

We can give a relation between similarity of soft sets and monotonicity of soft
sets by following theorem.

Theorem 3.13. Let (F,E) and (G,E) be similar soft sets over U . If φ is an
order preserving bijection on E and (F,E) is monotonic soft set, then (G,E) is also
monotonic soft set.

Proof. Let e1 ≤ e2. Since φ is order preserving bijection and (F,E) is monotonic,
we obtain

G(e1) = F ◦ φ(e1) ⊆ F ◦ φ(e2) = G(e2).

Then (G,E) is a monotonic soft set. �
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We have emphasized the importance of ordering among parameters in the intro-
duction. Note that, in our daily lives, there are some parameters that take priority
over other parameters. Such parameters are more effective problem solving decision-
making process. Moreover, priority of a parameter makes valuable to be related to
the set. The mentioned structure is expressed in a mathematically by following
definitions.

Definition 3.14. Let E be a parameters set, ≤ be a partial order relation on E
and x, y ∈ E. We call that the y parameter is superior than the x parameter if and
only if x ≤ y.

We know that, in our world, if the elements or phenomenon that satisfy a certain
parameter or feature are few, then that parameter or feature is more precious. The
following definition gives the notion of worthiness depends on superiority of the
parameters.

Definition 3.15. If the parameter x is superior than y and F (x) ⊆ F (y), then we
call that x is valuable. Otherwise, x is valueless.

We can characterize monotonic soft sets using this approach as follows.

Definition 3.16. Let U be an initial universe, E be a parameters set, ≤ be a partial
order relation on E, A ⊆ E and (F,A) be a monotonic soft set over U . If A has a
maximum element, then (F,A) is called maximum approximated soft set and maxA
is called dominant parameter.

Dually, If A has a minimum element, then (F,A) is called minimum approximated
soft set and minA is called recessive parameter.

Example 3.17. In Example 3.2, (F,E) is both maximum approximated and mini-
mum approximated soft set. 3 is a dominant parameter, and 1 is a recessive param-
eter.

Corollary 3.18. If A is a chain and bounded subset of E, then (F,A) is both
maximum approximated and minimum approximated soft set. �

Note that E be a totally ordered set and A be a bounded subset of E, then (F,A)
is a both maximum and minimum approximated soft set over U .

Example 3.19. From Example 3.3, since [0, 1] is a chain and bounded, then every
fuzzy set F over the universe U is both maximum and minimum approximated soft
set.

Theorem 3.20. Let E be a totally ordered set, A,B be bounded subsets of E. Then
(F,A) and (G,B) are maximum (or minimum) approximated soft sets over U . Then
(F,A)∩̃(G,B) is also maximum (or minimum) approximated soft set over U .

Proof. Since A and B are totally ordered and bounded subsets of E, A∩B is a totally
ordered and bounded subset of E. Let (F,A)∩̃(G,B) = (H,C). Since C = A∩B is
totally ordered and bounded, (H,C) is maximum (or minimum) approximated soft
set over U . �

Theorem 3.21. Let E be a totally ordered set, A,B be bounded subsets of E. Then
(F,A) and (G,B) are maximum (or minimum) approximated soft sets over U . Then
(F,A)∪̃(G,B) is also maximum (or minimum) approximated soft set over U .
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Proof. Since C = A∪B is totally ordered and bounded, (F,A)∪̃(G,B) is maximum
(or minimum) approximated soft set. �

Recall that, let (E1,≤1) and (E2,≤2) be partially ordered sets and ψ be a function
from E1 to E2. Then ψ is called order preserving function if and only if α1 ≤1 α2

implies ψ(α1) ≤2 ψ(α2) for α1, α2 ∈ E1. Now, if we have a order preserving function
between partially ordered parameters sets, we obtain following theorems.

Theorem 3.22. Let U1, U2 be initial universes, E1, E2 be parameters set and ≤1,≤2

be partial order relations on E1, E2, respectively. ϕ : U1 → U2 be a function and
ψ : E1 → E2 be order preserving function. If (F,E1) is a monotonic soft set over
U1, then (ϕ,ψ)(F,E1) is also monotonic soft set over U2.

Proof. From Definition 2.12, (ϕ,ψ)(F,E1) = (ϕF,ψ(E1)). Suppose that, let α1 ≤1

α2 for α1, α2 ∈ E1. Since ψ is a order preserving function, ψ(α1) ≤2 ψ(α2) and, say
β1 = ψ(α1) and β2 = ψ(α2). Since (F,E1) is a monotonic soft set, we obtain

ϕF (β1) = ϕ
(⋃

F (α1)
)
⊆ ϕ

(⋃
F (α2)

)
= ϕF (β2).

Thus (ϕ,ψ)(F,E1) is a monotonic soft set over U2. � �

Theorem 3.23. Let U1, U2 be initial universes, E1, E2 be parameters set and ≤1,≤2

be partial order relations on E1, E2, respectively. ϕ : U1 → U2 be a function and
ψ : E1 → E2 be order preserving function. If (G,E2) is a monotonic soft set over
U2, then (ϕ,ψ)−1(G,E2) is also monotonic soft set over U1.

Proof. Let α1, α2 ∈ ψ−1(E2) and α1 ≤1 α2. Since ψ is an order preserving function,
ψ(α1) ≤2 ψ(α2). Since (G,E2) is a monotonic soft set over U2, from Definition 2.12,
we obtain

(ϕ−1G)(α1) = ϕ−1(G(ψ(α1))) ⊆ ϕ−1(G(ψ(α2))) = (ϕ−1G)(α2)

for α1, α2 ∈ ψ−1(E2). Thus (ϕ,ψ)−1(G,E2) is a monotonic soft set over U1. �

As we understand that, of course, each parameter is not necesseraly compared
with each other. However, there are always superior or less superior than these
parameters which can not be compared. This leads us to the lattice structure of
parameters ordered by superiority.

Let the parameter set E be a lattice. Then we obtain special monotonic soft sets
over U .

Definition 3.24. Let (F,E) be a monotonic soft set over U , e1, e2 ∈ E but they
are not compared. Since E is a lattice, there exist unique parameters ε, ε ∈ E such
that ε = e1 ∧ e2 and ε = e1 ∨ e2. Then we called that (F,E) is a supre-infimal soft
set over U such that F (ε) ⊂ F (e1) ⊂ F (ε) and F (ε) ⊂ F (e2) ⊂ F (ε).

Note that, every supre-infimal soft set over U is a monotonic soft set. Clearly, if
E is a chain, then every both maximum and minimum approximated soft sets are
supre-infimal soft set.
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4. Some specifical examples of monotonic soft sets and some
applications

4.1. In posets. Let (X,≤) be a partially ordered set. ↓ x is called downset for
the element x ∈ X and defined ↓ x = {y | y ≤ x}. If we define the mapping
F : X → P(X) such that F (x) =↓ x for all x ∈ X, then we obtain a soft set (F,X)
over X.

Theorem 4.1. Let (X,≤) be a partially ordered set. If we define the soft set (F,X)
over X as above, then (F,X) is a monotonic soft set over X.

Proof. Let x1, x2 ∈ X. If x1 ≤ x2. Then we obtain

F (x1) =↓ x1 = {y | y ≤ x1} ⊆ {y | y ≤ x2} =↓ x2 = F (x2).

Thus (F,X) is a monotonic (increasing) soft set over X. �

Similarly, we obtain monotonic (decreasing) soft set over X with the upsets ↑ x =
{y | x ≤ y}.

Example 4.2. Let X = {1, 2, 3, 4, 5, 6} and | denote a division relation on X. So,
the pair (X, |) is a partially ordered set. Thus we obtain monotonic soft set with
respect to downset over X as follows:

(F,X) = {1 = {1}, 2 = {1, 2}, 3 = {1, 3},
4 = {1, 2, 4}, 5 = {1, 5}, 6 = {1, 2, 3, 6}}.

Theorem 4.3. Let (X,≤1) and (Y,≤2) be two partially ordered sets and f be a
mapping from X to Y . Then, f is an order isomorphism if and only if (F,X) ∼=
(G, Y ).

Proof. Suppose that f is an order isomorphism. Then f is bijective and order
preserving function. Thus we have

(f ◦ F )(x) = f(F (x)) = f(↓ x) =↓ f(x) = G(f(x)) = (G ◦ f)(x)

for all x ∈ X. So (F,X) ∼= (G, Y ) from Definition 2.14.
On the other hand, assume that (F,X) ∼= (G, Y ). Then there exists a bijective

function f : X → Y such that (f ◦ F )(x) = (G ◦ f)(x) for all x ∈ X. Thus we have
f(↓ x) =↓ f(x) for all x ∈ X. Now, we take x1 ≤1 x2 for x1, x2 ∈ X. Then we have
↓ x1 ⊆↓ x2. Thus we have f(↓ x1) ⊆ f(↓ x2). Since (F,X) similar to (G, Y ), we
have ↓ f(x1) ⊆↓ f(x2). So f(x1) ≤2 f(x2).

Conversely, if f(x1) ≤2 f(x2), then we can obtain x1 ≤1 x2 by using same way.
Consequently, f is an order isomorphism. �

4.2. In nested sets. We can express the hierarchical models by using monotonic
soft sets, such as nested sets. In [12], Nguyen and Kreinovich state the definition of
nested sets in generalized form as follows.

Definition 4.4 ([12]). Let an integer d be fixed. This number will be called the
number of experts. Let a finite lattice A be fixed, with elements α0 and αd+1 that are
0 and 1 (i.e., for which α0∨α = α0, αd+1∨α = α, α0∧α = α, and αd+1∧α = αd+1).
Elements of A will be called degrees of belief. Let a set U be given. This set will
be called the universal set, or, the universe of discourse. By a piece of information
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(or, nested set), we mean a non-increasing mapping X from A to the set P(U) of
all subsets of U , i.e., a mapping for which if α ≤ β, then X(α) ⊇ X(β). Let u be an
element of U , and α ∈ A be degree of belief. We say that u belongs to the nested
set X with a degree of belief ≤ α if u ∈ X(α).

Using the above definition, we obtain a soft set over the universal set U such that
A is a parameters set and X is a mapping from A to P(U), i.e. the pair (X,A) is a
soft set over U . Thus, we obtain the following theorem with this characterization.

Theorem 4.5. Each nested set over the universal set U is a monotonic (decreasing)
soft set.

Proof. From Definition 4.4, it is obvious. �

Note that, this theorem is not true vice versa, in general.
By this way, we can state other hierarchical data models with using monotonic

soft sets.

4.3. In the von Neumann universe. [14]
The von Neumann universe also known as cumulative hierarchy V is the hier-

archy of all set-theoretic sets. Hence, with von Neumann, a natural number n is
conveniently represented as {0, 1, 2, . . . , n − 1}. All sets in V are constructed from
nothing. The von Neumann universe is constructed inductively, starting from ∅ and
successively applying the Powerset operation P. That is, V0 = ∅, V1 = P(∅) = {∅},
· · · , Vn+1 = P(Vn) and Vn ⊂ Vn+1.

In other words, The cumulative hierarchy is a collection of sets Vn indexed by
the class of ordinal numbers, in particular, Vn is the set of all sets having ranks less
than n.

Thereby we obtain a monotonic soft set with the von Neumann universe. If we
take the parameters set as the set of all ordinals, then for each ordinal n we have
the set Vn. That is, we define the mapping F : O → V such that F (n) = Vn for
each ordinal n, (F,O) is a monotonic soft set.

4.4. In connection structures. In [5], Biacino and Gerla defined connection struc-
tures using mereological relations between objects. Connection structures are defined
as follows.

Definition 4.6 ([5]). Let U be a nonempty set and C a binary relation on U , set
C(x) = {y ∈ U | (x, y) ∈ C} and suppose the following axioms are true for every
x, y ∈ U :

(i) (x, x) ∈ C,
(ii) (x, y) ∈ C ⇒ (y, x) ∈ C,
(iii) C(x) = C(y)⇒ x = y.

We call regions the elements of U and, if x, y ∈ U and (x, y) ∈ C, we say that x is
connected with y. If X is a nonempty subset of U , we say that x is the fusion of
X just in case for every y ∈ U , (x, y) ∈ C iff for some z ∈ X, (z, y) ∈ C; in other
words, x is the fusion of X provided that C(x) =

⋃
{C(z) | z ∈ X}. The fusion of

the nonempty subsets of U is assured by the following axiom.
(iv) X ⊆ U and X 6= ∅ imply there exists x ∈ U such that x is the fusion of X.

If (i)-(iv) are satisfied, we say that C = (U, C) is connection structure.
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The axiom (iii) implies that the relation ≤ define in U by

x ≤ y ⇔ C(x) ⊆ C(y)

is a partial ordering. Because of that we obtain a monotonic soft set over U , i.e. the
connection structure C is a monotonic soft set.

5. Decision algorithm via monotonic soft sets

As is known, there are many applications of soft sets in many fields [6, 13]. Many
researchers have developed decision-making techniques using the soft set theory.
Here, we will give a new decision algorithm using monotonic soft sets.

Algorithm 1. Construct a monotonic soft set with respect to valueness of the
parameters. So, this monotonic soft set is decreasing.

Algorithm 2. Choose maximal parameters and related approximated set with
respect to superiority.

Algorithm 3. Intersect these maximal approximated set.

As a result, decision maker will choose an element in this set.
This decision algorithm let us to decide rapidly by choosing the most valuable

parameters among to parameters ordered by priority.
We can discuss the Molodtsov’s famous example to see how to work these decision

making algorithms.

Example 5.1. A soft set (F,E) describes attractiveness of the houses which Mrs.
Kandemir is going to buy. Let U = {h1, h2, h3, h4, h5, h6} be a set of six houses
under consideration. E = {e1, e2, e3, e4, e5, e6, e7} be a set of parameters such that

• e1 = expensive,
• e2 = beautiful,
• e3 = wooden,
• e4 = cheap,

• e5 = in the green surroundings,
• e6 = modern,
• e7 = in good repair.

Hasse diagram of the order of the parameters according to prefences of Mrs.
Kandemir is as follows; Then, the (decreasing) monotonic soft set is built according

e4 e6 e2

e1

OO

e5

OO

e7

OO

e3

OO >>

Figure 1. Order of The Parameters
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to preferences of Mrs. Kandemir as follows;

(F,E) = {e1 = {h1, h3, h6}, e2 = {h3}, e3 = {h2, h3, h5}, e4 = {h3},
e5 = {h2, h3, h5}, e6 = {h3, h5}, e7 = {h3, h5}}.

Thus we obtain that maximal parameters are e2, e4, e6. So their approximated sets
are F (e2) = {h3}, F (e4) = {h3} and F (e6) = {h3, h5}. Taking the intersection of
these sets:

F (e2) ∩ F (e4) ∩ F (e6) = {h3}.
Hence, Mrs. Kandemir will select h3.

6. Conclusion

Ordering plays an important role in our daily life where many problems are caused
by the parameters. Therefore, we need to identify the relationship better among
parameters that we can solve such problems, that is, parameters can be ordered
according to our preferences. In this paper, we have built monotonic soft set which
parameter set is a poset then we have studied its properties. We gave some spe-
cial examples of monotonic soft sets related other mathematical structures. We
have showed that partially ordered sets, nested sets, The von Neumann Universe,
connection structures are specifical monotonic soft sets. We have proved a theo-
rem (Theorem 4.3) that can be important for partially ordered set theory. Finally,
we constructed a decision algorithm using monotonic soft sets and gave a simple
example.

As given in [13], there exist compact connections between soft sets and information
systems. Relationship between monotonic soft sets and information systems, maybe
ordered information systems, can be considered for future studies. The author hope
that this article sheds light on a way of working in this field.
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