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Abstract. A multi-item inventory-distribution system via multi-
warehouses and -retailers is considered in fuzzy-stochastic environment.
Here lead-time demands of the items at different stations are considered
as normally distributed with known mean and variance. On the other
hand ordering cost, holding cost and retail-spaces are considered as fuzzy
in nature. Here the model has been formulated as a multiobjective chance
constraint-programming problem in fuzzy environment. The objectives are
(i) minimization of expected annual stock-out at all stations and (ii) min-
imization of inventory related total cost of the system. The problem is
then transferred to a multiobjective decision making (MODM) problem
under crisp constraints. A multi objective genetic algorithm (MOGA) has
been developed and implemented to solve the above MODM problem. The
model has been illustrated by a numerical example and a set of compromise
solution including optimum and near optimum ones has been presented.
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1. Introduction

Since the development of EOQ model by Harris[10], extensive research work has
been done in different areas of inventory control problems(Hadley and Whitin[9],
Naddor[20], Tersine[29] etc). Now-a-days, due to the globalization of market with
introduction of multinationals in the business, status of inventory and production
problems faced by the industrial / business houses have been changed a lot. It is
observed that multinationals store their product in a place of a country where max-
imum financial benefits in terms of rent, taxes etc. are available. Then products are
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distributed to different corners of the country / neighbouring countries via interme-
diate store houses. So, the interests of both multinationals (may be considered as
wholesalers) and their franchisees (may be considered as retailers) have been cou-
pled together and so objective of both the parties as well as the customer service are
to be considered simultaneously. Hence, these considerations normally lead to the
formulation of multiobjective decision making (MODM) inventory control problems.

Over the past two decades, extensive research work has been done to deal with
more than one objective in inventory management problem. Bookbinder and Chen[3]
developed a non-linear mixed integer programming model with two objectives for
the warehouse–retailer system under deterministic demand. The objectives in this
model are minimization of annual inventory and transportation costs. They also
considered two probabilistic models with customers service as another objective.
Ritha and Jeyakumari[25] developed a multi level inventory management decisions
with transportation cost consideration in fuzzy environment. Noura et. al [22] solved
fuzzy multiple objective minimum cost flow problem using credibility approach. Roy
and Maiti[26] formulated an inventory problem of deteriorating items with two con-
straints, namely, storage space constraint and total average cost constraint and two
objectives, namely, maximizing total average profit and minimizing total waste cost
in fuzzy environment. Mahapatra and Maiti[17] developed a production - inventory
model for a deteriorating item with imprecise preparation time for production in a
finite time horizon.

Mahapatra[16] formulated a Multi-objective Inventory Model of Deteriorating
Items with Some Constraints in an Intuitionistic Fuzzy Environment. Niknamfar[21]
has developed a multi-objective production-distribution planning based on vendor-
managed inventory strategy in a supply chain.

The major drawback of most of the above models is that they considered resources
are crisp in nature or resource constraints deterministic. In real life, it is not so.
During controlling period of inventory, the resource constraints may be possibilistic
in nature i.e. it may happen that the constraints on resources will satisfy in almost all
cases except possibly for a very few cases, where they may be allowed to violate. In
stochastic environment for the solution of this type of problems, Mohan[18] proposed
a ’here and now’ approach- i.e. the chance constraints programming approach in
which a minimum probability level for satisfying each of the constraint is specified.
Similarly possibilistic constraints may also be defined (Liu and Iwamura[14]). Also,
Bera et. al.[2] developed a multi-item mixture inventory model involving random
lead time and demand with budget constraint and surprise function. Park[24], Eynan
and Kropp[5], etc. also develop inventory models in stochastic environment. A
Single Period Inventory Model with Discrete and Poisson Demand is also developed
by Shah[27].

During last two decades, a set of evolutionary algorithms(EA) were suggested by
different researchers to solve multiobjective decision making problems. Among these
EAs, multiobjective genetic algorithms (MOGA) played a major role. An MOGA
initially takes a population of feasible solutions for a problem, applies stochastic
operations crossover and mutation on them for successive iterations and gives rise to
a set of Pareto-optimal solutions. Then Decision Maker (DM) can make a choice for
an appropriate / suitable solution among them according to his / her requirement.
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Among these MOGAs, Fonseca and Fleming[6]’s MOGA, Deb et. al.[28]’s NSGA
and Horn et. al.[11]’s NPGA enjoyed more attention. All these MOGA algorithms
have a computational complexity of O(MN2) (where M is the number of objec-
tives and N is the population size). But these techniques use a sharing function
between the solutions for decision making. This sharing function is problem depen-
dent and applicability of a method to a problem depends on this sharing function.
Recently the authors of [4] proposed a MOGA depending on non-dominated sorting
and sharing which does not require any sharing function and having a computational
complexity of O(MN2). GA and MOGA have been applied to solve a few single and
multiobjective inventory problems (e.g. Mondal and Maiti[19], Kumaret. al.[12], Lin
and Song[13], Yousefi and Sadjadi[31], Arabzadaet. al.[1], Gulleret. al.[8] etc).

In this paper, an inventory distribution system is considered for multi-items in
fuzzy-stochastic environment (probabilistic demand, fuzzy inventory related costs),
where items are stocked at a central warehouse and distributed to retailers via inter-
mediate warehouses. Finally the products are distributed to customers via retailers.
Hence, the demand of a warehouse are determined by the sum of the demands of the
retailers / warehouses under the corresponding warehouse. In case of probabilistic
demand, since lead-time is the usual period of concern, attention is focused on the
distribution of demand during the lead-time. Here ordering cost, holding cost and
retail-spaces at different stations are considered as fuzzy in nature. Space constraints
for different retailers is assumed to be possibilistic with some predefined confidence
levels. Our objectives are to minimize inventory related total annual cost as well
as to improve customer service. Customer service is improved by minimizing the
stock-out occasions at different stations. So, the model has been formulated as a
multiobjective fuzzy chance constraint programming problem. The objectives are
(i) minimization of total expected annual stock-out at all stations and (ii) minimiza-
tion of inventory related total cost of the system. Following Liu and Iwamura[15]
the above multiobjective chance constraint programming problem is transferred to
equivalent multiobjective crisp constraint problem. Then a multiobjective genetic
algorithm (MOGA) has been developed (following Deb et. al.[4])and implemented
to solve the above MODM problem. The model has been illustrated by a numerical
example and a set of compromise solution including optimum and near optimum
ones via MOGA has been presented.

2. Preliminaries

2.1. Possibility in fuzzy environment: Let R represents the set of real numbers.
Then any fuzzy subset Ã of R with membership function µÃ : R→ [0, 1], is called a

fuzzy number. Let Ã and B̃ be two fuzzy quantities with membership functions µÃ
and µB̃ respectively. Then according to Liu and Iwamura[14],

Pos (Ã ? B̃) = sup{min(µÃ(x), µB̃(y)), x, y ∈ R, x ? y},(2.1)

where the abbreviation Pos represent possibility and ? is any one of the relations
>,<,=,≤,≥. Analogously if B̃ is a crisp number say b, then

Pos (Ã ? B̃) = sup{µÃ(x), x ∈ R, x ? b}.(2.2)
267



Nirmal Kumar Mahapatra /Ann. Fuzzy Math. Inform. 12 (2016), No. 2, 265–278

If Ã, B̃ and C̃ = f(Ã, B̃) are given, where f : R×R→ R is a binary operation, then

membership function µC̃ of C̃ is defined as

µC̃(z) = sup {min (µÃ(x), µB̃(y)), x, y ∈ R and z = f(x, y)},∀z ∈ R.(2.3)

Let Ã = (a1, a2, a3, a4) be a trapezoidal fuzzy number with membership function

µÃ(x) =


x−a1
a2−a1 for a1 ≤ x ≤ a2
1 for a2 ≤ x ≤ a3
a4−x
a4−a3 for a3 ≤ x ≤ a4
0 otherwise

(2.4)

and C̃ = (c1, c2) is a fuzzy number with membership function µC̃ given by

µC̃(x) =


1 for 0 ≤ x ≤ c1
c2−x
c2−c1 for c1 ≤ x ≤ c2
0 otherwise.

(2.5)

Then, using the above definitions, following lemmas can easily be derived:

Lemma 2.1.

Pos(Ã ≤ b) ≥ α iff
b− a1
a2 − a1

≥ α.(2.6)

Lemma 2.2.

Pos(C̃ ≥ b) ≥ α iff
c2 − b
c2 − c1

≥ α.(2.7)

268



Nirmal Kumar Mahapatra /Ann. Fuzzy Math. Inform. 12 (2016), No. 2, 265–278

2.2. Fuzzy chance constraint programming: A chance constrained program-
ming with fuzzy parameters occurring in both constraints and objectives may be
written as ( Liu and Iwamura[15])

Min F(2.8)

subject to Pos {ξ/f(x, ξ) ≤ F} ≥ β
Pos {ξ/gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , n,

where x is a decision vector, ξ is a vector of fuzzy parameters, f(x, ξ) is the objective
function, gi(x, ξ) are constraint functions and β, αj are predetermined confidence
level for objective function and the constraints respectively.

3. Model description

A multi-item inventory-distribution system via multi-warehouses and -retailers is
considered. Here lead-time demands of the items at different stations are considered
as normally distributed with known mean and variance. On the other hand ordering
cost, holding cost and retail-spaces are considered as fuzzy in nature. The pictorial
representation of the whole process can be depicted in following diagram. Here i−th
warehouse at j−th level is denoted as WHij .

?

WH11

?
WH12

?

?
?

WHi2

?
?

WHm2

?

?
WH1n

?
?

?
?

WHrkn

· · · · · · · · ·
?

WHrln

?
?

WHrmn

?
?

WHrpn

Figure-3: An n-level inventory-distribution system

3.1. Assumptions and Notations. A joint warehouses-retailers multi-item inven-
tory lot size model is developed under the following notations and assumptions.

(i) A multi-echelon (n echelon) multi-item inventory distribution system is con-
sidered.

(ii) i−th warehouse at j−th level is denoted as WHij .
(iii) Wij denotes capacity of WHij .
(iv) leaf warehouses, i.e., n−th level warehouses are assumed as retailers.
Following notations for k−th item at WHij are used for the present model.
Dijk = Annual demand.
Qijk = Ordering quantity.

h̃ijk = Holding cost per unit.

Ãijk = Ordering cost.
vk = Space require to store one unit of k−th item.
Lijk = Fixed replenishment lead time.
µijk = Mean lead time demand.
σ2
ijk = Variance of lead time demand.
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fijk = Safety factor.
SSijk = Safety stock (SSijk = fijkσijk).
sijk = Reorder point (sijk = µijk + SSijk).
Pijk = Probability of stock out in any cycle.
Y = Sum of expected number of stock out occasions per year for all the stations

at all the stations.
Z̃ = Sum of expected annual ordering cost and the average holding costs over the

warehouses and retailers. The symbol tilde ( ) is used to represent a fuzzy parameter
in the above expression.

4. Mathematical formulation

Since µijk and σijk are the mean and standard deviation of lead time demand of
k−th item at WHij , so probability of stock out of k−th item at WHij in any cycle
(following approximation due to Page[23] and Tocher[30] is

Pijk =

∞∫
Sijk

1√
2πσijk

e
−

(x−µijk)2

2σ2
ijk dx =

∞∫
fijk

1√
2π
e−

u2

2 du ≈ 1

1 + e(2yijk)
,(4.1)

where yijk = a1fijk(1 + a2f
2
ijk), with a1 =

√
2
π , a2 = 0.044715.

So expected number of annual stock out of k−th item at WHij is

Pijk
Dijk

Qijk
(4.2)

which implies that the expected number of stock out occasions of all the items
considering all the stations is,

Y =
∑
i

∑
j

∑
k

Pijk
Dijk

Qijk
.(4.3)

The sum of expected annual ordering costs and average holding costs at all the
stations is,

Z̃ =
∑
i

∑
j

∑
k

{
Ãijk

Dijk

Qijk
+ h̃ijk(

1

2
Qijk + fijkσijk)

}
.

Since, ordering cost and holding cost at different stations are assumed to be fuzzy
in nature, the symbol tilde (̃ ) is used to represent a fuzzy parameter in the above
expression.

Space constraints at different retailers are assumed to be possibilistic with some
predefined confidence levels, so for jk−th retailer,

Pos

{∑
k

vkQnjk ≤ W̃nj

}
≥ αnj ,∀j(4.4)

Therefore the proposed model is

Min (Y, Z̃)(4.5)
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subject to the space constraints given in equation(4.4). This problem can be reduced
to a multiobjective fuzzy chance constraint programming problem as below.

Min (Y, F)(4.6)

subject to Pos {Z̃ ≤ F} ≥ α

Pos

{∑
k

vkQnjk ≤ W̃nj

}
≥ αnj ,∀j.

5. Multiobjective genetic algorithm

Genetic Algorithm (GA) was introduced by John Holland[7] in the early 1970′s
to solve decision making problems using the processes of natural evolution. Because
of its generality it has been successfully applied to different branches of optimization
problems, for its several advantages over conventional optimization methods. There
are several algorithms to deal with multiobjective optimization problems using Ge-
netic Algorithms. These algorithms are commonly known as multiobjective Genetic
Algorithm (MOGA). An MOGA is developed to solve the proposed model. Different
steps of this algorithm are given below:

Step 1: Generate initial population P1 of size N .
Step 2: i← 1 [i represent the number of current generation.]
Step 3: Select solution from Pi for crossover.
Step 4: Made crossover on selected solution to get child set C1.
Step 5: Select solution from Pi for mutation.
Step 6: Made mutation on selected solution to get solution set C2.
Step 7: Set P ′i = Pi

⋃
C1

⋃
C2.

Step 8: Partition P ′i into subsets F1, F2, · · · , Fk, such that each subset contains
non-dominated solutions of P ′i and every solutions of Fi dominates every solutions
of Fi+1 for i = 1, 2, · · · , k − 1.

Step 9: Select maximum integer l, such that number of solutions in the set

F1

⋃
F2

⋃
· · ·
⋃
Fl ≤ N.

Step 10: Set Pi+1 = F1

⋃
F2

⋃
· · ·
⋃
Fl.

Step 11: Sort Fl+1 in decreasing order by crowding distance.
Step 12: Set M = number of solutions in Pi+1.
Step 13: Select first N −M solutions from set Fl+1.
Step 14: Insert these solution in solution set Pi+1.
Step 15: Set i← i+ 1.
Step 16: If termination condition does not hold, goto step 3.
Step 17: Output Pi.
Step 18: End.
To implement the above multiobjective Genetic Algorithm (MOGA) for the pro-

posed model, the following basic components are considered. (a) Parameters of
MOGA, (b) Chromosome representation, (c) Initialization, (d) Genetic operators
(crossover and mutation), (e) Crowding distance and (f) Non-dominated sorting.
These components are given below:
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(a) Parameters: Firstly, we set the different parameters on which this GA
depends. All these are the number of generation (MAXGEN), population size
(POPSIZE), probability of crossover (PXOVER), probability of mutation (PMU).
There is no clear indication as to how large should a population be. If the popula-
tion is too large, there may be difficulty in storing the data, but if the population is
too small, there may not be enough string for good crossovers. In our experiment,
POPSIZE = 100, PXOV ER = 0.3, PMU = 0.2, MAXGEN = 5000.

(b) Chromosome representation: Since the proposed problem is non-linear,
a real - number representation of the chromosome is used. In this representation,
each chromosome Vi is a string of n number of genes Gij , (i=1,2,...POPSIZE and
j=1,2,...,n ) where these n number of genes respectively denote the number of deci-
sion variables.

(c) Initial population generations: For each chromosome Vi, every gene Gij
which represents an independent variable, is randomly generated between its bound-
ary (LBj , UBj) where LBj and UBj are the lower and upper bounds of that variable
and the gene Gij which are the dependent variables, are generated from different
conditions, until Vi is feasible,i = 1, 2, ....., POPSIZE.

(d) Crossover operation: The exploration and exploitation of the solution
space is made possible by exchanging genetic information of the current chromo-
somes. Crossover operates on two parent solutions at a time and generates offspring
solutions by recombining both parent solution features. After selection of chro-
mosomes for new population, the crossover operation is applied. Here, the whole
arithmetic crossover operation is used. It is done as following way:

(1) Firstly, we generate a random real number r in (0,1).
(2) Secondly, we select two chromosomes Vk and Vl randomly among population

for crossover if r < PXOV R.
(3) Then two offsprings V ′k and V ′l are produced as follows :

V ′k = c ∗ Vk + (1− c) ∗ Vl
V ′l = c ∗ Vl + (1− c) ∗ Vk, where c ∈ [0, 1]

(4) Repeat the steps (1),(2) and (3) POPSIZE/2 number of times.

(e) Mutation operation: Mutation operation is used to prevent the search
process from converging to local optima rapidly. Unlike crossover, it is applied to
a single chromosome Vi. Here, the uniform mutation operation is used, which is
defined as follows:

Gmutij =random number from the range (LBj , UBj),

where LBj is the lower and UBj is the upper boundary to the corresponding gene.

(f) Crowding distance: Crowding distance of a solution is measured using the
following rule:

Step 1: Sort the population set according to every objective function values in
ascending order of magnitude.
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Step 2: For each objective function, the boundary solutions are assigned an infinite
distance value. All other intermediate solutions are assigned a distance value equal
to the absolute normalized difference in the function values of two adjacent solutions.
This calculation is continued with other objective functions.

Step 3: The overall crowding distance value is calculated as the sum of the indi-
vidual distance values corresponding to each objective.
Each objective function is normalized before calculating the crowding distance. Fol-
lowing algorithm is used for this purpose.

set k = number of solutions in F
for each k {

set F [k]distance = 0}
for each m {

sort F , in ascending order of magnitude of m-th objective
set F [1]distance = F [m]distance = M where M is a large number
for i = 2 to k − 1 {
F [i]distance = F [i]distance+(F [i+1]m−F [i−1]m)/(fmaxm −fminm ) }}

Here, F [i]m refers to the m-th objective function value of F [i]. fmaxm and fminm are
the maximum and minimum values of the m-th objective function.

(g) Non-Dominated Sorting of a Population:
Here, for each solution the following two entities are calculated– (i) domination count
np, the number of solutions which dominate the solution p, and (ii) Sp, a set of so-
lutions that the solution p dominates. All solutions in the first non-dominated front
will have their domination count as zero. Now, for each solution p with np = 0, we
visit each member(q) of its set Sp and reduce its domination count by one. In doing
so, if for any member q the domination count becomes zero, we put it in a separate
list Q. These members belong to the second non-dominated front. Now, the above
procedure is continued with each member of Q and the third front is identified. This
process continues until all fronts are identified. The algorithm for non-dominated
sorting approach is given below.

for each p ∈ P {
set Sp = φ (where φ is a null set)
set np = 0
for each q ∈ P {

if (p dominates q) {
Sp = Sp ∪ {q}}

elseif (q dominates p) {
np = np + 1}}

if np = 0 {
prank = 1
F1 = F1 ∪ {p}}}

set i=1
while Fi 6= φ {

set Q = φ
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for each p ∈ Fi {
for each q ∈ Sp {

nq = nq − 1
if nq = 0 {

qrank = i+ 1
Q = Q ∪ {q} }}}

i=i+1
Fi = Q}

6. Numerical illustration

For numerical illustration, we consider a three level (i.e.n = 3) inventory distri-
bution system as depicted in the following diagram.

WH11

?

?

WH12

?

?

WH22

?

WH13

?

WH23

?

?

WH33

?

WH43

?

WH53

Figure-4: A 3-level inventory distribution system

Holding (h̃ijk) and ordering costs of k−th item at WHij are respectively assumed as
trapezoidal fuzzy numbers (hijk1, hijk2, hijk3, hijk4) and (Aijk1, Aijk2, Aijk3, Aijk4).

Then Z̃ = (Z1, Z2, Z3, Z4), where

Zl =
∑
i

∑
j

∑
k

{
Aijkl

Dijk

Qijk
+ hijkl(

1

2
Qijk + fijkσijk)

}
, (l = 1, 2, 3, 4).

We also assume W̃3j = (W3j1,W3j2), graphical representation of whose member-
ship function is similar to Figure-2.

According to above assumptions and using Lemmas 2.1 and 2.2, the problem (4.6)
reduces to the following multiobjective optimization problem in crisp environment.

Min (Y, F)(6.1)

subject to
F − Z1

Z2 − Z1
≥ α

W3j2 −
∑
k vkQijk

W3j2 −W3j1
≥ α3j ,∀j.

To illustrate the above problem the following parametric values are considered.
Table-1: Input data for the model

274



Nirmal Kumar Mahapatra /Ann. Fuzzy Math. Inform. 12 (2016), No. 2, 265–278

St. item hijk1 hijk2 hijk3 hijk4 Aijk1 Aijk2 Aijk3 Aijk4 AD V LTD Cap.

WH13 1 0.80 0.90 0.95 1.00 10 12 15 16 1000 15 150

2 1.00 1.05 1.11 1.15 9 10 12 14 1150 20 160

WH23 1 0.90 0.95 1.00 1.10 13 15 17 18 1200 17 155

2 0.80 0.85 1.00 1.05 11 13 14 15 1100 15 165

WH33 1 0.85 0.90 0.95 1.00 11 13 15 17 1100 20 160

2 0.90 0.95 1.00 1.10 9 11 12 13 1000 17 170

WH43 1 0.95 1.00 1.05 1.11 9 11 14 16 1200 16 150

2 0.70 0.80 0.90 1.00 11 13 14 15 1100 18 160

WH53 1 0.80 0.85 0.95 1.00 11 12 14 16 1300 18 155

2 0.85 0.90 1.00 1.15 10 12 14 15 900 16 165

WH12 1 0.45 0.50 0.55 0.60 20 23 25 26 −− 35 −−

2 0.40 0.50 0.60 0.65 22 24 25 27 −− 40 −−

WH22 1 0.40 0.45 0.55 0.70 22 25 28 30 −− 40 −−

2 0.45 0.50 0.60 0.70 20 22 28 30 −− 35 −−

WH11 1 0.20 0.25 0.35 0.40 50 55 65 70 −− 80 −−

2 0.25 0.30 0.40 0.45 52 56 60 65 −− 90 −−
[St.=Station, AD=Annual Demand, VLTD=Variance of Lead Time Demand, Cap.=Capacity]

Also, let v1 = 0.50 unit, v2 = 0.45 unit, α = 0.9, α3j = 0.9, (j = 1, 2, · · · , 5).
For the above parametric values, a set of Pareto-optimal solutions is obtained via
MOGA and some of these are presented in Table-2. A graphical representation of
Pareto-optimal solutions are also presented in Figure-5.

Table-2: A set of Pareto-optimal Solutions of the Model
item Q13k Q23k Q33k Q43k Q53k Q12k Q22k Q11k Y F
k f13k f23k f33k f43k f53k f12k f22k f11k
1 334.04 345.30 372.98 394.69 330.59 855.01 802.54 1633.41

3.6034 3.9028 4.0978 3.6572 3.7458 3.7900 3.4570 3.8400 0.0031 5388.21
2 336.76 282.72 312.65 376.84 336.48 677.72 646.04 1591.36

3.4912 4.2370 3.8161 4.0984 3.8659 4.0634 4.0133 3.9443
1 280.29 312.78 323.27 387.77 181.12 852.21 733.64 1651.15

2.9487 2.9648 2.8940 3.1684 3.3854 3.3225 3.2558 2.9680 0.0429 5015.30
2 310.68 274.18 250.83 293.18 328.26 689.76 638.09 1573.31

4.0837 3.2883 3.1697 3.9043 3.4801 3.4258 2.8125 3.1785
1 311.02 323.21 346.24 369.40 299.46 852.82 791.90 1612.71

3.3147 3.4659 3.5624 3.2874 3.4790 3.4883 3.3775 3.3091 0.0115 5160.16
2 316.15 277.31 272.30 334.22 333.25 678.97 644.08 1480.50

3.6213 3.6664 3.5279 3.9468 3.6148 3.6391 3.3200 3.4938
1 300.08 313.74 332.81 356.19 284.73 852.41 788.40 1595.21

3.1301 3.2629 3.3569 3.0929 3.3277 3.3500 3.3212 3.1227 0.0239 5058.65
2 307.70 274.76 255.08 313.14 331.76 679.14 643.76 1432.87

3.6179 3.3923 3.3905 3.8986 3.5054 3.4652 3.0473 3.3103
1 303.58 316.70 337.09 360.20 289.33 852.52 789.66 1602.86

3.1910 3.3272 3.4201 3.1541 3.3746 3.3914 3.3395 3.1814 0.0189 5090.53
2 310.30 275.56 260.38 320.02 332.25 679.04 643.96 1456.46

3.6156 3.5061 3.4349 3.9118 3.5393 3.5190 3.1313 3.3675
1 316.04 327.16 352.26 374.50 305.68 852.94 794.23 1616.68

3.4059 3.5560 3.6492 3.3708 3.5369 3.5432 3.4048 3.3860 0.0085 5203.62
2 319.53 278.39 279.28 344.06 333.98 678.70 644.22 1499.31

3.6152 3.7888 3.5898 3.9768 3.6603 3.7100 3.4331 3.5705
1 286.14 311.79 324.83 375.74 280.99 852.21 752.87 1617.75

2.9600 3.0764 3.0240 3.1201 3.3575 3.3242 3.2635 2.9965 0.0380 5017.87
2 308.73 274.15 250.92 294.20 329.07 686.68 639.66 1506.24

3.9775 3.2931 3.2068 3.9015 3.4808 3.4264 2.8321 3.2086
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When stock-out is plotted against the annual inventory cost, the following picto-
rial representation is obtained.

7. Discussion

It is observed from Table-2 that when annual inventory cost (F ) decreases, ex-
pected number of stock out in a year increases, which agrees with reality. When
safety factors are determined then reorder point at any station can easily be deter-
mined. Figure-5 represents optimum policy curve for two objectives. Any point on
the curve gives an optimum policy for decision maker(DM), points off the curve are
suboptimal but can be improved by moving back to the curve. In this way, DM can
improve his / her policy according to requirement.

8. Conclusion

A realistic multi-item inventory distribution problem under a supply chain system
in fuzzy stochastic environment is presented and solved via multiobjective genetic
algorithm. As a unique optimal solution might not always be a solution for the
DM, the solution needed by the DM is multiple solution subject to both objective
and resource constraints under different criteria preferred by DM. In this paper, a
neighbouring domain of optimal solutions has been presented and it is to be noted
that every solution in this neighbouring domain is acceptable. It is up to DM
to choose a particular near optimal solution for implementation considering the
presently prevailing condition of his / her factory / concern. Moreover, though
only three level distribution system has been considered, the present supply chain
problem can be extended to any number of levels for distribution.
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