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Abstract. In this paper, we provide three new products on product
fuzzy graphs, we give sufficient conditions for each one of them to be strong
and we show that if any of these products is complete, then at least one
factor is strong. Moreover, we introduce and study the notions of balanced
and cobalanced product fuzzy graphs and give necessary and sufficient
conditions for the product of two balanced (resp., cobalanced) product
fuzzy graphs to be balanced (resp., cobalanced). Finally, we prove that
these notions are preserved under isomorphism.
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1. Background

A fuzzy subset of a non-empty set V is a mapping σ : V → [0, 1] and a fuzzy
relation µ on a fuzzy subset σ, is a fuzzy subset of V ×V. All throughout this paper,
we assume that σ is reflexive, µ is symmetric and V is finite.

Definition 1.1 ([11]). A fuzzy graph, with V as the underlying set, is a pair
G : (σ, µ), where

σ : V → [0, 1] is a fuzzy subset
and

µ : V × V → [0, 1] is a fuzzy relation on σ such that µ(x, y) ≤ σ(x) ∧ σ(y) for
all x, y ∈ V, where ∧ stands for minimum.

The underlying crisp graph of G is denoted by G∗ : (σ∗, µ∗), where
σ∗ = sup p(σ) = {x ∈ V : σ(x) > 0}

and
µ∗ = sup p(µ) = {(x, y) ∈ V × V : µ(x, y) > 0}.

H = (σ′, µ′) is a fuzzy subgraph of G, if there exists X ⊆ V such that
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σ′ : X → [0, 1] is a fuzzy subset
and

µ′ : X ×X → [0, 1] is a fuzzy relation on σ′ such that µ(x, y) ≤ σ(x) ∧ σ(y)
for all x, y ∈ X.

Definition 1.2 ([11]). Two fuzzy graphs G1 : (σ1, µ1) with underlying graph G∗1 :
(V1, E1)and G2 : (σ2, µ2) with underlying graph G∗2 : (V2, E2) are isomorphic, if
there exists a bijection h : V1 → V2 such that

σ1(x) = σ2(h(x)) for all x ∈ V1

and
µ1(x, y) = µ2(h(x), h(y)) for all (x, y) ∈ E1.

Then we write G1 ' G2 and h is called an isomorphism. If G1 = G2, h is called an
automorphism.

Product fuzzy graphs were introduced by Ramaswamy and Poornima in [10],
where they used the operation of product instead of minimum.

Definition 1.3 ([10]). Let G∗ : (V,E) be a graph, σ be a fuzzy subset of V and µ be
a fuzzy subset of V ×V. We call G : (σ, µ) product fuzzy graph, if µ(x, y) ≤ σ(x)σ(y)
for all x, y ∈ V.

The following is an immediate result.

Lemma 1.4. Every product fuzzy graph is a fuzzy graph, but the converse need not
be true.

Definition 1.5 ([10]). A product fuzzy graph G : (σ, µ) with underlying graph
G∗ : (V,E) is said to be complete if µ(x, y) = σ(x)σ(y) for all x, y ∈ V.

Definition 1.6 ([10]). A product fuzzy graph G : (σ, µ) with underlying graph
G∗ : (V,E) is said to be strong if µ(x, y) = σ(x)σ(y) for all (x, y) ∈ E.

Definition 1.7 ([10]). The complement of a product fuzzy graph G : (σ, µ) is
Gc : (σc, µc) where σc = σ and

µc(x, y) = σc(x)σc(y)− µ(x, y)

= σ(x)σ(y)− µ(x, y).

Graph theory has several interesting applications in system analysis, operations
research and economics. Since most of the time the aspects of graph problems are
uncertain, it is nice to deal with these aspects via the methods of fuzzy logic. The
concept of fuzzy relation which has a widespread application in pattern recognition
was introduced by Zadeh [15] in his landmark paper ”Fuzzy sets” in 1965. Fuzzy
graph and several fuzzy analogs of graph theoretic concepts were first introduced
by Rosenfeld [11] in 1975. Sense then, fuzzy graph theory is finding an increasing
number of applications in modelling real time systems where the level of informa-
tion inherent in the system varies with different levels of precision. Fuzzy models are
becoming useful because of their aim in reducing the differences between the tradi-
tional numerical models used in engineering and sciences and the symbolic models
used in expert systems.
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Since the notions of degree, complement, completeness, regularity, connectedness
and many others play very important rules in the crisp graph case, the idea is to
find what corresponds to these notions in the case of fuzzy graphs. Several authors
introduced and studied product fuzzy graphs, see for example [1, 2, 3, 10, 12, 13]. AL-
Hawary [4] introduced the concept of balanced fuzzy graphs. He defined three new
operations on fuzzy graphs and explored what classes of fuzzy graphs are balanced.
Sense then, many authors have studied the idea of balanced on distinct kinds of
fuzzy graphs, see for example [5, 6, 7, 8, 9, 14]. Our aim in this paper is to study
the notions of complete, strong, balanced and cobalanced product fuzzy graphs.
Moreover, several relatively new operations on product fuzzy graphs are provided
and properties are explored.

We remark that the results in this paper were done in Bayan Hourani masters
thesis titled ”ON COMPLETE AND BALANCED FUZZY GRAPHS” under the
supervision of Talal Al-Hawary at Yarmouk University in 2015.

2. Complete product fuzzy graphs

In this section, we provide relatively new definitions and operations on product
fuzzy graphs. We start by presenting some results on self-complementary product
fuzzy graphs.

Lemma 2.1. If G : (σ, µ) with underlying graph G∗ : (V,E) is a self-complementary
product fuzzy graph, then ∑

(x,y)∈E

µ(x, y) =
1

2

∑
(x,y)∈E

σ(x)σ(y).

Proof. Let G : (σ, µ) be a self-complementary product fuzzy graph. Then by Defini-
tion 1.2, there exist a bijection h : V → V such that σc(h(x)) = σ(x) for all x ∈ V
and µc(h(x), h(y)) = µ(x, y) for all (x, y) ∈ E. But by Definition 1.7, we get

µc(h(x), h(y)) = σc(h(x))σc(h(y))− µ(h(x), h(y))

and then

µ(x, y) = σ(x)σ(y)− µ(h(x), h(y)).

Thus µ(x, y) + µ(h(x), h(y)) = σ(x)σ(y). So∑
(x,y)∈E µ(x, y) +

∑
(x,y)∈E µ(h(x), h(y)) =

∑
x,y∈V σ(x)σ(y).

Furthermore,
∑

(x,y)∈E µ(x, y) =
∑

(x,y)∈E µ(h(x), h(y)).

Hence 2
∑

(x,y)∈E µ(x, y) =
∑
x,y∈V σ(x)σ(y).

Therefore
∑

(x,y)∈E µ(x, y) = 1
2

∑
x,y∈V σ(x)σ(y). �

We now give an example to show that the converse of the above result need not
be true.

Example 2.2. Consider the following graph G. Then∑
(x,y)∈E µ(x, y) = 1

2

∑
x,y∈V σ(x)σ(y) = 0.13,

but G is not self-complementary.
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Lemma 2.3. Let G : (σ, µ) be a product fuzzy graph with underlying graph G∗ :
(V,E) such thatµ(x, y) = 1

2σ(x)σ(y) for all x, y ∈ V. Then Gis self-complementary.

Proof. Define h : V → V by σ(x) = σ(h(x)) for all x ∈ V. Then for all x, y ∈ V,
µc(x, y) = σ(x)σ(y)− µ(x, y)

= σ(x)σ(y)− 1

2
(σ(x)σ(y))

=
1

2
(σ(x)σ(y))

= µ(x, y).

Thus G ' Gc. �

We now give an example to show the converse of the above result need not be
true.

Example 2.4. The following graph G is self-complementary, but µ(x1, x3) = 0.04

and
1

2
(σ(x1)σ(x3)) = 0.02.

3. Operations on product fuzzy graphs

In this section, we define relatively new operations on product fuzzy graphs that
are similar to those of fuzzy graphs in [4]. We first start by recalling the following
definition from [10].
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Definition 3.1 ([10]). Assume that V1 ∩V2 = ∅. Then The direct product (simply,
product) of two product fuzzy graphs G1 : (σ1, µ1) with underlying graph G∗1 :
(V1, E1) and G2 : (σ2, µ2) with underlying graph G∗2 : (V2, E2) is defined to be
the product fuzzy graph G1 � G2 : (σ1 � σ2, µ1 � µ2) with underlying graph G∗ :
(V1 × V2, E), where

E = {(x1, y1)(x2, y2) : (x1, x2) ∈ E1, (y1, y2) ∈ E2},
(σ1�σ2)(x, y) = σ1(x)σ2(y), for all (x, y) ∈ V1 × V2

and
(µ1�µ2)((x1, y1)(x2, y2)) = µ1(x1, x2)µ2(y1, y2),

for all (x1, x2) ∈ E1 and (y1, y2) ∈ E2.

Definition 3.2. Assume that V1 ∩ V2 = ∅. Then the semi-strong product of two
product fuzzy graphs G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 :
(σ2, µ2) with underlying graph G∗2 : (V2, E2) is defined to be the product fuzzy
graph G1 ·G2 : (σ1 · σ2, µ1 · µ2) with underlying graph G∗ : (V1 × V2, E), where

E = {(x, y1)(x, y2) : x ∈ V1, (y1, y2) ∈ E2}
∪{(x1, y1)(x2, y2) : (x1, x2) ∈ E1, (y1, y2) ∈ E2},

(σ1 · σ2)(x, y) = σ1(x)σ2(y) for all (x, y) ∈ V1 × V2,
(µ1 · µ2)((x, y1)(x, y2)) = (σ1(x))2µ2(y1, y2)

and
(µ1 · µ2)((x1, y1)(x2, y2)) = µ1(x1, x2)µ2(y1, y2),

for all x, x1, x2 ∈ V1 and y1, y2 ∈ V2.

Definition 3.3. Assume that V1∩V2 = ∅. Then the strong product of two product
fuzzy graphs G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 : (σ2, µ2) with
underlying graph G∗2 : (V2, E2) is defined to be the product fuzzy graph G1 ⊗ G2 :
(σ1 ⊗ σ2, µ1 ⊗ µ2) with underlying graph G∗ : (V1 × V2, E), where

E = {(x, y1)(x, y2) : x ∈ V1, (y1, y2) ∈ E2}
∪{(x1, y)(x2, y) : (x1, x2) ∈ E1, y ∈ V2}
∪{(x1, y1)(x2, y2) : (x1, x2) ∈ E1, (y1, y2) ∈ E2},

(σ1 ⊗ σ2)(x, y) = σ1(x)σ2(y), for all (x, y) ∈ V1 × V2,
(µ1⊗µ2)((x, y1)(x, y2)) = (σ1(x))2µ2(y1, y2),
(µ1⊗µ2)((x1, y)(x2, y)) = (σ2(y))2µ1(x1, x2)

and
(µ1⊗µ2)((x1, y1)(x2, y2)) = µ1(x1, x2)µ2(y1, y2),

for all x, x1, x2 ∈ V1 and y, y1, y2 ∈ V2.

Next, we study which of these operations preserves the strong and complete no-
tions.

Theorem 3.4. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 : (σ2, µ2)
with underlying graph G∗2 : (V2, E2) are strong product fuzzy graphs, then G1 �G2 is
strong.

Proof. If (x1, y1)(x2, y2) ∈ E, then since G1 and G2 are strong,

(µ1 � µ2)((x1, y1)(x2, y2)) = µ1(x1, x2)µ2(y1, y2)

= σ1(x1)σ1(x2)σ2(y1)σ2(y2)

= (σ1 � σ2)(x1, y1)(σ1 � σ2)(x2, y2).
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Thus G1 �G2 is strong. �

The following result comes from the fact that every complete product fuzzy graph
is strong.

Corollary 3.5. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 : (σ2, µ2)
with underlying graph G∗2 : (V2, E2) are complete product fuzzy graphs, then G1 �G2

is strong.

Theorem 3.6. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 : (σ2, µ2)
with underlying graph G∗2 : (V2, E2) are strong product fuzzy graphs, then G1�G2 is
strong.

Proof. If (x, y1)(x, y2) ∈ E, then

(µ1 � µ2)((x, y1)(x, y2)) = (σ1(x))2µ2(y1, y2)

= σ1(x)σ1(x)σ2(y1)σ2(y2)

= (σ1 � σ2)(x, y1)(σ1 � σ2)(x, y2).

If (x1, y1)(x2, y2) ∈ E, then, since G1 and G2 are strong,

(µ1 � µ2)((x1, y1)(x2, y2)) = µ1(x1, x2)µ2(y1, y2)

= σ1(x1)σ1(x2)σ2(y1)σ2(y2)

= (σ1 � σ2)((x1, y1))(σ1 � σ2)((x2, y2)).

Thus G1 �G2 is strong. �

Corollary 3.7. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 :
(σ2, µ2) with underlying graph G∗2 : (V2, E2) are complete product fuzzy graphs, then
G1 �G2 is strong.

Theorem 3.8. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 : (σ2, µ2)
with underlying graph G∗2 : (V2, E2) are product strong fuzzy graphs, then G1⊗G2 is
strong.

Proof. If (x, y1)(x, y2) ∈ E, then

(µ1⊗µ2)((x, y1)(x, y2)) = (σ1(x))2µ2(y1, y2)

= σ1(x)σ1(x)σ2(y1)σ2(y2)

= (σ1 ⊗ σ2)(x, y1)(σ1 ⊗ σ2)(x2, y2).

If (x1, y)(x2, y) ∈ E, then

(µ1⊗µ2)((x1, y)(x2, y)) = (σ2(y))2µ1(x1, x2)

= σ1(x1)σ1(x2)σ2(y)σ2(y)

= (σ1 ⊗ σ2)(x1, y)(σ1 ⊗ σ2)(x2, y).

If (x1, y1)(x2, y2) ∈ E, then since G1 and G2 are strong

(µ1 ⊗ µ2)((x1, y1)(x2, y2)) = µ1(x1, x2)µ2(y1, y2)

= σ1(x1)σ1(x2)σ2(y1)σ2(y2)

= (σ1 ⊗ σ2)(x1, y1)(σ1 ⊗ σ2)(x2, y2).
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Thus G1 ⊗G2 is strong. �

Corollary 3.9. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete product fuzzy graphs,
then G1 ⊗G2 is strong.

We can easily generalize the previous result to get a complete strong product
fuzzy graph instead of strong. We remark that it can not be generalized in the cases
of direct product and semi-strong product since these products are never complete.

Lemma 3.10. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete product fuzzy graphs,
then G1 ⊗G2 is complete.

Next we prove that if the direct product, semi-strong product or strong product
of two product fuzzy graphs is strong, then at least one of them is strong. We only
prove the case of semi-strong product since the other cases are similar.

Theorem 3.11. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 :
(σ2, µ2) with underlying graph G∗2 : (V2, E2) are product fuzzy graphs such that G1�
G2 (G1 �G2or G1 ⊗G2) is strong, then at least G1or G2 must be strong.

Proof. Suppose that both G1 and G2 are not strong. Since G1 is not strong, there
exist (x1, y1) ∈ E1 such that µ1(x1, y1) < σ1(x1)σ1(y1). Since G2 is not strong, then
there exists (x2, y2) ∈ E2 such that µ2(x2, y2) < σ2(x2)σ2(y2). Now,

(µ1 � µ2)((x1, y1)(x2, y2)) = µ1(x1, x2)µ2(y1, y2) < σ1(x1)σ1(y1)σ2(x2)σ2(y2).

But (σ1 � σ2)(x1, y1) = σ1(x1)σ2(y1) and (σ1 � σ2)(x2, y2) = σ1(x2)σ2(y2). Thus

d(σ1 � σ2)(x1, y1)(σ1 � σ2)(x2, y2) = σ1(x1)σ1(x2)σ2(y1)σ2(y2)

> (µ1 � µ2)((x1, y1)(x2, y2)).

So G1 �G2 is not strong. �

Theorem 3.12. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 :
(σ2, µ2) with underlying graph G∗2 : (V2, E2) are complete product fuzzy graphs, then
G1 ⊗G2 ' Ḡ1 ⊗ Ḡ2.

Proof. LetG1 ⊗G2 = (σ1 ⊗ σ2, µ1 ⊗ µ2) .We only need to show that µ1 ⊗ µ2(x, y) =
µ̄1⊗µ̄2(x, y) for all x, y ∈ V. Since G1 and G2 are two complete product fuzzy graphs,
then by Lemma 3.10, G1 ⊗G2 is complete. Hence µ1 ⊗ µ2(x, y) = 0 for all x, y ∈ V.
Since G1 and G2 are complete product fuzzy graphs, then their complements are
empty fuzzy graphs and the strong product of two product empty fuzzy graphs is
empty. So (µ̄1 ⊗ µ̄2)(x, y) = 0 for all x, y ∈ V. �

The preceding result need not be true in the cases of direct product and semi-
strong product. See the following example.

Example 3.13.
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Theorem 3.14. If G1 : (σ1, µ1) with underlying graph G∗1 : (V1, E1) and G2 :
(σ2, µ2) with underlying graph G∗2 : (V2, E2) are complete product fuzzy graphs, then
Ḡ1 ⊗ Ḡ2 ' Ḡ1 � Ḡ2 ' Ḡ1 � Ḡ2.

Proof. We only need to show (µ̄1 ⊗ µ̄2)(x, y) = (µ̄1 � µ̄2)(x, y) = (µ̄1 � µ̄2)(x, y).
Since G1 and G2 are complete product fuzzy graphs, then their complements are
empty fuzzy graphs and the strong product of two product empty fuzzy graph is
empty. Thus (µ̄1 ⊗ µ̄2)(x, y) = 0 for all x, y ∈ V. Since G1 and G2 are complete
fuzzy graphs, then their complements are empty and the semi-strong product of two
product empty fuzzy graph is empty. So (µ̄1� µ̄2)(x, y) = 0 for all x, y ∈ V. Since G1

and G2 are complete fuzzy graphs, then their complements are empty and the direct
product of two product empty fuzzy graph is empty. Hence (µ̄1 � µ̄2)(x, y) = 0 for
all x, y ∈ V. Therefore (µ̄1 ⊗ µ̄2)(x, y) = (µ̄1 � µ̄2)(x, y) = (µ̄1 � µ̄2)(x, y) = 0 for all
x, y ∈ V. �

4. Balanced product fuzzy graphs

Analogous to the idea of balanced fuzzy graphs in [4], we introduce the notion of
balanced product fuzzy graphs and prove several results related to them.

Definition 4.1. The density of a product fuzzy graph isD(G) =

2
∑

(x,y)∈E
(µ(x, y))∑

x,y∈V
(σ(x) ∧ σ(y))

.

G is balanced if D(H) ≤ D(G) for any non-empty product fuzzy subgraphs H of G.

Theorem 4.2. The density of a complete product fuzzy graph is less than or equal
to 2.

Proof. Let G be any complete product fuzzy graph. Then µ(x, y) = σ(x)σ(y) for all
x, y ∈ V. Thus

∑
(x,y)∈E µ(x, y) =

∑
x,y∈V σ(x)σ(y) and as σ(x)σ(y) ≤ σ(x) ∧ σ(y),∑

x,y∈V
σ(x)σ(y) ≤

∑
x,y∈V

σ(x) ∧ σ(y).

So
∑

(x,y)∈E(µ(x, y)) ≤
∑
x,y∈V (σ(x) ∧ σ(y)). Hence D(G) ≤ 2. �

Theorem 4.3. Let G be any complete product fuzzy graph and H be a non-empty
product fuzzy subgraph of G such that H has less edges than G. Then G is balanced.

Proof. If H has less edges than G, then∑
(x,y)∈E(H)

(µ(x, y)) ≤
∑

(x,y)∈E

(µ(x, y))

and ∑
x,y∈V (H)

σ(x) ∧ σ(y) =
∑
x,y∈V

σ(x) ∧ σ(y).

Thus D(H) ≤ D(G). �

We now give an example to show that if H only has vertices less than G, then G
need not be balanced.
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Example 4.4. Consider the following graph G.

Then G is not balanced since D(G) = 0.55. But if we take H = (x1, x3), then
D(H) = 0.6. Thus it is clear that a complete product fuzzy graph is not necessary
balanced.

Theorem 4.5. Every self-complementary product fuzzy graph has density less than
or equal to 1.

Proof. Let G be self-complementary product fuzzy graph. Then, by Lemma 2,∑
(x,y)∈E

µ(x, y) =
1

2

∑
x,y∈V

(σ(x)σ(y)).

Since

1
2

∑
x,y∈V (σ(x)σ(y)) ≤ 1

2

∑
x,y∈V (σ(x) ∧ σ(y)),

D(G) =

2
∑

(x,y)∈E
(µ(x, y))∑

x,y∈V
(σ(x) ∧ σ(y))

=

∑
x,y∈V

(σ(x)σ(y))∑
x,y∈V

(σ(x) ∧ σ(y))
≤

∑
x,y∈V

(σ(x)σ(y))∑
x,y∈V

(σ(x)σ(y))
≤ 1.

Thus the result hods. �

The converse of the above results need not be true.

Example 4.6. Consider the following graph G. Then D(G) = 0.55, but G is not

self-complementary.
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Theorem 4.7. Let G : (σ, µ) be a product fuzzy graph such that µ(x, y) = 1
2 (σ(x)σ(y))

for all x, y ∈ V. Then D(G) ≤ 1.

Proof. By Lemma 1.4, G is self-complementary and by Theorem 4.5, D(G) ≤ 1.
Let G1 and G2 be two complete product fuzzy graphs. Then D(G1�G2) ≥ D(Gi)

for i = 1, 2 if and only if D(G1) = D(G2) = D(G1 �G2).

D(G1) =

2
∑

(x1,x2)∈E
(µ1(x1, x2))∑

x1,x2∈V
(σ(x1) ∧ σ(x2))

≥
2

∑
(x1,x2)∈E

(µ1(x1, x2))(σ2(y1) ∧ σ2(y2))∑
x1,x2∈V

(σ(x1) ∧ σ(x2))(σ2(y1) ∧ σ2(y2))

≥
2

∑
(x1,x2)∈E

(µ1(x1, x2))(σ2(y1)σ2(y2))∑
x1,x2∈V

(σ(x1) ∧ σ(x2))(σ2(y1) ∧ σ2(y2))

≥
2

∑
(x1,x2)∈E

(µ2(x1, x2))(µ2(y1, y2))∑
(x,y)∈V1×V2

(σ(x) ∧ σ(y))

= D(G1 �G2).

�

Theorem 4.8. Let G1 and G2 be isomorphic product fuzzy graphs. If one of them
is balanced, then the other is balanced.

Proof. Suppose G2 is balanced and let h : V1 → V2 be a bijection such that
σ1(x) = σ2(h(x)) and µ1(x, y) = µ2(h(x), h(y)) for all x, y ∈ V1. Now

∑
x∈V1

σ1(x) =∑
x∈V2

σ2(x) and
∑

(x,y)∈E1
µ1(x, y) =

∑
(x,y)∈E2

µ2(x, y). If H1 = (σ́1, µ́1) is a

product fuzzy subgraph of G1 with underlying set W, then H2 = (σ́2, µ́2) is a prod-
uct fuzzy subgraph of G2 with underlying set h(W ) where σ́2(h(x)) = σ́1(x) and
µ́2(h(x), h(y)) = µ́1(x, y) for all x, y ∈ W. Since G2 is balanced, D(H1) ≤ D(G2)

and so 2
∑

(x,y)∈E1
µ2(h(x),h(y))∑

x,y∈V1
(σ́2(x)∧σ́2(y)) ≤ 2

∑
(x,y)∈E1

µ2(x,y)∑
x,y∈V1

(σ2(x)∧σ2(y)) . Hence

2

∑
(x,y)∈E1

µ1(x, y)∑
x,y∈V1

(σ́2(x) ∧ σ́2(y))
≤ 2

∑
(x,y)∈E1

µ1(x, y)∑
x,y∈V1

(σ2(x) ∧ σ2(y))
.

Thus, G1 is balanced. �

5. Cobalanced product fuzzy graphs

In this section, we introduce the relatively new notion of cobalanced. We note
that using this notion, we get better results than using balanced notion.
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Definition 5.1. The codensity of a product fuzzy graphG is CD(G) = 2

∑
(x,y)∈E

µ(x,y))∑
x,y∈V

σ(x)σ(y) .

G is Cobalanced if CD(H) ≤ CD(G) for all fuzzy non-empty subgraphs H of G.

Theorem 5.2. Let G be a product fuzzy graph. Then CDG) = 2 iff and only if
G is complete.

Proof. Let G be a complete product fuzzy graph. Then CD(G) =
2

∑
x,y∈V

σ(x)σ(y)∑
x,y∈V

σ(x)σ(y) =

2. Conversely, suppose G is not complete with codensity equals 2. Then CD(G) =
2

∑
(x,y)∈E

µ(x,y))∑
x,y∈V

σ(x)σ(y) = 2. Thus
∑

(x,y)∈E µ(x, y)) =
∑
x,y∈V σ(x)σ(y). Since G is not com-

plete, µ(x, y) < σ(x)σ(y) for some x, y ∈ V. That means µ(x́, ý) > σ(x́)σ(ý) for some
x́, ý ∈ V − {x, y} , a contradiction. �

Theorem 5.3. Any complete product fuzzy graph is cobalanced.

Proof. Let G be a complete product fuzzy graph. Then by Theorem 5.2, CD(G) =
2. If H is a non-empty product fuzzy subgraph of G, then we have two cases:

Case I If H has less edges than G, then
∑

(x,y)∈E(H) µ(x, y)) ≤
∑

(x,y)∈E µ(x, y))

and
∑
x,y∈V (H) σ(x)σ(y) =

∑
x,y∈V σ(x)σ(y). Thus

CD(H) =

2
∑

(x,y)∈E(H)

(µ(x, y))∑
x,y∈V (H)

(σ(x)σ(y))
=

2
∑

(x,y)∈E(H)

(µ(x, y))∑
x,y∈V

(σ(x)σ(y))

≤
2

∑
(x,y)∈E

(µ(x, y))∑
x,y∈V

(σ(x)σ(y))
= 2 = CD(G).

Case II If H has vertices lass than G, then it is clear that H is a complete product
fuzzy graph. We conclude that CD(H) = CD(G).

Thus G is cobalanced product fuzzy graph. �

The converse of preceding result need not be true.

Example 5.4. Consider the following graph G. Then G is a cobalanced product
fuzzy graph that is not complete.

Corollary 5.5. A strong product fuzzy graph that is not complete is cobalanced.

Proof. Let G be a strong product fuzzy graph. Then by Theorem 5.2, we conclude
that CD(G) < 2 and it is clear that it has a complete subgraph H . By Theorem
5.2 again, CD(H) = 2 > CD(G). �

Theorem 5.6. Every self-complementary product fuzzy graph has codensity equal
1.
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Proof. Let G be self-complementary product fuzzy graph. Then

CD(G) =

2
∑

(x,y)∈E
(µ(x, y))∑

x,y∈V
(σ(x)σ(y))

=

2 1
2

∑
x,y∈V

(σ(x)σ(y))∑
x,y∈V

(σ(x)σ(y))
=

∑
x,y∈V

(σ(x)σ(y))∑
x,y∈V

(σ(x)σ(y))
= 1.

�

The converse of the above result need not be true.

Example 5.7. Consider the following graph G where CD(G) = 1, but G is not self-
complementary. Then G is a cobalanced product fuzzy graph that is not complete.

Theorem 5.8. Let G : (σ, µ) be a product fuzzy graph such that µ(x, y) = 1
2 (σ(x)σ(y))

for all x, y ∈ V. Then CD(G) = 1.

Proof. By Lemma 4, G is self-complementary and by Theorem 5.6, CD(G1) = 1.

Let G1 and G2 be two complete product fuzzy graphs. Then CD(Gi) ≤ CD(G1�
G2) for i = 1, 2 if and only if CD(G1) = CD(G2) = CD(G1 � G2). If D(Gi) ≤
D(G1 �G2) for i = 1, 2, then since G1 and G2 are complete product fuzzy graphs,
by Theorem 5.8,

CD(G1) = CD(G2) = 2.

By Corollary 3.5, G1 �G2 is strong and hence by Theorem 5.8, CD(G1 �G2) < 2.
Thus CD(Gi) ≥ CD(G1�G2) for i = 1, 2. So CD(G1) = CD(G2) = CD(G1�G2).

The converse is trivial. �
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Theorem 5.9. Let G1 and G2 be two cobalanced product fuzzy graphs. Then G1�G2

is cobalanced if and only if CD(G1) = CD(G2) = CD(G1 �G2).

Proof. If G1 �G2 is cobalanced, then CD(Gi) ≤ CD(G1 �G2) for i = 1, 2. Thus,
by Lemma 5,

CD(G1) = CD(G2) = CD(G1 �G2).

Conversely, If CD(G1) = CD(G2) = CD(G1 � G2) and H is a product fuzzy
subgraph of G1 � G2, then there exist product fuzzy subgraph H1 of G1 and H2

of G2 such that H ' H1 � H2. As G1 and G2 are cobalanced and say CD(G1) =
CD(G2) = n1

r1
, then CD(H1) = a1

b1
≤ n1

r1
and CD(H2) = a2

b2
≤ n1

r1
. Thus a1r1 +

a2r1 ≤ b1n1 + b2n1 and hence CD(H) ≤ a1+a2
b1+b2

≤ n1

r1
= CD(G1 � G2). Therefore

G1 �G2 is cobalanced. �

The next results can be proved in a similar manor to the preceding one.

Theorem 5.10. Let G1 and G2 be complete product fuzzy graphs. Then G1 �G2

(resp., G1 ⊗ G2) is cobalanced iff CD(G1) = CD(G2) = CD(G1 � G2) (resp.,
CD(G1 ⊗G2)).

Theorem 5.11. Let G1 and G2 be isomorphic product fuzzy graphs. If one of them
is cobalanced, then the other is cobalanced.

Proof. Suppose G2 is cobalanced and let h : V1 → V2 be a bijection such that
σ1(x) = σ2(h(x)) and µ1(x, y) = µ2(h(x), h(y)) for all x, y ∈ V1. Thus

∑
x∈V1

σ1(x) =∑
x∈V2

σ2(x) and
∑

(x,y)∈E1
µ1(x, y) =

∑
(x,y)∈E2

µ2(x, y). If H1 = (σ́1, µ́1) is a prod-

uct fuzzy subgraph of G1 with underlying set W, then H2 = (σ́2, µ́2) is a fuzzy sub-
graph of G2 with underlying set h(W ) where σ́2(h(x)) = σ́1(x) and µ́2(h(x), h(y)) =
µ́1(x, y) for all x, y ∈W. Since G2 is cobalanced, CD(H1) ≤ CD(G2). So

2

∑
(x,y)∈E1

µ2(h(x), h(y))∑
(σ́2(x)σ́2(y))

≤ 2

∑
(x,y)∈E1

µ2(x, y)∑
(σ2(x)σ2(y))

≤ 2

∑
(x,y)∈E1

µ1(x, y)∑
(σ2(x)σ2(y))

.

Hence, G1is cobalanced. �

Next, we show that the notions of balanced and cobalanced are independent.

Example 5.12. The following graph G is cobalanced, but is not balanced since
D(G) = .055, but if we take H = (x1, x2), then D(H) = 0.6. Then G is a cobalanced
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product fuzzy graph that is not complete.

Example 5.13. The following graph G graph is balanced, but is not cobalanced
since if we take H = (X2, X3), then CD(H) = 1.6326530612 while CD(G) =
1.4906832298. Then G is a cobalanced product fuzzy graph that is not complete.

Theorem 5.14. Every balanced complete product fuzzy graph is cobalanced.

Proof. Let G be a complete product fuzzy graph and H be a non-empty product
fuzzy subgraph of G. Then as G is balanced , D(H) ≤ D(G). Since G is complete,
G is cobalanced. �
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