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1. Introduction

The notion of a 0-distributive lattice is due to Varlet [19], which generalizes a
distributive lattice and a pseudo-complemented lattice. A lattice L with 0 is said to
be a 0-distributive lattice if for all x, y, z ∈ L, x∧y = 0 = x∧z implies x∧(y∨z) = 0.
This concept has been widely studied by many researchers (see [1, 2, 12, 19]). It
can be seen that a large part of the theory of filters in distributive lattices can be
extended to 0-distributive lattices. Balsubramani [1] has studied the space of prime
filters of a bounded 0-distributive lattice together with the hull-kernel topology.

The reticulation was first introduced by Simmonns [17] for commutative rings and
Belluce [3] made this construction for MV-algebras. This concept was extended later
on to non-commutative rings [4], BL-algebras [10] and Residuated lattices [11]. Re-
cently Pawar [13] has furnished the reticulation of a 0-distributive lattice by following
the method of construction used by Dan [6] for Heyting algebras. The reticulation
of an algebra A is a pair (L(A), λ) consisting of a bounded distributive lattice L(A)
and a surjection λ : A → L(A) such that λ induces a homeomorphism between the
prime spectrum of L(A) and that of A. The existence of the reticulation permits to
transfer many properties between A and L(A).
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Following the introduction of fuzzy sets by Zadeh [20] many researchers have
applied this concept to lattices and founded the theory of fuzzy ideals and fuzzy
filters in a lattice[5, 9, 18]. We have studied various properties of spectrum of L-
fuzzy prime ideals of a distributive lattice in [14]. 0-distributive lattice being a
generalization of a distributive lattice we have introduced and studied spectrum of
fuzzy prime filters of a 0-distributive lattice in [15]. Motivated by the results in [15]
and [13] we construct the reticulation of a 0-distributive lattice by using fuzzy prime
spectrum on the lines of [13]. In this paper we define the congruence relation ∼= on
a 0-distributive lattice L by using basic closed sets of the fuzzy prime spectrum of
L. Then we will show that L/ ∼= is a bounded distributive lattice and the lattice of
all fuzzy filters of L and L/ ∼= are isomorphic.

2. Preliminaries

For basic concepts in lattice theory and fuzzy set theory the reader is referred to
[7] and [8] respectively. For topological concepts the reader is referred to [16]. For
notions and notation in fuzzy lattices we follow [5] and [15]. Below we give some
definitions and results regarding fuzzy lattices that we need to develop the text of
this paper.

Let L = 〈L,∧,∨〉 denotes a lattice. A fuzzy subset of L is a map of L into
〈[0, 1],∧,∨〉, where α ∧ β = min(α, β) and α ∨ β = max(α, β) for all α, β ∈ [0, 1].
Let µ be a fuzzy subset of L. For α ∈ [0, 1], the set µα = {x ∈ L : µ(x) ≥ α} is
called α - cut (or α - level set) of µ. A fuzzy subset µ of L is proper if it is a non
constant function. A fuzzy subset µ of L is said to be a fuzzy sublattice of L if for
all x, y ∈ L, µ (x ∧ y)∧µ (x ∨ y) ≥ µ (x)∧µ(y). A monotonic (antimonotonic) fuzzy
sublattice is a fuzzy filter (ideal) of L. Here µ is monotonic (antimonotonic) means
µ(x) ≤ µ(y) (µ(x) ≥ µ(y)) whenever x ≤ y in L. A proper fuzzy filter (ideal) µ of L
is called a fuzzy prime filter (ideal) if µ(x∨y) ≤ µ(x)∨µ(y) (µ(x∧y) ≤ µ(x)∨µ(y))
holds for all x, y ∈ L.

Let Σ denote the set of fuzzy prime filters of a 0-distributive lattice L. We
assume that for each µ ∈ Σ, µ (1) = 1. For a fuzzy subset σ of L define V (σ) =
{µ ∈ Σ | σ ⊆ µ}. Let a ∈ L. We will denote V

(
χ{a}

)
by simply V (a). Thus

V (a) = {µ ∈ Σ : µ(a) = 1}. The family B = {X(a) | a ∈ L}, where X(a) =
X
(
χ{a}

)
= Σ \ V (a), constitutes a base for the open sets of some topology on Σ.

Let τ denote the topology with the base B on Σ. The topological space 〈Σ, τ〉 is
called fuzzy prime spectrum of L and is denoted by Fspec (L).

Proposition 2.1 ([5]). A fuzzy subset µ of L is a fuzzy filter (ideal) of L if and
only if µ(x ∧ y) = µ(x) ∧ µ(y) (µ(x ∨ y) = µ(x) ∧ µ(y)) holds for all x, y ∈ L.

Proposition 2.2 ([5]). A fuzzy subset µ of L is a fuzzy prime filter (ideal) of L if
and only if

µ(x ∧ y) = µ(x) ∧ µ(y) and µ(x ∨ y) = µ(x) ∨ µ(y), for all x, y ∈ L
(µ(x ∧ y) = µ(x) ∨ µ(y) and µ(x ∨ y) = µ(x) ∧ µ(y), for all x, y ∈ L().

Proposition 2.3 ([5]). Let L and L′ be two lattices and f : L → L′ an onto
homomorphism. Then

(1) If µ is a fuzzy sublattice (ideal, filter) of L then f(µ) is a fuzzy sublattice
(ideal, filter) of L′ where f(µ) is defined as
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f(µ)(y) = sup{µ(x) : f(x) = y, x ∈ L}, for all y ∈ L′;
(2) If ν is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L′ then

f−1(ν) is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L where f−1(ν)
is defined as

f−1(ν)(x) = ν(f(x)), for all x ∈ L.

Proposition 2.4 ([9] Dual of Corollary 2.16). A proper subset F of L is a prime
filter of L if and only if the characteristic function of F is a fuzzy prime filter of L.

Proposition 2.5 ([9]). A non-constant fuzzy filter µ of L is a fuzzy prime filter of
L if and only if for all α ∈ [0, 1], if µα is a proper filter of L, then µα is a prime
filter of L.

Proposition 2.6 ([15]). Let θ and σ be fuzzy subsets of a 0-distributive lattice L.
Then

(1) If θ ⊆ σ, then V (σ) ⊆ V (θ).
(2) V (σ) ∪ V (θ) ⊆ V (σ ∩ θ).
(3) V (θ) = V (〈θ〉), where 〈θ〉 is the fuzzy filter of L generated by θ.
(4) V (0) = ∅ and V (1) = Σ.

Proposition 2.7 ([15]). If {θi | i ∈ Λ} (Λ is any indexing set) is a family of fuzzy
subsets of L, then V (

⋃
{θi | i ∈ Λ}) =

⋂
{V (θi) | i ∈ Λ}. Moreover,

V (a) ∪ V (b) = V (a ∨ b),∀ a, b ∈ L.

Proposition 2.8 ([7]). Let L and L′ be two lattices. Let f : L→ L′ be a bijection.
If f and f−1 are both isotone maps (i.e. order preserving maps), then f is a lattice
homomorphism (and hence an isomorphism).

For any bounded lattice L, F(L) denotes the set of all fuzzy filters of L which
is a complete bounded lattice (see [9]). Now onwards L will denote a bounded
0-distributive lattice.

3. Reticulation of a 0-distributive lattice

Define a relation ∼= on L by, for all a, b ∈ L,
a ∼= b if and only if V (a) = V (b).

Hence a ∼= b⇔ (µ(a) = 1⇔ µ(b) = 1, ∀µ ∈ Σ).

It can be easily seen that ∼= is an equivalence relation on L. Moreover we have,

Theorem 3.1. The relation ∼= is a congruence relation on L.

Proof. Suppose that a ∼= b and c ∼= d. First, we prove that a ∧ c ∼= b ∧ d. Let
µ ∈ V (a ∧ c). Then µ(a ∧ c) = 1. Since µ is a fuzzy filter, we get µ(a) ∧ µ(c) = 1,
i.e., µ(a) = 1 and µ(c) = 1. By assumption, µ(b) = 1 and µ(d) = 1 and thus
µ(b ∧ d) = µ(b) ∧ µ(d) = 1 and consequently, µ ∈ V (b ∧ d). So V (a ∧ c) ⊆ V (b ∧ d).

Similarly, we can prove that V (b ∧ d) ⊆ V (a ∧ c). Hence a ∧ c ∼= b ∧ d.
Now we prove that a ∨ c ∼= b ∨ d. Let µ ∈ V (a ∨ c). Then µ(a ∨ c) = 1. As µ is a

fuzzy prime filter, we get µ(a)∨µ(c) = 1, i.e., µ(a) = 1 or µ(c) = 1. By assumption,
µ(b) = 1 or µ(d) = 1. Thus µ(b∨ d) = µ(b)∨µ(d) = 1. So µ ∈ V (b∨ d) proving that
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V (a ∨ c) ⊆ V (b ∨ d). Similarly we can prove that V (b ∨ d) ⊆ V (a ∨ c). Hence a ∨ c
∼= b ∨ d. This proves that the relation ∼= is a congruence relation on L. �

For any a ∈ L, the equivalence class of a with respect to the congruence relation ∼=
is denoted by ā that is ā = {x ∈ L : x ∼= a}. The set of all such distinct equivalence
classes is denoted by L/ ∼=. We define u and t on L/ ∼= as

ā u b̄ = a ∧ b and ā t b̄ = a ∨ b.
By Theorem 3.1, these operations are well defined on L/ ∼= and we have,

Theorem 3.2. The algebra 〈L/ ∼=,u,t, 0̄, 1̄〉 is a bounded lattice.

Proof. It is easy to prove that the operations u and t satisfies the idempotent,
absorption, associative and commutative properties in L/ ∼=. For any x̄ ∈ L/ ∼=,
x̄ u 0̄ = x ∧ 0 = 0̄. Then 0̄ ≤ x̄ in L/ ∼= for all x̄ ∈ L/ ∼=.

Similarly, x̄ ≤ 1̄ hold for all x̄ ∈ L/ ∼=. Thus the algebra 〈L/ ∼=,u,t, 0̄, 1̄〉 is a
bounded lattice. �

Lemma 3.3. For a, b ∈ L
(1) ā ≤ b̄ in L/ ∼= if and only if V (a) ⊆ V (b).
(2) If a ≤ b in L then ā ≤ b̄ in L/ ∼=.

Proof. (1) By definition of t, we have ā ≤ b̄ in L/ ∼= if and only if ā t b̄ = b̄, i.e.,
a ∨ b = b̄. Now by Proposition 2.7,

a ∨ b = b̄ ⇔ a ∨ b ∼= b
⇔ V (a ∨ b) = V (b)
⇔ V (a) ∪ V (b) = V (b)
⇔ V (a) ⊆ V (b).

Thus ā ≤ b̄ in L/ ∼= if and only if V (a) ⊆ V (b).
(2) If a ≤ b in L, then a ∧ b = a. Thus a ∧ b = ā, that is, ā u b̄ = ā. This yields

ā ≤ b̄ in L/ ∼=. �

Theorem 3.4. The lattice 〈L/ ∼=,u,t, 0̄, 1̄〉 is distributive.

Proof. Let a, b, c ∈ L. Then a u (b t c) = a u (b ∨ c) = a ∧ (b ∨ c).
Similarly, (ā u b̄) t (ā u c̄) = (a ∧ b) ∨ (a ∧ c).
Let x ∈ a ∧ (b ∨ c). Then x ∼= a ∧ (b ∨ c). Thus, for any fuzzy prime filter µ, we

have

µ(x) = 1⇔ µ(a ∧ (b ∨ c)) = 1

⇔ µ(a) ∧ µ(b ∨ c) = 1 (By Proposition 2.1)

⇔ µ(a) = 1 and µ(b) ∨ µ(c) = 1 (By Proposition 2.2)

⇔ µ(a) = 1 and (µ(b) = 1 or µ(c) = 1)

⇔ µ(a) ∧ µ(b) = 1 or µ(a) ∧ µ(c) = 1

⇔ µ(a ∧ b) ∨ µ(a ∧ c) = 1

⇔ µ ((a ∧ b) ∨ (a ∧ c)) = 1.

So x ∼= (a ∧ b) ∨ (a ∧ c) resulting into x ∈ (a ∧ b) ∨ (a ∧ c). This gives

a ∧ (b ∨ c) ⊆ (a ∧ b) ∨ (a ∧ c).
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Hence a u (b t c) ⊆ (ā u b̄) t (ā u c̄).
Similarly, we can prove (āu b̄)t(āu c̄) ⊆ au(btc). Combining both the inclusions,

we get, a u (b t c) = (ā u b̄) t (ā u c̄). Therefore the lattice L/ ∼= is a distributive
lattice. �

Definition 3.5. Let λ : L→ L/ ∼= be the canonical surjection defined by, λ(a) = ā.

Now we prove that (L/ ∼=, λ) is a reticulation of L. Before that we furnish some
necessary results.

Lemma 3.6. Let L1 and L2 be 0-distributive lattices and f : L1 → L2 be a homo-
morphism. Then V (a) = V (b) imply V (f(a)) = V (f(b)), for all a, b ∈ L1.

Proof. Let µ ∈ V (f(a)). Then µ ∈ Fspec(L2) and µ(f(a)) = 1. By Proposition 2.3,
f−1(µ) ∈ Fspec(L1) and f−1(µ)(a) = µ(f(a)) = 1. Thus f−1(µ) ∈ V (a) = V (b).
So µ(f(b)) = f−1(µ)(b) = 1. Hence µ ∈ V (f(b)) proving that V (f(a)) ⊆ V (f(b)).

Similarly, we can show that V (f(b)) ⊆ V (f(a)). Therefore the lemma follows.
�

Let L1 and L2 be 0-distributive lattices and f : L1 → L2 be a {0,1} - homomor-

phism i.e., f(0) = 0, f(1) = 1. Define f∗ : L1/ ∼=→ L2/ ∼= by f∗(ā) = f(a), for all
ā ∈ L1/ ∼=. Then we have,

Theorem 3.7. f∗ is a {0,1} - homomorphism.

Proof. Let ā = b̄. Then a ∼= b. Thus V (a) = V (b). By Lemma 3.6, we get

V (f(a)) = V (f(b)). So f(a) ∼= f(b) imply f(a) = f(b), that is, f∗(ā) = f∗(b̄). This
proves f∗ is well defined.

Now, as f is a homomorphism, we have

f∗(ā u b̄) = f∗(a ∧ b) = f(a ∧ b) = f(a) ∧ f(b) = f(a) u f(b) = f∗(ā) u f∗(b̄).

Similarly, we can show that f∗(āt b̄) = f∗(ā)t f∗(b̄). Also f∗(0̄) = f(0) = 0̄ and

f∗(1̄) = f(1) = 1̄. This completes the proof. �

Lemma 3.8. Let µ be a fuzzy prime filter of L and a, b ∈ L such that a = b, then
µ(a) = µ(b).

Proof. Since a = b, a ∼= b. Then V (a) = V (b). Suppose µ(a) 6= µ(b). Then either
µ(a) < µ(b) or µ(b) < µ(a). Without loss of generality, we can assume µ(a) < µ(b).
Take α = µ(b) and F = µα = {x ∈ L : µ(x) ≥ α}. Then F is a prime filter of L
(by Proposition 2.5) such that b ∈ F and a /∈ F . By Proposition 2.4, χF is a fuzzy
prime filter of L such that χF (b) = 1 but χF (a) 6= 1. Thus there exists χF ∈ V (b)
but χF /∈ V (a). This contradicts to the fact that V (a) = V (b). So we must have
µ(a) = µ(b). �

Theorem 3.9. Let µ be a fuzzy filter of L, then λ(µ) is fuzzy filter of L/ ∼=.

Proof. In view of Proposition 2.3 and as λ is an surjective homomorphism, λ(µ) is
a fuzzy filter of L/ ∼=. �

Theorem 3.10. Let ν be a fuzzy filter of L/ ∼=, then λ−1(ν) is fuzzy filter of L and
λ(λ−1(ν)) = ν.
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Proof. By Proposition 2.3, λ−1(ν) is a fuzzy filter of L. For any x ∈ L/ ∼=,
λ(λ−1(ν))(x)

= sup
{
λ−1(ν)(y) : λ(y) = x

}
= sup {ν(λ(y)) : y = x}
= sup {ν(y) : y = x} = ν(x).

This proves that λ(λ−1(ν)) = ν. �

Theorem 3.11. Let µ and ν be a fuzzy filters of L then µ ≤ ν if and only if
λ(µ) ≤ λ(ν).

Proof. First suppose µ ≤ ν. Then for any x ∈ L/ ∼=,

λ(µ)(x) = sup{µ(y) : λ(y) = x} ≤ sup{ν(y) : λ(y) = x} = λ(ν)(x).

Thus λ(µ) ≤ λ(ν).
Conversely, suppose λ(µ) ≤ λ(ν). On the contrary assume that µ > ν. Then for

any a ∈ L, sup{µ(z) : λ(z) = a} > sup{ν(z) : λ(z) = a}. But it means λ(µ)(a) >
λ(ν)(a), which contradicts to our hypothesis. So we must have µ ≤ ν. �

Corollary 3.12. Let µ and ν be a fuzzy filters of L, then µ = ν if and only if
λ(µ) = λ(ν).

This enables us to prove the following theorem for the lattices of all fuzzy filters
of L and L/ ∼=.

Theorem 3.13. The mapping ψ : F(L)→ F(L/ ∼=) induced by λ and defined by

ψ(µ) = λ(µ), ∀ µ ∈ F(L),

is an isomorphism which preserves fuzzy prime filters and λ−1(λ(µ)) = µ.

Proof. By Corollary 3.12, the map ψ is well defined and injective. By Theorem 3.10,
ψ is surjective. By Proposition 2.8 and Theorem 3.11, ψ is a homomorphism. Then
ψ is an isomorphism.

Let µ be a fuzzy prime filter of L. So µ is a non constant, in particular µ(0) 6= µ(1).
By Lemma 3.3, it is clear that λ(µ)(0) 6= λ(µ)(1). Thus, by Theorem 3.9, λ(µ) is a
proper fuzzy filter of L/ ∼=.

To prove it is prime, let a, b ∈ L/ ∼=. If z ∈ L such that z = a ∨ b, then z ∼= a∨ b,
that is, V (z) = V (a ∨ b). Thus for any fuzzy prime filter θ of L,

θ(z) = 1⇔ θ(a ∨ b) = 1

⇔ θ(a) ∨ θ(b) = 1

⇔ θ(a) = 1 or θ(b) = 1.

So V (z) = V (a) or V (z) = V (b) and consequently, z = a or z = b. Hence,

λ(µ)(a t b) = λ(µ)(a ∨ b)
= µ(a ∨ b) (by Lemma 3.8)

= µ(a) ∨ µ(b)

= λ(µ)(a) ∨ λ(µ)(b) (by Lemma 3.8)
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This proves λ(µ) is a fuzzy prime filter of L/ ∼=.
Now let x ∈ L. Then, by Lemma 3.8,

λ−1(λ(µ))(x) = λ(µ)(λ(x)) = λ(µ)(x)
= sup{µ(z) : λ(z) = z = x} = µ(x).

Hence λ−1(λ(µ)) = µ. �

Theorem 3.14. Let ν be a fuzzy prime filter of L/ ∼=, then λ−1(ν) is fuzzy prime
filter of L.

Proof. Let ν be a fuzzy prime filter of L/ ∼=. By Theorem 3.10, λ−1(ν) is fuzzy filter
of L. Also ν is non constant so that ν(0) 6= ν(1). Then λ−1(ν)(0) = ν(λ(0)) = ν(0)
and λ−1(ν)(1) = ν(λ(1)) = ν(1) gives λ−1(ν)(0) 6= λ−1(ν)(1), proving that λ−1(ν)
is non constant and hence proper fuzzy filter of L. Now using the fact that ν is a
fuzzy prime filter and using the Proposition 2.2, we get,

λ−1(ν)(a ∨ b) = ν(λ(a ∨ b)) = ν(a ∨ b)
= ν(a t b) = ν(a) ∨ ν(b)
= ν(λ(a)) ∨ ν(λ(b)) = λ−1(ν)(a) ∨ λ−1(ν)(b).

This proves λ−1(ν) is a fuzzy prime filter of L. �

Theorem 3.15. The two topological spaces Fspec(L) and Fspec(L/ ∼=) are home-
omorphic.

Proof. Define a map g : Fspec(L)→ Fspec(L/ ∼=) by

g(µ) = λ(µ), for all µ ∈ Fspec(L).

Then g is a restriction of the map ψ in Theorem 3.13 to Fspec(L). By Theorem
3.13, g is well defined and injective. Also for any ν ∈ Fspec(L/ ∼=), we have,
by Theorem 3.14,

λ−1(ν) ∈ Fspec(L)

and by Theorem 3.10,
g(λ−1(ν)) = λ(λ−1(ν)) = ν.

Thus g is surjective. So g is a bijection.
We have V (a) is a basic closed set in Fspec(L/ ∼=) and

g−1(V (a)) = {µ ∈ Fspec(L) : g(µ) ∈ V (a)}
= {µ ∈ Fspec(L) : λ(µ) ∈ V (a)}
= {µ ∈ Fspec(L) : λ(µ)(a) = 1}
= {µ ∈ Fspec(L) : µ(a) = 1} .

Here λ(µ)(a) = sup{µ(x) : λ(x) = x = a} = µ(a) (by Lemma 3.8). Hence we
get, g−1(V (a)) = V (a), which is a basic closed set in Fspec(L). Therefore g is
continuous.
Also

g(V (a)) = {g(µ) : µ ∈ V (a)}
= {λ(µ) : µ ∈ V (a)}
= {ν = λ(µ) ∈ Fspec(L/ ∼=) : µ(a) = 1}
= {ν ∈ Fspec(L/ ∼=) : ν = λ(µ), µ(a) = 1} .
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Again if ν = λ(µ) and µ(a) = 1, then we have ν(a) = λ(µ)(a) = µ(a) = 1. This
gives, g(V (a)) = {ν ∈ Fspec(L/ ∼=) : ν(a) = 1} = V (a) which is a basic closed set
in Fspec(L/ ∼=). This proves g is a closed map.

Since g is bijective, continuous and closed map, g is a homeomorphism. �

Combining all the results, we get,

Theorem 3.16. The pair (L/ ∼=, λ) forms a reticulation of a bounded 0-distributive
lattice L.

4. Conclusions

Algebraic reticulation is obtained for various algebras viz commutative rings, MV-
algebras, BL-algebras and Residuated lattices. Here a generalization of the concept
of algebraic reticulation for a 0 - distributive lattice using fuzzy theory is obtained
successfully. This accentuates applicability of fuzzy theory in algebra.
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