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1. Introduction

The notion of fuzzy subset of a set was introduced by Zadeh[22]. Rosenfeld
[18] applied this concept to the theory of groups and groupoids. Since then, so
many have been applied these ideas to various algebraic structures. Swamy and
Swamy studied Fuzzy Prime ideals of rings[21]. For further study see [3, 12, 14, 17].
Goguen [8]initiated a more abstract study of fuzzy sets by replacing the values set
[0, 1], by a complete lattice in an attempt to make a generalized study of fuzzy set
theory by studying L-fuzzy sets. Most of the authors considered fuzzy subsets by
taking values in a complete lattice. Fuzzy algebra is now a well developed part
of algebra. Partially ordered algebraic systems play an important role in algebra.
Especially l-groups, l-rings, Vector lattices, and f -rings are important concepts in
algebra [2, 4, 5, 6, 7, 9, 16]. we introduced L-fuzzy sub l-groups and L-fuzzy l-ideals
in [19] and we introduced the concepts of L-fuzzy convex sub l-groups, L-fuzzy prime
convex sub l-groups and L-fuzzy maximal convex sub l-groups in[20].

A study of prime spectrum or the topological space obtained by introducing
Zariski topology, on the set of prime l-ideals of a commutative l-group with strong
order unit, plays an important role in the field of commutative algebra, algebraic
geometry and lattice theory. In the last few years a considerable amount of work
has been done on fuzzy ideals in general and prime fuzzy ideals. Also a considerable
amount of work has been done on L-fuzzy prime spectrum on prime ideals of a
commutative ring with unity [10, 11, 13, 15, 23]. Now, it is natural to attempt



G. S. V. Satya Saibaba /Ann. Fuzzy Math. Inform. 12 (2016), No. 2, 175–191

to introduce a topology on the set of L-fuzzy prime convex sub l-groups of an l-
group. In this paper, G is a lattice ordered group (not necessarily abelian) and
LSpec(G) = X be the set of all L-fuzzy prime convex sub l-groups of G. The space
LSpec(G) = X has many interesting properties. The topological space Spec(G) is
the spectrum of (non fuzzy) prime convex l-subgroups of G. we prove that X(xa),
x ∈ G, a ∈ L is a basis of X. When L is regular, we show that (i)X(xa) = ∅, then
x = 0 and (ii) For any a ∈ L − {0}, X(0a) = ∅. Also, we characterize X in terms
of X(xa) as, X(xa) = X where x ∈ G+ if and only if x is a strong order unit in
G and a is not contained in any prime element in L. If a is contained in a prime
element in L, the above result is not true as in example. Throughout this paper
Xa = {λ ∈ X | Imλ = {1, a}}, where a ∈ L − {1} is prime. We show that Xa is
compact, when G has a strong order unit e and Xa is homeomorphic to Spec(G).
We have a characterization of Xa as ,Xa is T1 if and only if every element of Xa

is a L-fuzzy maximal convex sub l-group of G. Also, we prove that as a subset
the space Spec(G) is a dense subspace of LSpec(G) = X. We prove that whenever
l-groups G and G′ are homomorphic, LSpec(G) and LSpec(G′) are homeomorphic.
If f : G→ G′ is a homomorphism of l-groups, then LSpec(G′) is homeomorphic to
the subspace of LSpec(G) consisting of L-fuzzy prime convex l-groups, which are
constant on Kerf . Also, we prove that LSpec(G) is T0 and X is compact if and
only if G has a strong order unit. But, the compactness of LSpec(G) is depends on
the space I(L) set of all irreducible elements of L.

Throughout this paper, let G 6= 0 be an l-group and L stands for a nontrivial
complete lattice in which the infinite meet distributive law, a∧(∨s∈Ss) = ∨s∈S(a∧s)
for any S ⊆ L and a ∈ L holds. Throughout the paper we consider meet irreducible
elements of L only.

2. Preliminaries

Definition 2.1 ([5]). A lattice ordered group is a system G = (G,+,≤), where
(i) (G,+) is a group,
(ii) (G,≤) is a lattice and
(iii) the inclusion is invariant under all translations x 7→ a + x + b, i.e, x ≤ y ⇒

a+ x+ b ≤ a+ y + b, for all a, b ∈ G.

Definition 2.2 ([5]). If a is an element of l-group G, then a ∨ (−a) is called the
absolute value of a and is denoted by |a|. Any element a of an l-group G can be
written as a = a ∨ 0 + a ∧ 0, i.e., a = a+ + a−, where a+ is called positive part of a
and a− is called negative part of a.

Theorem 2.3 ([5]). In any l-group G, for all a ∈ G,
(1) |a| ≥ 0, moreover |a| > 0 unless a = 0,
(2) a+ ∧ (−a+) = 0,
(3) |a| = a+ − a−.

Theorem 2.4 ([2]). If G is an l-group and M ∈ C(G), then the following are
equivalent :

(1) If A,B ∈ C(G) and M ⊇ A ∩B, then M ⊇ A or M ⊇ B.
(2) If A,B ∈ C(G), A ⊃M and B ⊃M , then A ∩B ⊃M .
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(3) If a, b ∈ G+ −M , then a ∧ b ∈ G+ −M .
(4) If a, b ∈ G+ −M , then a ∧ b > 0.
(5) The lattice of right cosets of M is totally ordered.
(6) {C ∈ C(G) | C ⊇M} is chain.
(7) M is the intersection of a chain of regular convex l-subgroups.

Definition 2.5 ([2]). A convex l-subgroup that satisfies any one of the conditions
of above theorem will be called prime.

Lemma 2.6 ([7]). If G is a l-group and g ∈ G, then 〈g〉 = {f ∈ G | |f | ≤ n|g|, n ∈
Z+}.

Corollary 2.7 ([7]). If G is a l-group and f, g ∈ G+, then 〈f ∧ g〉 = 〈f〉 ∧ 〈g〉 and
〈f ∨ g〉 = 〈f〉 ∨ 〈g〉.

Corollary 2.8 ([7]). Let g ∈ G. Then, 〈|g|〉 = 〈g〉.

Definition 2.9 ([7]). Let e ∈ G be called a strong unit if for any a ∈ G, |a| < n|e|,
for some n ∈ Z+. Clearly 〈e〉 = G.

Definition 2.10 ([17]). An L-Fuzzy subset λ of X is a mapping from X into L,
where L is a complete lattice satisfying the infinite meet distributive law. If L is
the unit interval [0,1] of real numbers, there are the usual fuzzy subsets of X. A
L-fuzzy subset λ : G → L is said to be a nonempty, if it is not the constant map
which assumes the values 0 of L.

Definition 2.11 ([17]). Let λ : X → L be a L-fuzzy sub set of X. Then the set
{λ(x) | x ∈ X} is called the image of λ and is denoted by λ(x) or Im(λ). The set
{x | x ∈ X,λ(x) > 0} is called the support of λ and is denoted by Supp(λ). The set
Xλ = {x ∈ X | λ(x) = λ(0)}. For t ∈ L, λt = {x ∈ X | λ(x) ≥ t} is called a t-cut or
t-level set of λ.

Definition 2.12 ([17]). Let λ, µ be two L-fuzzy subsets of X. If λ(x) ≤ µ(x) for
all x ∈ X, then we say that λ is contained in µ and we write λ ⊆ µ. Define λ ∪ µ
and λ ∩ µ are L-fuzzy subsets of X by for all x ∈ X, (λ ∪ µ)(x) = λ(x) ∨ µ(x),
(λ∩µ)(x) = λ(x)∧µ(x). Then λ∪µ and λ∩µ are called the union and intersection
of λ and µ, respectively.

Definition 2.13 ([17]). Let f be a mapping from X into Y , and let λ and µ be
L-fuzzy subsets of X and Y respectively. The L-fuzzy subsets f(λ) of Y and f−1(µ)
of X, defined by

f(λ)(y) =

{
∨{λ(x) | x ∈ X, f(x) = y} if f−1(y) 6= ∅;
0 otherwise.

Where y ∈ Y , and f−1(µ)(x) = µ(f(x)), for all x ∈ X, are called the image of λ
under f and the pre-image of µ under f , respectively.

Definition 2.14 ([17]). A L-fuzzy subset λ of X is said to have sup property if, for
any subset A of X, there exists a0 ∈ A such that λ(a0) = ∨a∈Aλ(a).

Definition 2.15 ([17]). Let f be any function from a set X to a set Y , and let
λ be any L-fuzzy subset of X. Then λ is called f -invariant if f(x) = f(y) implies
λ(x) = λ(y), where x, y ∈ X.
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Definition 2.16 ([17]). Let X be nonempty set. Let Y ⊆ X and a ∈ Y . We define,
a L-fuzzy set aY is defined as follows:

aY (x) =

{
a if x ∈ Y
0 if x ∈ X − Y.

In particular, if Y is a singleton, say, {y}, then ay is called as L-fuzzy point.

Definition 2.17 ([19]). A L-fuzzy subset λ of an l-group (G,+,∨,∧) is said to be
a L-fuzzy sub l-group of G, if

(i) λ is a L-fuzzy subgroup of (G,+), i.e,
(a) λ(x+y) ≥ λ(x)∧λ(y), for all x, y ∈ G and (b) λ(−x) = λ(x), for all x ∈ G,

(ii) λ is a L-fuzzy sublattice of (G,∨,∧), i.e,
(a) λ(x ∨ y) ≥ λ(x) ∧ λ(y) and (b) λ(x ∧ y) ≥ λ(x) ∧ λ(y), for all x, y ∈ G.

Theorem 2.18 ([19]). If λ is a L-fuzzy sub l-group of G, then
(1) λ(0) ≥ λ(x), for all x ∈ G,
(2) λ(x+) ≥ λ(x), λ(x−) ≥ λ(x) and λ(|x|) ≥ λ(x), for all x ∈ G.

Definition 2.19 ([20]). A L-fuzzy sub l-group λ of G is said to be a L-fuzzy convex
sub l-group of G if x, a ∈ G, 0 ≤ x ≤ a⇒ λ(x) ≥ λ(a) (Convexity condition)

Definition 2.20 ([20]). Let λ be a L-fuzzy convex sub l-group of G. Then, λ is
called a L-fuzzy maximal convex sub l-group of G, if λ is a maximal element in the
set of all non constant L-fuzzy convex sub l-groups of G under point wise partial
ordering.

Theorem 2.21 ([20]). Let λ be a L-fuzzy subset of an l-group G. Then λ is a L-
fuzzy maximal convex sub l-group of G if and only if there exist, a maximal convex
l-subgroup M of G and maximal element α in L such that

λ(x) =

{
1, if x ∈M
α, otherwise.

Definition 2.22 ([20]). A non constant L-fuzzy convex sub l-group of an l-group
G is called L-fuzzy prime convex sub l-group if and only if for any L-fuzzy convex
sub l-groups µ and ν, µ ∩ ν ⊆ λ⇒ either µ ⊆ λ or ν ⊆ λ.

Lemma 2.23 ([20]). If λ is a L-fuzzy prime convex sub l-group of G, then λ(0) = 1.

Theorem 2.24 ([20]). Let λ be a L-fuzzy subset of G. Then, λ is a L-fuzzy prime
convex sub l-group of G if and only if there exists a pair (P, α), where P is a prime
convex l-subgroup and α is an irreducible element of L, such that

λ(x) =

{
1, if x ∈ P
α, otherwise.

Corollary 2.25 ([20]). Each L-fuzzy maximal convex sub l-group is L-fuzzy prime
convex sub l-group.

Definition 2.26 ([19]). A L-fuzzy subgroup λ of a l-group G is said to be a L-fuzzy
l-ideal of G if it satisfies the followings:

(i) λ(x+ y) = λ(y + x) for all x, y ∈ G and
(ii) x, a ∈ G, |x| ≤ |a| ⇒ λ(x) ≥ λ(a).
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3. The spectrum of G

Prime spectrum of an l-ring is studied in [9] by Keimel. The Prime spectrum
concerning the prime l-ideals of an abelian lattice ordered group is studied in [1, 7].
In this section, following the notion of a prime convex l-subgroup of an l-group
presented by Conrad in [2], and we study, the spectrum of a lattice ordered group G
(not necessarily abelian) as the set of all prime convex l-subgroups of G which is a
larger space than the Spec(G) considered earlier by Bigard, Keimel and Wolfenstein
[1] and the spectrum of an abelian l-group presented in [7]. Now, we prove the
following results in l-groups, which are useful in the further study of this paper.

Lemma 3.1. Let G be an l-group with strong order unit e. Then, the following
hold:

(1) If H is a convex l-subgroup of G containing e, then H = G.
(2) Every proper convex l-subgroup is contained in a maximal convex l-subgroup.
(3) If A ⊆ G such that A is not contained in any prime convex l-subgroup of G,

then 〈A〉 = G, where 〈A〉 is a convex l-subgroup generated by A.

Proof. (1) Let H be a convex l-subgroup of G containing e. Let g ∈ G. Since e is
a strong order unit, there exists n ∈ Z+ such that ne > g+ ≥ 0. Since H is convex
l-subgroup of G, g+ ∈ H.

Similarly, we have g− ∈ H. Then g = g+ − g− ∈ H. Thus G ⊆ H. So G = H.
(2) Let I be a proper convex l-subgroup of G. By (1), e 6∈ I. Then I 6= G. Write

F = {J | J is a proper convex l-subgroup of G, e 6∈ J, I ⊆ J}. Clearly, I ∈ F .
Thus F 6= ∅. Clearly, F is a poset under set inclusion. Let {Jα | α ∈ ∆} be a
chain in F . Put J = ∪α∈∆Jα. By(1), e 6∈ Jα, α ∈ ∆. Then e 6∈ J . Clearly, J is a
convex l-subgroup of G. Thus J ∈ F , i.e, Jα ⊆ J , for all α ∈ ∆. So J is an upper
bound of {Jα | α ∈ ∆} in F . Hence every chain in F has an upper bound in F .
By Zorn’s lemma, F contains a maximal element-M say. Clearly, M is a maximal
convex l-subgroup of G. Therefore every proper convex l-subgroup is contained in
a maximal convex l-subgroup.

(3) Let A ⊆ G such that A is not contained in any prime convex l-subgroup of
G. Suppose 〈A〉 6= G. By(2), 〈A〉 is contained in a maximal convex l-subgroup M of
G. We know that every maximal convex l-subgroup is prime. Thus A ⊆ 〈A〉 ⊆ M ,
which is contradiction to our assumption. So 〈A〉 = G. �

Theorem 3.2. Let G be an l-group and x ∈ G+. Then the following are equivalent:
(1) x is a strong order unit.
(2) x is not in any proper convex l-subgroup of G.
(3) x is not in any prime convex l-subgroup of G.

Proof. (1)⇒(2) and (2)⇒(3) are clear.
(3)⇒(1): Assume that x is not in any prime convex l-subgroup of G. Suppose x

is not a strong order unit. Then there exists y ∈ G such that nx 6≥ y, for all n ∈ Z+.
Since |y| ≥ y, nx � |y|, for all n ∈ Z+. Let H = 〈x〉={z | |z| ≤ n|x| = nx, for some
n ∈ Z+} be the convex l-subgroup generated by x. Clearly, y 6∈ H. Thus, H 6= G.
Write F={K | K is a convex l-subgroup of G, H ⊆ K, y 6∈ K}. Clearly, H ∈ F .
So, F 6= ∅. Clearly, F is a poset under set inclusion. Let {Kα}α∈∆ be a chain in
F . Put K = ∪α∈∆Kα. Clearly, K is a convex l-subgroup of G and y 6∈ K. Then,
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K ∈ F . Clearly, K is an upper bound of {Kα}α∈∆ in F . Thus every chain in F has
an upper bound in F . By Zorn’s lemma, F contains a maximal element, say M .

Now, we prove that M is a value of y. Let N be a convex l-subgroup of G such
that M ⊆ N and y 6∈ N . Then, H ⊆ M ⊆ N , so that N ∈ F and thus, M = N ,
since M is a maximal element in F . So M is a value of y, i.e, M is regular and
hence, M is prime. Clearly, x ∈ H ⊆ M , a contradiction to x is not in any prime
convex l-subgroup of G. Therefore x is a strong unit. �

Let G be a lattice ordered group (not necessarily abelian). The spectrum of G,
denoted by Spec(G) is the set of all prime convex l-subgroups of G. If A ⊆ G, let
S(A) = {P ∈ Spec(G) | A * P} and H(A) = Spec(G) − S(A) = {P ∈ Spec(G) |
A ⊆ P}. We write for g ∈ G,

S(g) = S({g}) = {P ∈ Spec(G) | g 6∈ P}
and

H(g) = H({g}) = {P ∈ Spec(G) | g ∈ P},
respectively.

Theorem 3.3. Let A,B ⊆ G.
(1) If A ⊆ B, then H(B) ⊆ H(A) and S(A) ⊆ S(B).
(2) H(A) ∪H(B) ⊆ H(A ∩B).

Theorem 3.4. If A and B are convex l-subgroups of G, then H(A) ∪ H(B) =
H(A ∩B).

Theorem 3.5. Let A ⊆ G and 〈A〉 be a convex l-subgroup generated by A. Then,
H(A) = H(〈A〉) and S(A) = S(〈A〉).

Theorem 3.6. Let T = {S(A) | A ⊆ G}. Then the pair (Spec(G), T ) is a topolog-
ical space.

Theorem 3.7. {S(a) | a ∈ G} is a base for T .

Proof. Let S(A) ∈ τ and let P ∈ S(A). Then A * P . Thus there exists a ∈ A
such that a 6∈ P . So P ∈ S(a). Now, we prove that S(a) ⊆ S(A). Since a ∈ A, i.e,
{a} ⊆ A, we have S(a) ⊆ S(A). Thus S(a) ⊆ S(A). So P ∈ S(a) ⊆ S(A). Hence
{S(a) | a ∈ G} is a base for τ . �

Theorem 3.8. If a, b ∈ G+, then,
(1) S(a ∨ b) = S(a) ∪ S(b),
(2) S(a ∧ b) = S(a) ∩ S(b).

Theorem 3.9. To each a ∈ G, S(a) is compact.

Proof. Let {S(ai)}i∈∆ be an open cover for S(a). Then

S(a) ⊆ ∪i∈∆S(ai) = S(∪i∈∆{ai}).

Thus H(a) ⊇ H(∪i∈∆{ai}),
i.e, ∩P∈H(a)P ⊆ ∩Q∈H(∪i∈∆{ai})Q,
i.e, 〈a〉 ⊆ 〈∪i∈∆{ai}〉.

So there exists i1, i2, · · · , in ∈ ∆ such that |a| ≤ |ai1 |+ |ai2 |+ · · ·+ |ain |.
Hence 〈a〉 ⊆ 〈{ai1 , ai2 , · · · , ain}〉 and thus
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H(a) = H(〈a〉) ⊇ H(〈{ai1 , ai2 , · · · , ain}〉)
= H({ai1 , ai2 , · · · , ain}) = ∩nj=1H(aij ).

Therefore S(a) ⊆ ∪nj=1S(aij ) and thus S(a) is compact. �

Theorem 3.10. Let e be a strong order unit in G. Then, S(e) = Spec(G).

Theorem 3.11. Spec(G) is compact if and only if G has a strong order unit.

Proof. Assume that Spec(G) is compact. Then Spec(G) ⊆ ∪a∈GS(a). Let a ∈ G.
We know that a = a+ − (−a)+. Now, S(a) ⊆ S(a+) ∪ S((−a)+) (since, P 6∈
S(a+) ∪ S((−a)+)⇒ a+ ∈ P, (−a)+ ∈ P ⇒ a = a+ − (−a)+ ∈ P ⇒ P 6∈ S(a)). So,
Spec(G) = ∪a∈G+S(a). Since Spec(G) is compact, there exists a1, a2, · · · , an ∈ G+

such that Spec(G) = ∪ni=1S(ai) = S(a1 ∨ a2 ∨ · · · ∨ an) = S(b), where b = a1 ∨ a2 ∨
· · · ∨ an ∈ G+. Suppose b is not a strong order unit. So, there exists an element
a ∈ G such that nb � a for all positive integers n. Then a 6∈ 〈b〉. So, there exists a
value P of a such that 〈b〉 ⊆ P . Thus P is prime. So, P ∈ Spec(G) and P 6∈ S(b)
(since, b ∈ 〈b〉 ⊆ P ), a contradiction. Hence b is a strong order unit. Converse is
clear. �

4. Topological space LSpec(G)

In this section, we introduce a topology on the set of all L-fuzzy prime convex
sub l-groups of a lattice ordered group G (not necessarily abelian) i.e, L-fuzzy prime
spectrum of a l-group G (not necessarily abelian) as set of L-fuzzy prime convex sub
l-groups of G. Let G be an l-group and θ : G→ L be any L-fuzzy subset of G. Let
X = {λ | λ is a L-fuzzy prime convex sub l-group of G};
V (θ) = {λ ∈ X | θ ⊆ λ}; X(θ) = X − V (θ), the complement of V (θ) in X.

Theorem 4.1. Let λ : G→ L and µ : G→ L be two L-fuzzy subsets.
(1) If λ ⊆ µ, then V (µ) ⊆ V (λ) and X(λ) ⊆ X(µ).
(2) V (µ) ∪ V (λ) ⊆ V (µ ∩ λ).

Theorem 4.2. If µ and λ are L-fuzzy convex sub l-groups of G, then V (µ)∪V (λ) =
V (µ ∩ λ).

Corollary 4.3. V (χA)∪V (χB) = V (χA∩B), where A and B are convex l-subgroups
of G.

Theorem 4.4. Let λ : G→ L be a L-fuzzy subset and 〈λ〉 be a smallest L-fuzzy sub
l-group generated by λ. Then, V (λ) = V (〈λ〉) and X(λ) = X(〈λ〉).

Corollary 4.5. V (xa) = V (〈xa〉) and X(xa) = X(〈xa〉), for any L-fuzzy point xa
of G.

Theorem 4.6. If {λi | i ∈ I} is a family of L-fuzzy subsets of G, then V (∪{λi | i ∈
I}) = ∩V ({λi | i ∈ I}).

Theorem 4.7. Let τ = {X(θ) | θ is any L-fuzzy subset of G}. Then the pair (X, τ)
is a topological space.

Definition 4.8. The topological space (X, τ), is called L-fuzzy prime spectrum of
l-group G and is denoted by LSpec(G) or X.
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5. Base of LSpec(G)

Theorem 5.1. Let a, b ∈ L−{0} and x, y ∈ G+. Then X(xa)∩X(yb) = X((x∧y)c),
where c = a ∧ b.

Proof. X(xa) ∩X(yb) = X(〈xa〉 ∩ 〈yb〉) = X(〈(x ∧ y)c〉), where c = a ∧ b. �

Theorem 5.2. {X(xa) | x ∈ G, a ∈ L− {0}} is a basis for τ .

Proof. Let X(µ) ∈ τ and λ ∈ X(µ). Then µ 6⊆ λ. Thus µ(x) 6≤ λ(x), for some
x ∈ G. Let µ(x) = a. Clearly, a 6= 0 and a 6≤ λ(x), i.e, xa(x) 6≤ λ(x), i.e, xa 6≤ λ.
Thus λ ∈ X(xa).

Now, we prove that X(xa) ⊆ X(µ). Let ν ∈ V (µ). Then µ ⊆ ν. Thus

µ(x) ≤ ν(x)⇒ a ≤ ν(x)⇒ xa(x) ≤ ν(x)⇒ xa ≤ ν ⇒ ν ∈ V (xa).

So V (µ) ⊆ V (xa) and thus X(xa) ⊆ X(µ). Hence λ ∈ X(xa) ⊆ X(µ). Therefore
{X(xa) | x ∈ G, a ∈ L− {0}} is a basis for =. �

Lemma 5.3. X(xa) ⊆ X(x+
a ) ∪X(x−a ), where x− = (−x) ∨ 0 = (−x)+.

Proof. Suppose λ 6∈ X(x+
a )∪X(x−a ) Then λ 6∈ X(x+

a ) and λ 6∈ X(x−a ). Thus x+
a ⊆ λ

and x−a ⊆ λ. So a ≤ λ(x+) and a ≤ λ(x−). Hence a ≤ λ(x+ − (x−)) = λ(x) and
thus xa ≤ λ, i.e., λ 6∈ X(xa). Therefore X(xa) ⊆ X((x+)a) ∪X((x−)a). �

So, we have X = ∪x∈GX(xa) ⊆ ∪x∈G(X((x+)a) ∪ X((x−)a)) = ∪x∈G+X(xa).
We can easily observe that {X(xa) | x ∈ G+, a ∈ L − {0}} is a basic open cover of
X.

Theorem 5.4. If a ∈ L− {0} such that X(xa) = X, then
(1) no prime convex l-subgroup of G contains x and
(2) a is not prime.

Proof. (1) Let a ∈ L − {0}. Suppose X(xa) = X. Since X 6= ∅, X contains a
L-fuzzy prime convex sub l-group, say ν. Gν = {x ∈ G | ν(x) = ν(0) = 1} is a
prime convex l-subgroup of G and there exist a prime element b ∈ L such that

ν(y) =

{
1, if y ∈ Gν
b, otherwise.

Let P be a prime convex l-subgroup of G. Define λ : G→ L by

λ(y) =

{
1, if y ∈ P
b, otherwise.

Then λ ∈ X = X(xa). Thus xa 6≤ λ, i.e, a 6≤ λ(x) = b. So x 6∈ P (Otherwise, x ∈ P ,
and hence λ(x) = 1, so that a ≤ 1 = λ(x), which is a contradiction to a 6≤ λ(x)).
Hence x is not a member of any prime convex l-subgroup of G.

(2) Suppose that a is a prime. Let I be any prime convex l-subgroup of G. Define
µ : G→ L by

µ(y) =

{
1, if y ∈ I
a, otherwise.

Then µ is a L-fuzzy prime convex sub l-group of G, i.e, µ ∈ X. Clearly, xa ≤ µ, i.e,
µ 6∈ X(xa). Then X(xa) 6= X, a contradiction. Thus a is not a prime. �
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Theorem 5.5. Suppose that L is regular.
(1) If for some a ∈ L− {0} and x ∈ G, X(xa) = ∅, then x = 0.
(2) For any a ∈ L− {0}, X(0a) = ∅.

Proof. (1) Let a ∈ L − {0} be such that X(xa) = ∅. Suppose x 6= 0. Then x has
a value M (say) in G. Thus M is a prime convex l-subgroup of G. Since L is
regular, 0 is a prime element in L. So χM ∈ X. Since X(xa) = ∅, χM 6∈ X(xa), i.e,
xa ≤ χM . Hence a ≤ χM (x). Since a 6= 0, χM (x) must be equal to 1, i.e, x ∈M , a
contradiction. Therefore x = 0.

(2) Let a ∈ L − {0}. Let λ ∈ X. Then clearly, 0a ≤ λ, i.e, λ ∈ V (0a), i.e,
λ 6∈ X(0a). Thus X(0a) = ∅. �

Theorem 5.6. Let a ∈ L− {0} and x ∈ G+. Then X(xa) = X if and only if x is
a strong order unit in G and a is not contained in any prime element in L.

Proof. Assume that X(xa) = X. Then xa 6≤ µ, for all µ ∈ X, i.e, a 6≤ µ(x), for all
µ ∈ X, i.e, a 6≤ b, for all prime element b in L. Thus x is not a member of every
prime convex l-subgroup of G. So, x 6∈ ∪{P | P is a prime convex l-subgroup of G}.
Hence x is a strong order unit.

Conversely, assume that x is a strong order unit and a is not contained in any
prime element in L. Clearly, X(xa) ⊆ X. Let µ ∈ X. Then there exists a prime
element b in L such that Gµ is prime convex l-subgroup of G and

µ(y) =

{
1, if y ∈ Gµ
b, otherwise.

Now, we have to prove that µ ∈ X(xa), i.e, xa 6⊆ µ, i.e, a 6≤ µ(x), i.e, a 6≤ b, which
is true. Thus µ ∈ X(xa). So X ⊆ X(xa). So X = X(xa). �

If a is contained in a prime element in L, the above theorem does not hold. We
have, the following example.

Example 5.7. Let L = [0, 1]. Let G = C(X) be the set of all bounded continuous
real valued functions on X, where X is a Hausdroff space. If all the operations
defined pointwise i.e, for f, g ∈ C(X) and for each x ∈ X, (f + g)(x) = f(x) +
g(x), (f∨g)(x) = f(x)∨g(x), (f∧g)(x) = f(x)∧g(x), then C(X) becomes an l-group.
Clearly, the function f(x) = 1 (x ∈ X) is a strong unit in G. Fix x ∈ X. Clearly,
Mx = {f ∈ G | f(x) = 0} is a prime convex l-subgroup of G. Let a = 1

2 ∈ (0, 1).
Clearly, every element b with a ≤ b < 1 is prime in L = [0, 1]. Define, µ ∈ LSpec(G)
as follows :

µ(g) =

{
1, if g ∈Mx
2
3 , otherwise,

and

(fa)(g) =

{
1
2 = a, if g = f
0, otherwise.

Clearly, fa ⊆ µ. Then µ 6∈ X(fa). Thus X(fa) 6= X.
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6. Subspace Xa of X

Throughout this paper, Xa = {λ ∈ X | Imλ = {1, a}}, where a ∈ L − {1} is
prime. If a is not prime, then Xa becomes empty.

Lemma 6.1. Let a ∈ L be prime. If b ≤ a, then X(xb) ∩Xa = ∅.

Proof. Let b ∈ L such that b ≤ a. Suppose X(xb) ∩Xa 6= ∅. Let λ ∈ X(xb) ∩Xa,
i.e, λ ∈ X(xb) and λ ∈ Xa, i.e, xb * λ and λ ∈ Xa, i.e, b � λ(x) and λ ∈ Xa, i.e,
b � a (otherwise λ(x) = 1, and thus b ≤ 1 = λ(x) a contradiction), a contradiction.
Then X(xb) ∩Xa = ∅. �

Lemma 6.2. Let a, b ∈ L− {0} and a ≤ b. Then
(1) X(xa) ⊆ X(xb).
(2) V (xb) ⊆ V (xa).

Proof. (1)Let λ ∈ X(xa). Suppose λ 6∈ X(xb). Then xb ⊆ λ, i.e., b ≤ λ(x). Thus
a ≤ b ≤ λ(x), i.e., a ≤ λ(x). So xa ≤ λ, i.e., λ 6∈ X(xa). Hence X(xa) ⊆ X(xb).

(2) V (xb) = X −X(xb) ⊆ X −X(xa) = V (xa). �

Lemma 6.3. Suppose a is prime and b 6≤ a. If b ≤ c, then X(xb)∩Xa = X(xc)∩Xa.

Proof. Let b ≤ c. Then X(xb) ⊆ X(xc), i.e, X(xb) ∩ Xa ⊆ X(xc) ∩ Xa. Let
λ ∈ X(xc)∩Xa. Then λ ∈ Xa and c 6≤ λ(x). Thus λ(x) = a (otherwise λ(x) = 1 > c,
a contradiction). If λ 6∈ X(xb), then b ≤ λ(x) = a, a contradiction to b � a. So
λ ∈ X(xb) ∩ Xa. Hence X(xc) ∩ Xa ⊆ X(xb) ∩ Xa. Therefore X(xb) ∩ Xa =
X(xc) ∩Xa. �

Theorem 6.4. Let G be an l-group with a strong order unit e. Then, Xa is compact.

Proof. (i) {X(xb) ∩ Xa | x ∈ G, b ∈ L − {0}, b 6≤ a} is a basis for the subspace
Xa. Let {X((xi)bi) ∩Xa | xi ∈ G, bi 6≤ a, i ∈ ∆} be a basic open cover of Xa. Let
K = {bi | i ∈ ∆} and c = ∨{bi | bi ∈ K}. For any i ∈ ∆, bi ≤ c. Then X((xi)bi) ⊆
X((xi)c). Thus Xa = ∪i∈∆(X((xi)bi) ∩Xa) ⊆ ∪i∈∆X((xi)bi) ⊆ ∪i∈∆(X(xi)c).

(ii) {xi | i ∈ ∆} is not contained in any prime convex l-subgroup of G. Let P be
any prime convex l-subgroup of G. Define µ : G→ L by

µ(y) =

{
1, if y ∈ P
a, otherwise.

Then µ ∈ Xa. Thus µ ∈ ∪i∈∆X((xi)c). So there exists j ∈ ∆ such that µ ∈
X((xi)c), i.e, (xj)c * µ, i.e, c � µ(xj). Hence µ(xj) 6= 1 (otherwise c ≤ 1, which is
a contradiction) and thus xj 6∈ P . Therefore {xi | i ∈ ∆} is not contained in any
prime convex l-subgroup of G. Hence 〈{xi | i ∈ ∆}〉 = G. Since e is a strong order
unit in G,

(6.4.1) |e| ≤
n∑
k=1

|xik | for some i1, i2, · · · , in.

(iii) Xa ⊆ ∪nk=1X((xik)c).
Assume that this is not true. Then there exists λ ∈ Xa such that λ 6∈ ∪nk=1X((xik)c),
i.e, (xik)c ⊆ λ, for all k = 1, 2, · · · , n, i.e, c ≤ λ(xik), for all k = 1, 2, · · · , n. Thus
λ(e) ≥ ∧nk=1λ(xik) ≥ c. Now, we have to show that λ(xik) = 1, for all k = 1, 2, · · · , n.
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Suppose λ(xi1) 6= 1. Since e is a strong order unit, there exists n ∈ Z+ such that
ne ≥ |xi1 |. So λ(xi1) ≥ λ(e) (since λ is a convex) ≥ c. Since λ ∈ xa, λ(xi1) = a.
Which is a contradiction to bi � a, for all i ∈ ∆. Hence λ(xi1) = 1.

Similarly, we can show that λ(xik) = 1, for all k = 1, 2, · · · , n. Then xik ∈ Gλ
(k = 1, 2, · · · , n). Thus

n∑
k=1

|xik | ∈ Gλ. From (6.4.1), e ∈ Gλ. So Gλ = G. Hence λ

is constant. Which is a contradiction to λ ∈ Xa. Therefore

(6.4.2) Xa ⊆ ∪nk=1X((xik)c).

From (6.4.1) and (6.4.2), Xa = ∪nk=1(xa) ∩ X((xik)bk). Thus {X((xik)bk) | k =
1, 2, · · · , n} is a finite subcover of Xa. So Xa is compact. �

Theorem 6.5. For all µ ∈ X, V (µ) = The closure of µ in X= {µ}.

Proof. Since V (µ) is a closed set in X and µ ∈ V (µ), {µ} ⊆ V (µ). Let σ 6∈ {µ}.
Then σ ∈ {µ}

c
. Since {µ}

c
is open, there exists X(xa) such that σ ∈ X(xa) ⊆ {µ}

c
.

Thus µ 6∈ X(xa), i.e, µ ∈ V (xa), i.e, xa ≤ µ. If σ ∈ V (µ), i.e, µ ≤ σ, then
xa ⊆ µ ⊆ σ, and thus σ 6∈ X(xa), a contradiction to σ ∈ X(xa). So σ 6∈ V (µ).

Hence V (µ) ⊆ {µ}. Therefore V (µ) = {µ}. �

Theorem 6.6. Let F be a subset of X and let F denote the closure of F . Then
F ⊆ V (χM ), where M = ∩λ∈FGλ and hence F ⊆ V (χM ).

Proof. Clearly, χM (x) = 1 if and only if λ(x) = 1, for all λ ∈ F . Now, if µ ∈ F , then
χM ⊆ µ, i.e, µ ∈ V (χM ). Thus F ⊆ V (χM ). So V (χM ) is a closed set containing
F . Hence F ⊆ V (χM ). �

Now, the following example shows that V (χM ) ⊆ F need not hold.

Example 6.7. Let G = Z × Z be an l-group with ordering (x1, y1) ≤ (x2, y2) ⇔
x1 ≤ x2, y1 ≤ y2. We can easily observe that I1 = Z×{0}, I2 = {0}×Z are the only
prime convex l-subgroups of G. Let L = {0, a, b, 1}, where 1 > a > 0, 1 > b > 0 and
a ‖ b be the lattice. Define ηaI1 , η

b
I1
, ηaI2 , η

b
I2

from G to L as follows :

ηaI1(x, y) =

{
1, if (x, y) ∈ I1
a, otherwise,

ηbI1(x, y) =

{
1, if (x, y) ∈ I1
b, otherwise,

ηaI2(x, y) =

{
1, if (x, y) ∈ I2
a, otherwise.

ηbI2(x, y) =

{
1, if (x, y) ∈ I2
b, otherwise.

Clearly, above L-fuzzy subsets are L-fuzzy prime convex l-subgroups of G. Then
X = {ηaI1 , η

b
I1
, ηaI2 , η

b
I2
}. Take F = {ηaI1 , η

a
I2
}. Now GηaI1

∩GηaI2 = I1∩I2 = {(0, 0)} =

M , say. Now V (χM ) = X. Take (2, 3) ∈ G. Then X((2, 3)a) = X − V ((2, 3)a) =
{ηbI1 , η

b
I2
}. Thus X((2, 3)a) is a basic open set and ηbI2 ∈ X((2, 3)a). On the other

hand X((2, 3)a) ∩ (F − {ηbI2}) = ∅. Thus X((2, 3)a) is a neighborhood of ηbI2 not
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containing any point of F other than ηbI2 . So ηbI2 is not a limit point of F . Hence

F ⊂ V (χM ).

Theorem 6.8. If µ ∈ Xa, then {µ} is closed in Xa if and only if µ is L-fuzzy
maximal convex sub l-group of G in Xa. In other words, Xa is T1 if and only if
every element of Xa is a L-fuzzy maximal convex sub l-group of G.

Proof. Let µ ∈ Xa. Assume that {µ} is closed in Xa. Then V (µ)∩Xa = {µ}∩Xa =
{µ} ∩Xa = {µ}. Now, we prove that µ is a L-fuzzy maximal convex sub l-group in
Xa. Let λ ∈ Xa such that µ ≤ λ. Then clearly, λ ∈ V (µ) ∩Xa = {µ}. Thus λ = µ.
So µ is a maximal element of Xa.

Conversely, assume that µ is a L-fuzzy maximal convex sub l-group of G in Xa.
Then the convex l-subgroup Gµ = {x ∈ G | µ(x) = 1} is maximal. Now, we have to
show that V (µ) ∩Xa = {µ}. Clearly, {µ} ⊆ V (µ) ∩Xa. Let σ ∈ V (µ) ∩Xa. Then
µ ⊆ σ and Gµ ⊆ Gσ. Thus Gµ = Gσ, since Gµ is a maximal convex l-subgroup of
G. So µ = σ, since Imµ = Imσ = {1, a}. Hence V (µ) ∩ Xa = {µ}, i.e, {µ} is a
closed subset of Xa. �

Theorem 6.9. If a ∈ L − {0} is prime, then corresponding to every prime convex
l-subgroup P of G, there exists a λ ∈ Xa such that P = Gλ, vise verse. (i.e, if
λ ∈ Xa, then Gλ ∈ Spec(G)).

Proof. Let a ∈ L− {0} be prime. Let P be a prime convex l-subgroup of G. Then
there exists a L-fuzzy prime convex sub l-group λ with Imλ = {a, 1}. Thus λ ∈ Xa

with Gλ = P . Converse is clear. �

Theorem 6.10. Xa = {λ ∈ X | Imλ = {1, a}} is homeomorphic to Spec(G).

Proof. Define φ : Xa → Spec(G) as φ(λ) = Gλ.
(i) φ is one-one.
Let λ, µ ∈ Xa be such that φ(λ) = φ(µ), i.e, Gλ = Gµ, i.e, λ(x) = µ(x), for all

x ∈ G (since Imλ = Imµ). Then λ = µ. Thus φ is one-one.
(ii) φ is onto.
Let P be any prime convex l-subgroup of G, i.e, P ∈ Spec(G). Consider the

L-fuzzy convex sub l-group of G defined by

µ(x) =

{
1, if x ∈ P
a, otherwise.

Then µ ∈ Xa. Thus φ(µ) = P . So φ is onto.
(iii) φ continuous.
Now consider an open set S(A) = {P ∈ Spec(G) | A 6⊆ P} in Spec(G), where

A ⊆ G. We have φ−1(S(A)) = {λ ∈ Xa | Gλ ∈ S(A)i.e, A 6⊆ Gλ} = ∪x∈A{λ ∈ Xa |
x 6∈ Gλ} = ∪x∈AX(x1) (since x 6∈ Gλ ⇔ 1 6≤ λ(x)⇔ x1 * λ⇔ λ ∈ X(x1)) is open.
Then φ is continuous.

(iv) φ is open.
Let Xa ∩ X(xb) be basic open set in Xa, where b 6≤ a. Now φ(Xa ∩ X(xb)) =

{φ(λ) | λ ∈ Xa∩X(xb)} = {Gλ | xb 6⊆ λ, λ ∈ Xa} = {Gλ | x 6∈ Gλ, λ ∈ Xa} = S{x}.
Then φ is open.
Therefore Xa is homeomorphic to Spec(G). �
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Theorem 6.11. Suppose that L is regular. Then, Spec(G) is a dense subspace of
X.

Proof. Let Y = {χI | I ∈ Spec(G)}. Clearly, I 7→ χI : Spec(G) → Y is a bijection.
To prove that Y is dense in X, we have to prove every non empty open sub set of X
intersects Y . To prove this it is enough to prove that every non empty basic open
subset of X intersects Y . Let X(xb)(where b ∈ L−{0}) be a non empty basic open
sub set of X. Now, we have to prove that X(xb)∩Y 6= ∅. Let λ ∈ X(xb) i.e, xb 6⊆ λ,
i.e, b 6≤ λ(x), i.e, x 6∈ Gλ. Define µ : G→ L by,

µ(y) =

{
1, if y ∈ Gλ
0, otherwise.

Clearly, µ = χGλ ∈ Y . Now, we have to show that µ ∈ X(xb) ∩ Y . Since x 6∈ Gλ,
µ(x) = 0. Thus b � 0 = µ(x), i.e, xb * µ, i.e, µ ∈ X(xb). So µ ∈ X(xb) ∩ Y . Hence
Spec(G) is a dense subspace of X. �

7. Compactness of LSpec(G)

Lemma 7.1. Let f be a homomorphism of G onto G′, then f(xβ) = (f(x))β, for
all x ∈ G, and β ∈ L− {0}.

Proof. We have (f(xβ)(y) = ∨t∈f−1(y)xβ(t) =

{
β, if t = x
0, otherwise

= (f(x))β(y).

Thus f(xβ) = (f(x))β . �

Theorem 7.2. Let f be a homomorphism of G onto G′, X = LSpec(G), X ′ =
LSpec(G′), X∗ = {µ ∈ X | µ is f -invariant}. Define g : X ′ → X∗, by g(µ′) =
f−1(µ′), µ′ ∈ X ′. Then

(1) g is continuous.
(2) g is open.
(3) g is injective.
(4) g is homoeomorphic to the closed subset V (χKerf ). If f is an isomorphism

of G onto G′, then g : X ′ → X defined by g(µ′) = f−1(µ′), for all µ′ ∈ X ′, is a
homeomorphic.

Proof. (1) Let X(xβ)∩X∗ be a basic open subset of X∗ (where β ∈ L−{0}, x ∈ G).
Then

µ′ ∈ g−1(X(xβ) ∩X∗)⇔ g(µ′) ∈ X(xβ) ∩X∗
⇔ f−1(µ′) ∈ X(xβ) ∩X∗
⇔ f−1(µ′) ∈ X(xβ)

and
f−1(µ) ∈ X∗ ⇔ xβ * f−1(µ′)⇔ f(xβ) * f(f−1(µ′))

⇔ f(xβ) * µ′ ⇔ f(x)β * µ′

⇔ µ′ ∈ X(f(x)β).
Thus inverse image of every basic open set of X∗ is open in X’. So g is continuous.

(2) Let X ′(f(xβ)) be any basic open set in X ′. For x ∈ G, β ∈ L − {0}, let
µ ∈ g(X ′(f(xβ)). Then µ = g(µ′) for some µ′ ∈ X ′(f(xβ))

⇒ µ = f−1(µ′) and f(x)β * µ′

⇒ f(µ) = f(f−1(µ′)) and f(xβ) * µ′
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⇒ f(µ) = µ′ and f(xβ) * µ′ (since, f is onto)
⇒ f(xβ) * f(µ)
⇒ xβ * f−1(f(µ)) = µ (since µ is f − invariant)
⇒ xβ * µ
⇒ µ ∈ X(xβ) ∩X∗.

Thus g(X ′(f(xβ))) ⊆ X(xβ) ⊆ X∗.
Now let µ ∈ X(xβ) ∩X∗. Then µ ∈ X(xβ) and µ ∈ X∗

⇒ xβ * µ and µ ∈ X∗
⇒ xβ * µ = f−1(f(µ)) (since µ is f−invariant)
⇒ f(xβ) * f(µ) = µ′ (say)
⇒ µ′ ∈ X ′(f(x)β).

On the other hand,
xβ � µ = f−1(f(µ)) = f−1(µ′) = g(µ′)), where µ′ = f(µ).

⇒ f(xβ) � f(f−1(µ′)) = µ′ (since f is onto, and µ = g(µ′))
⇒ f(xβ) � µ′ and µ = g(µ′)
⇒ µ′ ∈ X ′(f(x)β) and µ = g(µ′)
⇒ µ ∈ g(X ′(f(x)β)).

So X(xβ) ∩X∗ ⊆ g(X ′(f(x)β)). Hence X(xβ) ∩X∗ = g(X ′(f(x)β)).
Therefore g is open.

(3) Let µ′, λ′ ∈ X ′ such that g(µ′) = g(λ′). Then
g(µ′) = g(λ′)⇒ f−1(µ′) = f−1(λ′)⇒ f(f−1(µ′)) = f(f−1(λ′))⇒ µ′ = λ′.

Thus g is injective.
(4) Let µ ∈ V (χkerf ). Then χkerf ⊆ µ and µ ∈ X. Since χkerf ⊆ µ, µ is

f -invariant. Thus µ ∈ X∗.
Now, we prove that g(X ′) = V (χkerf ). For this, we have to show that µ = g(λ),

for some λ ∈ X ′. Put λ = f(µ). Clearly λ ∈ X ′. Now, g(λ) = g(f(µ)) =
f−1(f(µ)) = µ (since f is onto). Then µ ∈ g(X ′). Thus V (χkerf ) ⊆ g(X ′). Now,
we prove the reverse inequality. Let µ′ ∈ X ′. Now, we show that g(µ′) ∈ V (χkerf ),
i.e, χkerf ⊆ f−1(µ′). If x 6∈ kerf , then it is clear. If x ∈ kerf , then χkerf (x) = 1 =
µ′(f(0)) = µ′(f(x)) = f−1(µ′(x)) = (f−1(µ′))(x). Thus χkerf ⊆ f−1(µ′) = g(µ′).
So g(µ′) ⊆ V (χkerf ). Hence the reverse inequality holds and thus g(X ′) = V (χkerf ).
Therefore g is homeomorphic to the closed subset V (χkerf ). �

Theorem 7.3. Let f be an homomorphism of G onto G′. If each L-fuzzy prime
convex sub l-group of G is constant on kerf i.e, X∗ = X, then X ′ is homeomorphic
to X.

Theorem 7.4. Let L be such that for all a ∈ L−{0}, there exists b ∈ L, a ≤ b < 1,
such that b is prime. Let Λ ⊆ G × (L − {1}) be such that X = ∪(xi,ti)∈ΛX((xi)ti).
Then, ∨ti = 1.

Proof. Let ∨ti = a. Suppose a < 1. By hypothesis, there exists a prime element
b ∈ L such that a ≤ b < 1. Let P be a prime convex l-subgroup of G. Define
µ : G→ L, by

µ(x) =

{
1, if x ∈ P
b, otherwise.
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Then µ ∈ X. Thus µ ∈ X((xi)ti) (for some (xi, ti) ∈ Λ), i.e, ((xi)ti) 6⊆ µ, i.e,
ti 6≤ µ(xi). So µ(xi) 6= 1. Hence µ(xi) = b � ti. But µ(xi) = b ≥ a > ti. Which is a
contradiction. Therefore a = 1. �

Corollary 7.5. Let L be a chain.Let Λ = G × (L − {1}) be such that X =
∪(xi,ti)∈ΛX((xi)ti). Then ∨ti = 1.

Theorem 7.6. The space X is T0.

Proof. Let λ, µ ∈ X,λ 6= µ. Then µ 6⊆ λ or λ 6⊆ µ. Suppose µ 6⊆ λ. Then λ ∈ X(µ)
and µ 6∈ X(µ) and X(µ) is open. Thus X is T0. �

Let I(L) be the set of all irreducible elements of L. If α ∈ L, then τ = {W (α) |
α ∈ L} is the hull kernel topology on I(L), Where W (α) = {β ∈ I(L) | α 
 β}.

Theorem 7.7. Let G be an l-group with a strong order unit. Then, LSpec(G) is
homeomorphic with the product space Spec(G)× I(L)

Theorem 7.8. Let G be an l-group with a strong order unit. Then, the space
LSpec(G) is compact ⇔ Spec(G)× I(L) is compact in the product topology ⇔ both
Spec(G) and I(L) are compact.

Now, we note that, if we choose a lattice L such that I(L) is not compact, then
LSpec(G) is not compact. For example if we take L = [0, 1], then I(L) = [0, 1) is
not compact. For, ∪∞n=2[0, 1 − 1

n ) = [0, 1) and {[0, 1 − 1
n )}∞n=2 is an open cover of

[0, 1). Suppose [0, 1) is compact in this topology there exists n1, n2, · · · , nk such that
[0, 1) = ∪ki=1[0, 1 − 1

ni
). Without loss of generality, we can assume that n1 < n2 <

· · · < nk. Then, 1
n1

> 1
n2

> · · · > 1
nk

, i.e, 1 − 1
n1

< 1 − 1
n2

< · · · < 1 − 1
nk

. Thus,

[0, 1) = [0, 1 − 1
nk

). Choose x such that 1 − 1
nk

< x < 1. Clearly, x ∈ [0, 1) and

x ∈ [0, 1 − 1
nk

), a contradiction. So, [0, 1) is not compact. If we choose an l-group

G with a strong order unit e (hence Spec(G) is compact) and if we choose L such
that I(L) is not compact, then LSpec(G) is not compact. Hence, the compactness
of LSpec(G) depends on the space I(L) also.

Theorem 7.9. LSpec(G) is a T1-space if and only if every prime convex l-subgroup
of G is maximal and every irreducible element of L is dual atom.

Theorem 7.10. Let Y ⊆ X. Define F(Y ) = ∩µ∈Y µ. Then F(Y ) is a L-fuzzy
convex sub l-group of G.

Theorem 7.11. For all Y ⊆ X, V (F(Y )) = Y , the closure of Y in X.

Proof. Clearly, V (F(Y )) is a closed set such that V (F(Y )) = V (∩µ∈Y µ) ⊇ Y . Let
V (µ) be a closed subset of X contains Y . Then µ ⊆ η, for all η ∈ V (µ) and thus
µ ⊆ η for all η ∈ Y . Thus µ ⊆ ∩η∈Y η = F(Y ). So V (µ) ⊇ V (F(Y )). So V (F(Y ))

is the smallest closed set contains Y . Hence V (F(Y )) = Y . �

Theorem 7.12. Let Y be a closed subset of X such that F(Y ) is nonconstant. Then
Y is irreducible if and only if F(Y ) is an L-fuzzy prime convex sub l-group of G.

Proof. Clearly, V (F(Y )) = Y = Y (since, Y is closed). Assume that Y is irreducible.
Let λ and ν be a L-fuzzy convex sub l-groups of G such that λ ∩ ν ⊆ F(Y ), i.e,
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λ∩ ν ⊆ µ for all µ ∈ Y , i.e, to each µ ∈ Y , either λ ⊆ µ or ν ⊆ µ, i.e, to each µ ∈ Y ,
either µ ∈ V (λ) or µ ∈ V (ν). We have Y ∩V (λ) = {η ∈ Y | λ ⊆ η}, Y ∩V (ν) = {η ∈
Y | ν ⊆ η}. Then Y = (Y ∩ V (λ)) ∪ (Y ∩ V (ν)), by our assumption Y = Y ∩ V (λ)
or Y = Y ∩ V (ν). Thus Y ⊆ V (λ) or Y ⊆ V (ν), i.e, λ ⊆ F(Y ) or ν ⊆ F(Y ). So
F(Y ) is a L-fuzzy prime convex sub l-group of G.

Conversely, assume that F(Y ) is an L-fuzzy prime convex sub l-group of G. Let
A and B be closed subsets of Y such that Y = A∪B. Since Y is closed in X, A and
B are closed in X. We have V (F(A)) = A = A, V (F(B)) = B = B and V (F(Y )) =
Y = Y . Then F(Y ) = ∩η∈Y η = ∩η∈A∪Bη = (∩η∈Aη) ∩ (∩η∈Bη) = F(A) ∩ F(B).
Thus F(A) ⊆ F(Y ) or F(B) ⊆ F(Y ), i.e, F(A) = F(Y ) or F(B) = F(Y ), i.e,
A = Y or B = Y . So Y is irreducible. �
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