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Abstract. The main aim of the present paper is to introduce the
spaces cu0 (F,Λ,4m

n , p) , cu (F,Λ,4m
n , p) and lu∞ (F,Λ,4m

n , p). We examine
some topological properties of these new difference sequence spaces of fuzzy
numbers by using a sequence of modulus functions.
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1. Introduction

A sequence space is defined to be a linear space of real or complex sequences.
Throughout the paper N, R and C denotes the set of non-negative integers, the set
of real numbers and the set of complex numbers respectively. Let ω denote the space
of all sequences (real or complex); l∞ and c respectively, denotes the space of all
bounded sequences and the space of convergent sequences.

Throughout the paper p = (pk) is a sequence of positive real numbers. The
notion of paranormed sequences was studied at the initial stage by Simons [31]. It
was further investigated by Ganie and Sheikh [14], Maddox [19], Tripathy and Sen
[36] and many others.

Following Ruckle [26] and Maddox [19], a modulus function f is a function from
[0, ∞) to [0, ∞) such that

(i) f(x) = 0 if and only if x = 0,
(ii) f(x+ y) ≤ f(x) + f(y) ∀x, y ≥ 0,
(iii) f is increasing,
(iv) f is continuous from right at x = 0.
The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh

[37] and subsequently several authors have discussed various aspects of the theory
and applications of fuzzy sets such as fuzzy topological spaces, similarity relations
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and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical program-
ming. Matloka [20] introduced bounded and convergent sequences of fuzzy numbers
and studied their some properties. Matloka [20] also has shown that every conver-
gent sequence of fuzzy numbers is bounded. Later on sequences of fuzzy numbers
have been discussed by Altin [2], Altinok [3], Başarir and Mursaleen [4], Bilgin [5],
Chaudhury and Das [6], Çolak [7, 8, 9], Diamond and Kloeden [10], Esi [11, 12],
Fang [13], Ganie and Sheikh [15, 30], Hazarika [16], Kelava [17], Nanda [22], Savaş
[27, 28], Tripathy et al [32, 33, 34, 35] etc.

Let D denote the set of all closed and bounded intervals X = [a1, a2] on the real
line R. For X, Y ∈ D we define

d(X,Y ) = max(|a1 − b1|, |a2 − b2|), where X = [a1, a2] , Y = [b1, b2].
It is known that (D, d) is a complete metric space.

Let I = [0, 1]. A fuzzy real number X is a fuzzy set on R and is a mapping
X : R→ I associating each real number t with its grade membership X(t).

A fuzzy real number X is called convex if

X(t) ≥ X(s) ∧X(r) = min(X(s), X(r)), where s < t < r.

A fuzzy real number X is called normal if there exists t0 ∈ R such that X(t0) = 1.
A fuzzy real numberX is called upper semi-continuous if for each ε > 0, X−1([0, a+

ε)) for all a ∈ I and given ε > 0, X−1([0, a+ ε)) is open in the usual topology of R.
The set of all upper-semi continuous, normal, convex fuzzy numbers is denoted by
R(I). The α-level set of a fuzzy real number X for 0 < α ≤ 1 denoted by Xα is
defined by Xα = {t ∈ R : X(t) ≥ α}. The 0-level set is the closure of strong 0-cut.

For each r ∈ R, r̄ ∈ R(I) is defined by

r̄ =

{
r̄, if t = r,

0, if t 6= r.

The absolute value of |X| of X ∈ R(I) is defined by ( see for instance Kaleva and
Seikkla [17])

|X|(t) =

{
max{X(t), X(−t)}, if t ≥ 0,

0, if t < 0.

Let d̄ : R(I)× R(I)→ R be defined by

d̄(X,Y ) = sup
0≤α≤1

d(Xα, Y α).

Then d̄ defines a metric on R(I) (Matloka [20]). The additive identity and multi-
plicative identity in R(I) are denoted by 0̄ and 1̄ respectively.
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Throughout the article ωF , cF , cF0 and lF∞ denote the classes of all, convergent,
null, bounded sequence spaces of fuzzy real numbers.

A fuzzy real valued sequence {Xn} is said to be convergent to fuzzy real number
X, if for ε > 0, there exists n0 ∈ N such that d̄(Xn, X) < ε for all k ≥ n0.

A fuzzy real valued sequence {Xn} is said to be solid (normal) if (Xk) ∈ EF

implies that (αkXk) ∈ EF for all sequences of scalars (αk) with |αk| ≤ 1, for all
k ∈ N.

Let K = {k1 < k2 < ...} ⊆ N and EF be a sequence space. A k-step space of EF

is a sequence space λE
F

K = {(Xkn) ∈ ωF : (Xn) ∈ EF }.

A canonical preimage of a sequence {Xk} ∈ λE
F

K is a sequence {Yn} ∈ ωF defined
as

Yn =

{
Xn, if k ∈ K,
0̄, otherwise.

A canonical preimage of a step space λE
F

K is a set of all elements in λE
F

K , i.e., Y is

in canonical preimage of λE
F

K if and only if Y is canonical preimage of some X ∈ λEF

K .

A sequence space EF is said to be monotone if it contains the canonical preimages
of its step spaces.

A sequence space EF is said convergence free if (Yk) ∈ EF whenever (Xk) ∈ EF
and Yk = 0̄ whenever Xk = 0̄.

The difference sequence spaces, Z(∆) = {x = (xk) : ∆x ∈ Z} ,where Z = l∞ , c
and c0, were studied by Kizmaz [18].

It was further generalized by Tripathy and Esi [33], as follows. Let m ≥ 0 be
an integer then H(∆m) = {x = (xk) : ∆mx ∈ Z} , for Z = l∞ , c and c0, where
∆mxk = xk − xk+m. Further, in [32] Tripathy et al generalized the above notions
and unified these as follows:

∆m
n xk = {x ∈ ω : (∆m

n xk) ∈ Z} ,
where

∆m
n xk =

n∑
µ=0

(−1)µ
(
n
r

)
xk+mµ,

and
∆0
nxk = xk∀ k ∈ N.

The idea of Kizmaz [18] was applied by Savaş [27, 28] for introducing the notion of
difference sequences for fuzzy real numbers and study their different properties. The
difference sequence space were further studies by Çolak [8, 9], Ganie et al [14, 15],
Mursaleen [1, 21], Raj et al [23, 24, 25], Sharma [29] and many others.
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For (ak) and (bk) be two sequence with complex terms and p = (pk) ∈ l∞, we
have the following known inequality:

(1.1) |ak + bk|pk ≤ K (|ak|pk + |bk|pk) ,

where K = max{1, 2M−1} and M = sup
k
pk.

2. Major section

Let X = (Xk) be a sequence of fuzzy numbers and Λ = (fk) be a sequence of
moduli. Let u = (uk) be a sequence such that uk 6= 0 for all k ∈ N. We define the
following classes of difference sequences of fuzzy numbers:

cu0 (F,Λ,4mn , p) =

{
X = (Xk) : lim

k
[fk(d̄(uk4mn Xk, 0̄))]pk = 0

}
,

cu (F,Λ,4mn , p) =

{
X = (Xk) : lim

k
[fk(d̄(uk4mn Xk, X0))]pk = 0

}
,

lu∞ (F,Λ,4mn , p) =

{
X = (Xk) : sup

k
[fk(d̄(uk4mn Xk, 0̄))]pk <∞

}
,

for some X0 and p = (pk) is a sequence of real numbers such that pk > 0 for all k
and sup

k
pk = M <∞.

Note that for m = 1 = n, fk(x) = x and uk = pk = 1 for all k ∈ N, then these
spaces are reduced to c0 (F,4), c (F,4) and l∞ (F,4), introduced by Mursaleen
and Başarir [21]. Again if we take m = 0, n = 1, fk(x) = x and pk = 1 for all k ∈ N,
then these spaces are respectively reduced to c0 (F ), c (F ) and l∞ (F ) introduced by
Nanda [22].

Theorem 2.1. If d̄ is a translation invariant metric, then cu0 (F,Λ,4mn , p),
cu (F,Λ,4mn , p) and lu∞ (F,Λ,4mn , p) are closed under the operation of addition and
scalar multiplication.

Proof. As d̄ is translation invariant metric, it implies that

(2.1) d̄(4mn Xk +4mn Yk, X0 + Y0) ≤ d̄(uk4mn Xk, X0) + d̄(uk4mn Yk, Y0)

and

(2.2) d̄(uk4mn λXk, λX0) ≤ |λ|d̄(uk4mn Xk, X0)

where λ is a scalar and |λ| > 1. We shall prove only for cu (F,Λ,4mn , p). The others
can be treated similarly. Suppose that X = (Xk), Y = (Yk) ∈ cu (F,Λ,4mn , p).
Then

[fk(d̄(uk4mn Xk + uk4mn Yk, X0 + Y0))]pk

≤ [fk(d̄(uk4mn Xk, X0) + d̄(uk4mn Yk, Y0))]pk [By (2.1)]

≤ [fk(d̄(uk4mn Xk, X0)) + fk(d̄(uk4mn Yk, Y0))]pk

≤ KM [fk(d̄(uk4mn Xk, X0))]pk +KM [fk(d̄(uk4mn Yk, Y0))]pk [By (1.1)].
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Thus X + Y ∈ cu (F,Λ,4mn , p). Let X = (Xk) ∈ cu (F,Λ,4mn , p). For λ ∈ R, there
exists an integer K such that |λ| ≤ K. So, by taking into account the property 2.2
and the modulus functions fk for all k ∈ N, we have

[fk(d̄(λuk4mn Xk, λX0))]pk ≤ [fk|λ|(d̄(uk4mn Xk, X0))]pk

≤ KM [fk(d̄(uk4mn Xk, X0))]pk .

This implies that λX ∈ cu (F,Λ,4mn , p). �

Theorem 2.2. Let p = (pk) ∈ l∞. Then the classes of sequences cu0 (F,Λ,4mn , p),
cu (F,Λ,4mn , p) and lu∞ (F,Λ,4mn , p), are paranormed spaces, paranormed by g de-
fined

g(X) = sup
k

[
f(d̄(uk4mn (αkXk), 0̄))

] pk
M ,

where M = max(1, sup
k
pk).

Proof. Clearly, g(X) = g(−X) for all X ∈ cu0 (F,Λ,4mn , p). Since, pk
M ≤ 1 with

M ≥ 1, by Minkowski’s inequality, we have

[fk(d̄(uk4mn Xk + uk4mn Yk, 0̄))]
pk
M

≤ [fk
(
d̄(uk4mn Xk, 0̄) + d̄(uk4mn Yk, 0̄)

)
]
pk
M

≤ [fk
(
d̄(uk4mn Xk, 0̄)

)
]
pk
M + [fk

(
d̄(uk4mn Yk, 0̄)

)
]
pk
M ,

which shows that g(X + Y ) ≤ g(X) + g(Y ).
It remains to show that the scalar multiplication is continuous. For that, let β be

any scalar, then by definition by g, we have

g(βX) = sup
k

(f(d̄(uk4mn (αkXk), 0̄)))
pk
M ≤ K

H
M

β g(X),

where Kβ is an integer with |β| < Kβ .
Taking β → 0 for fixed X with g(X) 6= 0, we have by property of f and for |β| < 1

that
[fk
(
d̄(uk4mn Xk, 0̄)

)
]pk < ε.

Since f is continuous and by taking β enough small, it follows that g(βX) → 0
as β → 0, which shows that the scalar multiplication is continuous and the result
follows. �

Theorem 2.3. Let Λ = (fk) be a sequence of moduli. Then,

cu0 (F,Λ,4mn , p) ⊂ cu (F,Λ,4mn , p) ⊂ lu∞ (F,Λ,4mn , p) .

Proof. cu0 (F,Λ,4mn , p) ⊂ cu (F,Λ,4mn , p) is trivial. So, letX = (XK) ∈ cu (F,Λ,4mn , p).
Then, there is some fuzzy number X0 such that

lim
k

[fk(d̄(uk4mn Xk, 0̄))]pk = 0.

Now, from (1.1), we have

[fk(d̄(uk4mn Xk, 0̄))]pk ≤ K[fk(d̄(uk4mn Xk, X0))]pk +K[fk(d̄(uk4mn Xk, 0̄))]pk .

As X = (Xk) ∈ cu (F,Λ,4mn , p), we obtain X = (Xk) ∈ lu∞ (F,Λ,4mn , p) and this
proves the result. �
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Theorem 2.4. The classes cu (F,Λ,4mn , p) and lu∞ (F,Λ,4mn , p) are neither solid
nor monotone (in general).

Proof. Let f(x) = x, for all x ∈ [0,∞), m = 2, n = 1, and uk = 1 = pk for all k ∈ N
and consider the sequence Fuzzy numbers (Xk) defined by

Xk(t) =


t+ 1, if − 1 ≤ t ≤ 0,

1− t, if 0 ≤ t ≤ 1.

0, otherwise.

Then clearly (Xk) ∈ cu (F,Λ,4mn , p). For, N , a class of sequences, consider its
J-step space Nj defined as follows:

If (Xk) ∈ Nj , then its canonical pre-image (Yk) ∈ Nj is given by

Yk =

{
Xk, if k = even,

0̄, if k = odd.

Then (Yk) /∈ cu
(
F,42

1, p
)
. Thus, the class of sequences cu

(
F,42

1, p
)

is not mono-
tone. So, it is not solid. Hence, the class of sequences cu (F,4mn , p) is not monotone
in general.

We may consider the following example:
Let pk = 1, fk(x) = |x|, uk = 1, for all k ∈ N, m = n = 1. Consider the sequence

of fuzzy numbers Xk = 1̄ and the sequence of scalars (αk), defined by αk = (−1)k

for all k ∈ N. Then, (Xk) belongs cu (F,Λ,4mn , p) but (αkXk) does not belong to
cu (F,Λ,4mn , p). �

Theorem 2.5. The spaces cu0 (F,Λ,4mn , p) , cu (F,Λ,4mn , p) and lu∞ (F,Λ,4mn , p)
are not symmetric in general.

Proof. We only consider the case cu (F,Λ,4mn , p). To prove the result we consider
the following example:

Let f(x) = x, for all x ∈ [0,∞), m = n = 1, uk = 1 = pk for all k ∈ N and
consider the sequence (Xk) = (H,N,H,N, ...) = (X1, X2, X3, ...), where

Xk =

{
H, if k = odd,

N, if k = even,

and the fuzzy number H and N are defined as follows:

H(t) =


t+4
4 , if − 4 ≤ t ≤ 0,

4−t
4 , if 0 ≤ t ≤ 4.

0, otherwise.

and the fuzzy number N is defined by

N(t) =


t+5
5 , if − 5 ≤ t ≤ 0,

5−t
5 , if 0 ≤ t ≤ 5.

0, otherwise.
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Thus we have

[H]
α

= [4α− 4, 4− 4α] and [N ]
α

= [5α− 5, 5− 5α] .

So
[H −N ]

α
= [9α− 9, 9− 9α] = [4X1]

α
,

[N −H]
α

= [9α− 9, 9− 9α] = [4X2]
α

etc,

from which we conclude that (Xk) ∈ cu
(
F,41

1, p
)
.

We now consider the rearrangement (Yk) of (Xk) which is defined by (Yk) =
(H,H,N,N,H,H,N,N, ...) = (Y1, Y2, Y3, ...). Then, as above,

[H −H]
α

= [8α− 8, 8− 8α] = [4Y1]
α
,

[H −N ]
α

= [9α− 9, 9− 9α] = [4Y2]
α
,

[N −N ]
α

= [10α− 10, 10− 10α] = [4Y3]
α

etc.

Thus it follows that (Yk) /∈ cu
(
F,41

1, p
)
. So, the class of sequences cu (F,Λ,4mn , p)

is not symmetric, and the result follows.

Alternatevily, we may consider the following example:

Let pk = 1, fk(x) = |x|, uk = 1, for all k ∈ N, m = n = 1. consider the sequence
of fuzzy numbers Xk = k̄, for all k ∈ N. Consider the rearranged sequence (Yk) of
(Xk), defined by (Yk) = (X1, X2, X4, X3, X9, X5, X16, ...). Then the sequence (Xk)
belongs to cu (F,Λ,4mn , p) but the rearranged sequence (Yk) does not.

�

3. Conclusions

We have introduced the spaces cu0 (F,Λ,4mn , p) , cu (F,Λ,4mn , p) and lu∞ (F,Λ,4mn , p)
and have shown them to be paranormed spaces . Also, we have given some topo-
logical properties of these new difference sequence spaces of fuzzy numbers by using
a sequence of modulus functions. Moreover, we have shown them that they are not
monotone and symmetric in general.
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