Annals of Fuzzy Mathematics and Informatics Volume 12, No. 2, (August 2016), pp. 165–173

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Reticulation of 0 - distributive lattices by fuzzy prime spectrum

Y. S. PAWAR, S. S. KHOPADE

Received 30 September 2015; Revised 24 December 2015; Accepted 12 February 2016

ABSTRACT. A congruence relation \cong on a 0-distributive lattice L is defined by using fuzzy prime spectrum such that the quotient lattice L/\cong is a distributive lattice and the fuzzy prime spectrum of L and L/\cong are homeomorphic. It is proved that the lattices of fuzzy filters of L and L/\cong are isomorphic.

2010 AMS Classification: 06D72, 03F72

Keywords: 0-distributive lattice, Fuzzy filter, Fuzzy prime filter, Reticulation, Prime spectrum.

Corresponding Author: Y. S. Pawar (yspawar1950@gmail.com)

1. Introduction

The notion of a 0-distributive lattice is due to Varlet [19], which generalizes a distributive lattice and a pseudo-complemented lattice. A lattice L with 0 is said to be a 0-distributive lattice if for all $x, y, z \in L$, $x \wedge y = 0 = x \wedge z$ implies $x \wedge (y \vee z) = 0$. This concept has been widely studied by many researchers (see [1, 2, 12, 19]). It can be seen that a large part of the theory of filters in distributive lattices can be extended to 0-distributive lattices. Balsubramani [1] has studied the space of prime filters of a bounded 0-distributive lattice together with the hull-kernel topology.

The reticulation was first introduced by Simmonns [17] for commutative rings and Belluce [3] made this construction for MV-algebras. This concept was extended later on to non-commutative rings [4], BL-algebras [10] and Residuated lattices [11]. Recently Pawar [13] has furnished the reticulation of a 0-distributive lattice by following the method of construction used by Dan [6] for Heyting algebras. The reticulation of an algebra A is a pair $(L(A), \lambda)$ consisting of a bounded distributive lattice L(A) and a surjection $\lambda : A \to L(A)$ such that λ induces a homeomorphism between the prime spectrum of L(A) and that of A. The existence of the reticulation permits to transfer many properties between A and L(A).

Following the introduction of fuzzy sets by Zadeh [20] many researchers have applied this concept to lattices and founded the theory of fuzzy ideals and fuzzy filters in a lattice [5, 9, 18]. We have studied various properties of spectrum of L-fuzzy prime ideals of a distributive lattice in [14]. 0-distributive lattice being a generalization of a distributive lattice we have introduced and studied spectrum of fuzzy prime filters of a 0-distributive lattice in [15]. Motivated by the results in [15] and [13] we construct the reticulation of a 0-distributive lattice by using fuzzy prime spectrum on the lines of [13]. In this paper we define the congruence relation \cong on a 0-distributive lattice L by using basic closed sets of the fuzzy prime spectrum of L. Then we will show that L/\cong is a bounded distributive lattice and the lattice of all fuzzy filters of L and L/\cong are isomorphic.

2. Preliminaries

For basic concepts in lattice theory and fuzzy set theory the reader is referred to [7] and [8] respectively. For topological concepts the reader is referred to [16]. For notions and notation in fuzzy lattices we follow [5] and [15]. Below we give some definitions and results regarding fuzzy lattices that we need to develop the text of this paper.

Let $L = \langle L, \wedge, \vee \rangle$ denotes a lattice. A fuzzy subset of L is a map of L into $\langle [0,1], \wedge, \vee \rangle$, where $\alpha \wedge \beta = \min(\alpha, \beta)$ and $\alpha \vee \beta = \max(\alpha, \beta)$ for all $\alpha, \beta \in [0,1]$. Let μ be a fuzzy subset of L. For $\alpha \in [0,1]$, the set $\mu_{\alpha} = \{x \in L : \mu(x) \geq \alpha\}$ is called α - cut (or α - level set) of μ . A fuzzy subset μ of L is proper if it is a non constant function. A fuzzy subset μ of L is said to be a fuzzy sublattice of L if for all $x, y \in L$, $\mu(x \wedge y) \wedge \mu(x \vee y) \geq \mu(x) \wedge \mu(y)$. A monotonic (antimonotonic) fuzzy sublattice is a fuzzy filter (ideal) of L. Here μ is monotonic (antimonotonic) means $\mu(x) \leq \mu(y)$ ($\mu(x) \geq \mu(y)$) whenever $x \leq y$ in L. A proper fuzzy filter (ideal) μ of L is called a fuzzy prime filter (ideal) if $\mu(x \vee y) \leq \mu(x) \vee \mu(y)$ ($\mu(x \wedge y) \leq \mu(x) \vee \mu(y)$) holds for all $x, y \in L$.

Let Σ denote the set of fuzzy prime filters of a 0-distributive lattice L. We assume that for each $\mu \in \Sigma$, $\mu(1) = 1$. For a fuzzy subset σ of L define $V(\sigma) = \{\mu \in \Sigma \mid \sigma \subseteq \mu\}$. Let $a \in L$. We will denote $V(\chi_{\{a\}})$ by simply V(a). Thus $V(a) = \{\mu \in \Sigma : \mu(a) = 1\}$. The family $\mathfrak{B} = \{X(a) \mid a \in L\}$, where $X(a) = X(\chi_{\{a\}}) = \Sigma \setminus V(a)$, constitutes a base for the open sets of some topology on Σ . Let τ denote the topology with the base \mathfrak{B} on Σ . The topological space $\langle \Sigma, \tau \rangle$ is called fuzzy prime spectrum of L and is denoted by Fspec(L).

Proposition 2.1 ([5]). A fuzzy subset μ of L is a fuzzy filter (ideal) of L if and only if $\mu(x \wedge y) = \mu(x) \wedge \mu(y)$ ($\mu(x \vee y) = \mu(x) \wedge \mu(y)$) holds for all $x, y \in L$.

Proposition 2.2 ([5]). A fuzzy subset μ of L is a fuzzy prime filter (ideal) of L if and only if

```
\mu(x \wedge y) = \mu(x) \wedge \mu(y) and \mu(x \vee y) = \mu(x) \vee \mu(y), for all x, y \in L (\mu(x \wedge y) = \mu(x) \vee \mu(y) and \mu(x \vee y) = \mu(x) \wedge \mu(y), for all x, y \in L().
```

Proposition 2.3 ([5]). Let L and L' be two lattices and $f: L \to L'$ an onto homomorphism. Then

(1) If μ is a fuzzy sublattice (ideal, filter) of L then $f(\mu)$ is a fuzzy sublattice (ideal, filter) of L' where $f(\mu)$ is defined as

$$f(\mu)(y) = \sup\{\mu(x) : f(x) = y, x \in L\}, \text{ for all } y \in L';$$

(2) If ν is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L' then $f^{-1}(\nu)$ is a fuzzy sublattice (ideal, prime ideal, filter, prime filter) of L where $f^{-1}(\nu)$ is defined as

$$f^{-1}(\nu)(x) = \nu(f(x)), \text{ for all } x \in L.$$

Proposition 2.4 ([9] Dual of Corollary 2.16). A proper subset F of L is a prime filter of L if and only if the characteristic function of F is a fuzzy prime filter of L.

Proposition 2.5 ([9]). A non-constant fuzzy filter μ of L is a fuzzy prime filter of L if and only if for all $\alpha \in [0,1]$, if μ_{α} is a proper filter of L, then μ_{α} is a prime filter of L.

Proposition 2.6 ([15]). Let θ and σ be fuzzy subsets of a 0-distributive lattice L. Then

- (1) If $\theta \subseteq \sigma$, then $V(\sigma) \subseteq V(\theta)$.
- (2) $V(\sigma) \cup V(\theta) \subseteq V(\sigma \cap \theta)$.
- (3) $V(\theta) = V(\langle \theta \rangle)$, where $\langle \theta \rangle$ is the fuzzy filter of L generated by θ .
- (4) $V(0) = \emptyset$ and $V(1) = \Sigma$.

Proposition 2.7 ([15]). If $\{\theta_i \mid i \in \Lambda\}$ (Λ is any indexing set) is a family of fuzzy subsets of L, then $V(\bigcup \{\theta_i \mid i \in \Lambda\}) = \bigcap \{V(\theta_i) \mid i \in \Lambda\}$. Moreover, $V(a) \cup V(b) = V(a \vee b), \forall a, b \in L$.

Proposition 2.8 ([7]). Let L and L' be two lattices. Let $f: L \to L'$ be a bijection. If f and f^{-1} are both isotone maps (i.e. order preserving maps), then f is a lattice homomorphism (and hence an isomorphism).

For any bounded lattice L, $\mathcal{F}(L)$ denotes the set of all fuzzy filters of L which is a complete bounded lattice (see [9]). Now onwards L will denote a bounded 0-distributive lattice.

3. Reticulation of a 0-distributive lattice

Define a relation \cong on L by, for all $a, b \in L$,

$$a \cong b$$
 if and only if $V(a) = V(b)$.

Hence $a \cong b \Leftrightarrow (\mu(a) = 1 \Leftrightarrow \mu(b) = 1, \forall \mu \in \Sigma).$

It can be easily seen that \cong is an equivalence relation on L. Moreover we have,

Theorem 3.1. The relation \cong is a congruence relation on L.

Proof. Suppose that $a \cong b$ and $c \cong d$. First, we prove that $a \wedge c \cong b \wedge d$. Let $\mu \in V(a \wedge c)$. Then $\mu(a \wedge c) = 1$. Since μ is a fuzzy filter, we get $\mu(a) \wedge \mu(c) = 1$, i.e., $\mu(a) = 1$ and $\mu(c) = 1$. By assumption, $\mu(b) = 1$ and $\mu(d) = 1$ and thus $\mu(b \wedge d) = \mu(b) \wedge \mu(d) = 1$ and consequently, $\mu \in V(b \wedge d)$. So $V(a \wedge c) \subseteq V(b \wedge d)$. Similarly, we can prove that $V(b \wedge d) \subseteq V(a \wedge c)$. Hence $a \wedge c \cong b \wedge d$.

Now we prove that $a \lor c \cong b \lor d$. Let $\mu \in V(a \lor c)$. Then $\mu(a \lor c) = 1$. As μ is a fuzzy prime filter, we get $\mu(a) \lor \mu(c) = 1$, i.e., $\mu(a) = 1$ or $\mu(c) = 1$. By assumption, $\mu(b) = 1$ or $\mu(d) = 1$. Thus $\mu(b \lor d) = \mu(b) \lor \mu(d) = 1$. So $\mu \in V(b \lor d)$ proving that

 $V(a \lor c) \subseteq V(b \lor d)$. Similarly we can prove that $V(b \lor d) \subseteq V(a \lor c)$. Hence $a \lor c \cong b \lor d$. This proves that the relation \cong is a congruence relation on L.

For any $a \in L$, the equivalence class of a with respect to the congruence relation \cong is denoted by \bar{a} that is $\bar{a} = \{x \in L : x \cong a\}$. The set of all such distinct equivalence classes is denoted by L/\cong . We define \sqcap and \sqcup on L/\cong as

$$\bar{a} \cap \bar{b} = \overline{a \wedge b}$$
 and $\bar{a} \sqcup \bar{b} = \overline{a \vee b}$.

By Theorem 3.1, these operations are well defined on L/\cong and we have,

Theorem 3.2. The algebra $\langle L/\cong, \sqcap, \sqcup, \bar{0}, \bar{1} \rangle$ is a bounded lattice.

Proof. It is easy to prove that the operations \sqcap and \sqcup satisfies the idempotent, absorption, associative and commutative properties in L/\cong . For any $\bar{x}\in L/\cong$, $\bar{x}\sqcap \bar{0}=\bar{x}\wedge \bar{0}=\bar{0}$. Then $\bar{0}\leq \bar{x}$ in L/\cong for all $\bar{x}\in L/\cong$.

Similarly, $\bar{x} \leq \bar{1}$ hold for all $\bar{x} \in L/\cong$. Thus the algebra $\langle L/\cong, \sqcap, \sqcup, \bar{0}, \bar{1} \rangle$ is a bounded lattice.

Lemma 3.3. For $a, b \in L$

- (1) $\bar{a} \leq \bar{b}$ in L/\cong if and only if $V(a) \subseteq V(b)$.
- (2) If $a \leq b$ in L then $\bar{a} \leq \bar{b}$ in L/\cong .

Proof. (1) By definition of \sqcup , we have $\bar{a} \leq \bar{b}$ in L/\cong if and only if $\bar{a} \sqcup \bar{b} = \bar{b}$, i.e., $a \vee \bar{b} = \bar{b}$. Now by Proposition 2.7,

$$\overline{a \lor b} = \overline{b} \Leftrightarrow a \lor b \cong b$$

$$\Leftrightarrow V(a \lor b) = V(b)$$

$$\Leftrightarrow V(a) \cup V(b) = V(b)$$

$$\Leftrightarrow V(a) \subseteq V(b).$$

Thus $\bar{a} \leq \bar{b}$ in L/\cong if and only if $V(a) \subseteq V(b)$.

(2) If $a \leq b$ in L, then $a \wedge b = a$. Thus $\overline{a \wedge b} = \overline{a}$, that is, $\overline{a} \sqcap \overline{b} = \overline{a}$. This yields $\overline{a} \leq \overline{b}$ in L/\cong .

Theorem 3.4. The lattice $\langle L/\cong, \sqcap, \sqcup, \bar{0}, \bar{1} \rangle$ is distributive.

Proof. Let $a, b, c \in L$. Then $\overline{a} \sqcap (\overline{b} \sqcup \overline{c}) = \overline{a} \sqcap (\overline{b} \vee \overline{c}) = \overline{a \wedge (b \vee c)}$. Similarly, $(\overline{a} \sqcap \overline{b}) \sqcup (\overline{a} \sqcap \overline{c}) = \overline{(a \wedge b) \vee (a \wedge c)}$.

Let $x \in \overline{a \wedge (b \vee c)}$. Then $x \cong a \wedge (b \vee c)$. Thus, for any fuzzy prime filter μ , we have

$$\mu(x) = 1 \Leftrightarrow \mu(a \land (b \lor c)) = 1$$

$$\Leftrightarrow \mu(a) \land \mu(b \lor c) = 1 \text{ (By Proposition 2.1)}$$

$$\Leftrightarrow \mu(a) = 1 \text{ and } \mu(b) \lor \mu(c) = 1 \text{ (By Proposition 2.2)}$$

$$\Leftrightarrow \mu(a) = 1 \text{ and } (\mu(b) = 1 \text{ or } \mu(c) = 1)$$

$$\Leftrightarrow \mu(a) \land \mu(b) = 1 \text{ or } \mu(a) \land \mu(c) = 1$$

$$\Leftrightarrow \mu(a \land b) \lor \mu(a \land c) = 1$$

$$\Leftrightarrow \mu((a \land b) \lor (a \land c)) = 1.$$

So $x \cong (a \land b) \lor (a \land c)$ resulting into $x \in \overline{(a \land b) \lor (a \land c)}$. This gives

$$\overline{a \wedge (b \vee c)} \subseteq \overline{(a \wedge b) \vee (a \wedge c)}.$$

Hence $\overline{a} \sqcap (\overline{b} \sqcup \overline{c}) \subseteq (\overline{a} \sqcap \overline{b}) \sqcup (\overline{a} \sqcap \overline{c})$.

Similarly, we can prove $(\bar{a} \sqcap \bar{b}) \sqcup (\bar{a} \sqcap \bar{c}) \subseteq \bar{a} \sqcap (\bar{b} \sqcup \bar{c})$. Combining both the inclusions, we get, $\bar{a} \sqcap (\bar{b} \sqcup \bar{c}) = (\bar{a} \sqcap \bar{b}) \sqcup (\bar{a} \sqcap \bar{c})$. Therefore the lattice L/\cong is a distributive lattice.

Definition 3.5. Let $\lambda: L \to L/\cong$ be the canonical surjection defined by, $\lambda(a) = \bar{a}$.

Now we prove that $(L/\cong, \lambda)$ is a reticulation of L. Before that we furnish some necessary results.

Lemma 3.6. Let L_1 and L_2 be 0-distributive lattices and $f: L_1 \to L_2$ be a homomorphism. Then V(a) = V(b) imply V(f(a)) = V(f(b)), for all $a, b \in L_1$.

Proof. Let $\mu \in V(f(a))$. Then $\mu \in Fspec(L_2)$ and $\mu(f(a)) = 1$. By Proposition 2.3, $f^{-1}(\mu) \in Fspec(L_1)$ and $f^{-1}(\mu)(a) = \mu(f(a)) = 1$. Thus $f^{-1}(\mu) \in V(a) = V(b)$. So $\mu(f(b)) = f^{-1}(\mu)(b) = 1$. Hence $\mu \in V(f(b))$ proving that $V(f(a)) \subseteq V(f(b))$. Similarly, we can show that $V(f(b)) \subseteq V(f(a))$. Therefore the lemma follows.

Let L_1 and L_2 be 0-distributive lattices and $f: L_1 \to L_2$ be a $\{0,1\}$ - homomorphism i.e., f(0) = 0, f(1) = 1. Define $f^*: L_1/\cong \to L_2/\cong$ by $f^*(\bar{a}) = \overline{f(a)}$, for all $\bar{a} \in L_1/\cong$. Then we have,

Theorem 3.7. f^* is a $\{0,1\}$ - homomorphism.

Proof. Let $\bar{a} = \bar{b}$. Then $a \cong b$. Thus $\underline{V(a)} = \underline{V(b)}$. By Lemma 3.6, we get V(f(a)) = V(f(b)). So $f(a) \cong f(b)$ imply $\overline{f(a)} = \overline{f(b)}$, that is, $f^*(\bar{a}) = f^*(\bar{b})$. This proves f^* is well defined.

Now, as f is a homomorphism, we have

$$f^*(\bar{a}\sqcap \bar{b})=f^*(\overline{a\wedge b})=\overline{f(a\wedge b)}=\overline{f(a)\wedge f(b)}=\overline{f(a)}\sqcap \overline{f(b)}=f^*(\bar{a})\sqcap f^*(\bar{b}).$$

Similarly, we can show that $f^*(\bar{a} \sqcup \bar{b}) = f^*(\bar{a}) \sqcup f^*(\bar{b})$. Also $f^*(\bar{0}) = \overline{f(0)} = \bar{0}$ and $f^*(\bar{1}) = \overline{f(1)} = \bar{1}$. This completes the proof.

Lemma 3.8. Let μ be a fuzzy prime filter of L and $a, b \in L$ such that $\overline{a} = \overline{b}$, then $\mu(a) = \mu(b)$.

Proof. Since $\overline{a} = \overline{b}$, $a \cong b$. Then V(a) = V(b). Suppose $\mu(a) \neq \mu(b)$. Then either $\mu(a) < \mu(b)$ or $\mu(b) < \mu(a)$. Without loss of generality, we can assume $\mu(a) < \mu(b)$. Take $\alpha = \mu(b)$ and $F = \mu_{\alpha} = \{x \in L : \mu(x) \geq \alpha\}$. Then F is a prime filter of L (by Proposition 2.5) such that $b \in F$ and $a \notin F$. By Proposition 2.4, χ_F is a fuzzy prime filter of L such that $\chi_F(b) = 1$ but $\chi_F(a) \neq 1$. Thus there exists $\chi_F \in V(b)$ but $\chi_F \notin V(a)$. This contradicts to the fact that V(a) = V(b). So we must have $\mu(a) = \mu(b)$.

Theorem 3.9. Let μ be a fuzzy filter of L, then $\lambda(\mu)$ is fuzzy filter of L/\cong .

Proof. In view of Proposition 2.3 and as λ is an surjective homomorphism, $\lambda(\mu)$ is a fuzzy filter of L/\cong .

Theorem 3.10. Let ν be a fuzzy filter of L/\cong , then $\lambda^{-1}(\nu)$ is fuzzy filter of L and $\lambda(\lambda^{-1}(\nu)) = \nu$.

Proof. By Proposition 2.3, $\lambda^{-1}(\nu)$ is a fuzzy filter of L. For any $\overline{x} \in L/\cong$,

$$\lambda(\lambda^{-1}(\nu))(\overline{x})$$

$$= \sup \left\{ \lambda^{-1}(\nu)(y) : \lambda(y) = \overline{x} \right\}$$

$$= \sup \left\{ \nu(\lambda(y)) : \overline{y} = \overline{x} \right\}$$

$$= \sup \left\{ \nu(\overline{y}) : \overline{y} = \overline{x} \right\} = \nu(\overline{x}).$$

This proves that $\lambda(\lambda^{-1}(\nu)) = \nu$.

Theorem 3.11. Let μ and ν be a fuzzy filters of L then $\mu \leq \nu$ if and only if $\lambda(\mu) \leq \lambda(\nu)$.

Proof. First suppose $\mu \leq \nu$. Then for any $\overline{x} \in L/\cong$,

$$\lambda(\mu)(\overline{x}) = \sup\{\mu(y) : \lambda(y) = \overline{x}\} \le \sup\{\nu(y) : \lambda(y) = \overline{x}\} = \lambda(\nu)(\overline{x}).$$

Thus $\lambda(\mu) \leq \lambda(\nu)$.

Conversely, suppose $\lambda(\mu) \leq \lambda(\nu)$. On the contrary assume that $\mu > \nu$. Then for any $a \in L$, $\sup\{\mu(z) : \lambda(z) = \overline{a}\} > \sup\{\nu(z) : \lambda(z) = \overline{a}\}$. But it means $\lambda(\mu)(\overline{a}) > \mu(z) = \overline{a}$ $\lambda(\nu)(\overline{a})$, which contradicts to our hypothesis. So we must have $\mu \leq \nu$.

Corollary 3.12. Let μ and ν be a fuzzy filters of L, then $\mu = \nu$ if and only if $\lambda(\mu) = \lambda(\nu).$

This enables us to prove the following theorem for the lattices of all fuzzy filters of L and L/\cong .

Theorem 3.13. The mapping $\psi: \mathcal{F}(L) \to \mathcal{F}(L/\cong)$ induced by λ and defined by

$$\psi(\mu) = \lambda(\mu), \quad \forall \ \mu \in \mathcal{F}(L),$$

is an isomorphism which preserves fuzzy prime filters and $\lambda^{-1}(\lambda(\mu)) = \mu$.

Proof. By Corollary 3.12, the map ψ is well defined and injective. By Theorem 3.10, ψ is surjective. By Proposition 2.8 and Theorem 3.11, ψ is a homomorphism. Then ψ is an isomorphism.

Let μ be a fuzzy prime filter of L. So μ is a non constant, in particular $\mu(0) \neq \mu(1)$. By Lemma 3.3, it is clear that $\lambda(\mu)(\overline{0}) \neq \lambda(\mu)(\overline{1})$. Thus, by Theorem 3.9, $\lambda(\mu)$ is a proper fuzzy filter of L/\cong .

To prove it is prime, let \overline{a} , $\overline{b} \in L/\cong$. If $z \in L$ such that $\overline{z} = \overline{a \vee b}$, then $z \cong a \vee b$, that is, $V(z) = V(a \vee b)$. Thus for any fuzzy prime filter θ of L,

$$\begin{split} \theta(z) &= 1 \Leftrightarrow \theta(a \vee b) = 1 \\ &\Leftrightarrow \theta(a) \vee \theta(b) = 1 \\ &\Leftrightarrow \theta(a) = 1 \text{ or } \theta(b) = 1. \end{split}$$

So V(z) = V(a) or V(z) = V(b) and consequently, $\overline{z} = \overline{a}$ or $\overline{z} = \overline{b}$. Hence,

$$\begin{split} \lambda(\mu)(\overline{a} \sqcup \overline{b}) &= \lambda(\mu)(\overline{a \vee b}) \\ &= \mu(a \vee b) \quad \text{(by Lemma 3.8)} \\ &= \mu(a) \vee \mu(b) \\ &= \lambda(\mu)(\overline{a}) \vee \lambda(\mu)(\overline{b}) \quad \text{(by Lemma 3.8)} \end{split}$$

This proves $\lambda(\mu)$ is a fuzzy prime filter of L/\cong .

Now let $x \in L$. Then, by Lemma 3.8,

$$\lambda^{-1}(\lambda(\mu))(x) = \lambda(\mu)(\lambda(x)) = \lambda(\mu)(\overline{x})$$

= $\sup\{\mu(z) : \lambda(z) = \overline{z} = \overline{x}\} = \mu(x).$

Hence $\lambda^{-1}(\lambda(\mu)) = \mu$.

Theorem 3.14. Let ν be a fuzzy prime filter of L/\cong , then $\lambda^{-1}(\nu)$ is fuzzy prime filter of L.

Proof. Let ν be a fuzzy prime filter of L/\cong . By Theorem 3.10, $\lambda^{-1}(\nu)$ is fuzzy filter of L. Also ν is non constant so that $\nu(\overline{0}) \neq \nu(\overline{1})$. Then $\lambda^{-1}(\nu)(0) = \nu(\lambda(0)) = \nu(\overline{0})$ and $\lambda^{-1}(\nu)(1) = \nu(\lambda(1)) = \nu(\overline{1})$ gives $\lambda^{-1}(\nu)(\overline{0}) \neq \lambda^{-1}(\nu)(\overline{1})$, proving that $\lambda^{-1}(\nu)$ is non constant and hence proper fuzzy filter of L. Now using the fact that ν is a fuzzy prime filter and using the Proposition 2.2, we get,

$$\lambda^{-1}(\nu)(a \vee b) = \nu(\lambda(a \vee b)) = \nu(\overline{a \vee b})$$

$$= \nu(\overline{a} \sqcup \overline{b}) = \nu(\overline{a}) \vee \nu(\overline{b})$$

$$= \nu(\lambda(a)) \vee \nu(\lambda(b)) = \lambda^{-1}(\nu)(a) \vee \lambda^{-1}(\nu)(b).$$

This proves $\lambda^{-1}(\nu)$ is a fuzzy prime filter of L.

Theorem 3.15. The two topological spaces Fspec(L) and $Fspec(L) \cong$) are homeomorphic.

Proof. Define a map $g: Fspec(L) \to Fspec(L/\cong)$ by

$$g(\mu) = \lambda(\mu)$$
, for all $\mu \in Fspec(L)$.

Then g is a restriction of the map ψ in Theorem 3.13 to Fspec(L). By Theorem 3.13, g is well defined and injective. Also for any $\nu \in Fspec(L/\cong)$, we have, by Theorem 3.14,

$$\lambda^{-1}(\nu) \in Fspec(L)$$

and by Theorem 3.10,

$$g(\lambda^{-1}(\nu)) = \lambda(\lambda^{-1}(\nu)) = \nu.$$

Thus q is surjective. So q is a bijection.

We have $V(\overline{a})$ is a basic closed set in $Fspec(L/\cong)$ and

$$\begin{split} g^{-1}(V(\overline{a})) &= \{\mu \in Fspec(L) : g(\mu) \in V(\overline{a})\} \\ &= \{\mu \in Fspec(L) : \lambda(\mu) \in V(\overline{a})\} \\ &= \{\mu \in Fspec(L) : \lambda(\mu)(\overline{a}) = 1\} \\ &= \{\mu \in Fspec(L) : \mu(a) = 1\} \,. \end{split}$$

Here $\lambda(\mu)(\overline{a}) = \sup\{\mu(x) : \lambda(x) = \overline{x} = \overline{a}\} = \mu(a)$ (by Lemma 3.8). Hence we get, $g^{-1}(V(\overline{a})) = V(a)$, which is a basic closed set in Fspec(L). Therefore g is continuous.

Also

$$\begin{split} g(V(a)) &= \{g(\mu): \mu \in V(a)\} \\ &= \{\lambda(\mu): \mu \in V(a)\} \\ &= \{\nu = \lambda(\mu) \in Fspec(L/\cong): \mu(a) = 1\} \\ &= \{\nu \in Fspec(L/\cong): \nu = \lambda(\mu), \ \mu(a) = 1\} \,. \end{split}$$

Again if $\nu = \lambda(\mu)$ and $\mu(a) = 1$, then we have $\nu(\overline{a}) = \lambda(\mu)(\overline{a}) = \mu(a) = 1$. This gives, $g(V(a)) = \{\nu \in Fspec(L/\cong) : \nu(\overline{a}) = 1\} = V(\overline{a})$ which is a basic closed set in $Fspec(L/\cong)$. This proves g is a closed map.

Since g is bijective, continuous and closed map, g is a homeomorphism.

Combining all the results, we get,

Theorem 3.16. The pair $(L/\cong, \lambda)$ forms a reticulation of a bounded 0-distributive lattice L.

4. Conclusions

Algebraic reticulation is obtained for various algebras viz commutative rings, MV-algebras, BL-algebras and Residuated lattices. Here a generalization of the concept of algebraic reticulation for a 0 - distributive lattice using fuzzy theory is obtained successfully. This accentuates applicability of fuzzy theory in algebra.

Acknowledgements. The authors are grateful to the learned referees for their constructive suggestions and valuable comments which helped a lot to improve this research article.

References

- P. Balasubramani, Stone topology of the set of prime filters of a 0-distributive lattice, Indian J. Pure Appl. Math. 35 (2) (2004) 149–158.
- [2] P. Balasubramani and P. V. Venkatanarsimhan, Characterizations of the 0-distributive lattice, Indian J. Pure and Appl. Math. 32 (3) (2001) 315–324.
- [3] L. P. Belluce, Semisimple algebras of Infinite valued logic and Bold fuzzy set theory, Can. J. Math. 38 (6) (1986) 1356-1379.
- [4] L. P. Belluce, Spectral spaces and Non-commutative rings, Comm. Algebra 19 (1991) 1855– 1865.
- [5] Bo Yuan and Wangming Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990) 231–240.
- [6] C. T. Dan, Reticulation in Heyting algebra, Annals of University of Craiova, Math. Comp. Sci. Ser. 30 (2) (2003) 66-70.
- [7] G. Grätzer, Lattice Theory First concepts and Distributive Lattices, Freeman and Company, San Francisco 1971.
- [8] J. Klir George and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall of India Pvt. Ltd., New Delhi 1997.
- [9] B. B. N. Koguep, C. Nkuimi C. and C. Lele , On Fuzzy prime ideals of lattice, SJPAM 3 (2008) 1–11.
- [10] L. Leustean L., The Prime and Maximal spectra and the Reticulation of BL-algebras, Central European Journal of Mathematics 1 (3) (2003) 382–397.
- [11] C. Muresan, The reticulation of a residuated lattices, Bull. Math. Soc. Sci. Math. Roumania, Tome 51 (99) No.1 (2008) 47–65.
- [12] Y. S. Pawar, 0-1 distributive lattices, Indian J. Pure Appl. Math. 24 (1993) 173–179.
- [13] Y. S. Pawar, Reticulation of a 0 distributive lattice, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 54 (1) (2015) 121–128.
- [14] Y. S. Pawar and S. S Khopade, Spectrum of L fuzzy prime ideals of a distributive lattice, Fuzzy Systems and Mathematics 27 (1) (2013) 12–19.
- [15] Y. S. Pawar and S. S Khopade, Spectrum of fuzzy prime filters of a 0 distributive lattice, Malaya Journal of Matematik 3 (4) (2015) 591–597.
- [16] W. J. Perwin, Foundations of General topology, Academic Press, 1904.
- [17] H. Simmons, Reticulated Rings, J. Algebra 66 (1980) 169–192.

- [18] Swamy U. M. and Raju D. Viswanadha, Fuzzy ideals and congruence of lattices, Fuzzy Sets and Systems 95 (1998) 249–253.
- [19] J. Varlet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Liege. 37 (1968) 149–158.
- [20] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

$\underline{\mathrm{Y.\ S.\ Pawar}}$ (yspawar1950@gmail.com)

"Manas" - 491, R. K. Nagar, Kolhapur, Maharashttra, India

$\underline{S.\ S.\ Khopade}\ ({\tt ssk27_01@rediffmail.com})$

Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, Maharashtra, India