Annals of Fuzzy Mathematics and Informatics Volume 12, No. 1, (July 2016), pp. 93–98 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

ON fuzzy T_g-spaces

M. JEYARAMAN, S. VIJAYALAKSHMI, R. MUTHURAJ

Received 16 06 2015; Revised 05 08 2015; Accepted 06 12 2015

ABSTRACT. The aim of this paper is to introduce fuzzy $T_{\tilde{g}}$ -spaces, fuzzy $gT_{\tilde{g}}$ -spaces. Moreover, we obtain certain new characterizations for the fuzzy $T_{\tilde{g}}$ -spaces, fuzzy $gT_{\tilde{g}}$ -spaces.

2010 AMS Classification: 2010 Mathematics Subject Classification: 54C10, 54C08, 54C05

Keywords: Fuzzy T_{\ddot{g}}-spaces, Fuzzy gT_{\ddot{g}}-spaces, Fuzzy T_{ω}-spaces, Fuzzy α T_b-spaces.

Corresponding Author: S. Vijayalakshmi (vimalvishali@gmail.com.)

1. INTRODUCTION

In 1970, Levine [7] introduced the notion of generalized closed sets in topological spaces as a generalization of closed sets. Since then, many concepts related to generalized closed sets were defined and investigated. Recently, Balasubramanian and Sundaram [2] introduced the concepts of generalized fuzzy closed sets and fuzzy $T_{1/2}$ -spaces.

Quite Recently, Jeyaraman et al.[6] have introduced the concept of fuzzy \ddot{g} -closed sets and studied its basic fundamental properties in fuzzy topological spaces. In this paper, we introduce the notions called fuzzy $T_{\ddot{g}}$ -spaces, fuzzy $gT_{\ddot{g}}$ -spaces and obtain their properties and characterizations.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent fuzzy topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a fuzzy subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1 ([12, 14]). If X is a set, then any function $A : X \to [0, 1]$ (from X to the closed unit interval [0, 1] is called a fuzzy set in X.

Definition 2.2 ([12]). (i) The complement of a fuzzy set A, denoted by A^c , is defined by

 $A^c(x) = 1 - A(x), \forall x \in X.$

(ii) Union of two fuzzy sets A and B, denoted by $A \vee B$, is defined by

$$(A \cup B)(x) = \max \{A(x), B(x)\}, \forall x \in X.$$

(iii) Intersection of two fuzzy sets A and B, denoted by $A \wedge B$, is defined by $(A \cap B)(x) = \min \{A(x), B(x)\}, \forall x \in X.$

Definition 2.3 ([14]). Let $f: X \to Y$ be a function from a set X into a set Y. Let A be a fuzzy subset in X and B be a fuzzy subset in Y. Then the Zadeh's functions f(A) and $f^{-1}(B)$ are defined by : for each $y \in Y$ and for each $x \in X$,

(i) f(A) is a fuzzy subset of Y, where

$$f(A) = \begin{cases} \sup A(z), & \text{if } f^{-1}(y) \neq \emptyset \\ z \in f^{-1}(y) \\ 0, & \text{otherwise.} \end{cases}$$

(ii) $f^{-1}(B)$ is a fuzzy subset of X, where

 $f^{-1}(B)(x) = B(f(x)).$

Definition 2.4 ([5, 12]). Let X be a set and τ be a family of fuzzy sets in X. Then τ is called a fuzzy topology if τ satisfies the following conditions :

(i) $0, 1 \in \tau$,

(ii) If A $_{i\epsilon I} \in \tau$ then $\vee_{i\epsilon I} A_1 \in \tau$,

(iii) If A, $B \in \tau$ then $A \wedge B \in \tau$.

The pair (X, τ) is called a fuzzy topological space (or fts). The elements of τ are called fuzzy open sets. Complements of fuzzy open sets are called fuzzy closed sets.

Definition 2.5 ([12]). Let A be a fuzzy set in a fts (X, τ) . Then

(i) The closure of A, denoted by cl(A) is defined by

 $cl(A) = \land \{F: A \leq F \text{ and } F \text{ is fuzzy closed}\}.$

(ii) The interior of A, denoted by int(A) is defined by

 $int(A) = \lor \{G: G \le A \text{ and } G \text{ is fuzzy open} \}.$

Definition 2.6. A fuzzy subset A of a space (X, τ) is called :

(i) fuzzy semi-open set [1] if $A \leq cl(int(A))$,

(ii) fuzzy α -open set [4] if $A \leq int(cl(int(A)))$.

The complements of the above mentioned fuzzy open sets are called their respective fuzzy closed sets.

The fuzzy semi-closure [13] (resp. fuzzy α -closure [9]) of a fuzzy subset A of X, denoted by scl(A) (resp. α cl(A)), is defined to be the intersection of all fuzzy semiclosed (resp. fuzzy α -closed) sets of (X, τ) containing A. It is known that scl(A) (resp. α cl(A)) is a fuzzy semi-closed (resp. fuzzy α -closed) set.

Definition 2.7. A fuzzy subset A of a space (X, τ) is called :

(i) a fuzzy generalized closed (briefly fg-closed) set [2] if $cl(A) \leq U$, whenever $A \leq U$ and U is fuzzy open in (X, τ) .

The complement of fuzzy g-closed set is called fuzzy g-open set.

(ii) a fuzzy semi-generalized closed (briefly fsg-closed) set [3] if $scl(A) \leq U$, whenever $A \leq U$ and U is fuzzy semi-open in (X, τ) .

The complement of fsg-closed set is called fsg-open set.

(iii) a fuzzy generalized semi-closed (briefly fgs-closed) set [8] if $scl(A) \leq U$, whenever $A \leq U$ and U is fuzzy open in (X, τ) .

The complement of fgs-closed set is called fgs-open set.

(iv) a fuzzy α -generalized closed (briefly f α g-closed) set [10] if α cl(A) \leq U,

whenever $A \leq U$ and U is fuzzy open in (X, τ) .

The complement of fag-closed set is called fag-open set.

(v) a fuzzy \ddot{g} -closed set [6] if $cl(A) \leq U$, whenever $A \leq U$ and U is fgs-open in (X, τ) .

The complement of fuzzy \ddot{g} -closed set is called fuzzy \ddot{g} -open set.

(vi) a fuzzy ω -closed set [11] if cl(A) \leq U, whenever A \leq U and U is fuzzy semi-open in (X, τ) .

Definition 2.8 ([2]). A fuzzy topological space (X, τ) is called a fuzzy $T_{1/2}$ -space if every fuzzy g-closed set in it is fuzzy closed.

Remark 2.9 ([6]). For a fuzzy topological space (X, τ) , the following hold :

- (1) Every fuzzy closed set is fuzzy \ddot{g} -closed but not conversely.
- (2) Every fuzzy \ddot{g} -closed set is fuzzy ω -closed but not conversely.

(3) Every fuzzy \ddot{g} -closed set is fuzzy g-closed but not conversely.

(4) Every fuzzy \ddot{g} -closed set is fuzzy αg -closed but not conversely.

(5) Every fuzzy \ddot{g} -closed set is fuzzy gs-closed but not conversely.

Theorem 2.10 ([6]). If A and B are fuzzy \ddot{g} -closed sets in (X, τ) , then $A \vee B$ is fuzzy \ddot{g} -closed sets in (X, τ) .

3. Properties of fuzzy $T_{\ddot{g}}$ -space

We introduce the definition of fuzzy $\mathrm{T}_{\ddot{g}}\text{-}\mathrm{Space}$ and study the relationships of such sets.

Definition 3.1. A fuzzy topological spaces (X, τ) is called a fuzzy $T_{\ddot{g}}$ -Space if every fuzzy \ddot{g} -closed set in it is fuzzy closed.

Example 3.2. Let $X = \{a, b\}$ and $\alpha : X \to [0, 1]$ with $\tau = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(a)=0.5$, $\alpha(b)=0.5$. Then $F\ddot{G}C(X)=\{(\frac{a}{u}, \frac{b}{v}) | u=0, v=0, u=0.5, v=0.5 \text{ and } u=1, v=1\}$. Thus (X, τ) is a fuzzy topological space. Clearly (X, τ) is fuzzy $T_{\ddot{g}}$ -Space.

Example 3.3. Let $X = \{a, b\}$ and $\alpha : X \to [0, 1]$ with $\tau = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(a)=1$, $\alpha(b)=0$. Then $F\ddot{G}C(X)=\{(\frac{a}{u}, \frac{b}{v}) | u = 0, v = 0 u \in [0, 1], v = 1 \text{ and } u = 1, v = 1\}$. Thus (X, τ) is a fuzzy topological space. Clearly (X, τ) is not fuzzy $T_{\ddot{o}}$ -Space.

Proposition 3.4. Every fuzzy $T_{1/2}$ -space is fuzzy $T_{\ddot{q}}$ -Space but not conversely.

Proof. Let A be any fuzzy \ddot{g} -closed set of (X, τ) . Every fuzzy \ddot{g} -closed set is fgclosed. Since (X, τ) is a fuzzy $T_{1/2}$ space, A is fuzzy closed. Then (X, τ) is a fuzzy $T_{\ddot{g}}$ -Space. **Example 3.5.** Let $X = \{a, b\}$ and $\alpha : X \to [0, 1]$ with $\tau = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(a) = \alpha(b) = 0.5$. Then $F\ddot{G}C(X) = \{(\frac{a}{u}, \frac{b}{v}) | u = 0, v = 0 \text{ and } u = 0.5, v = 0.5, u = 1, v = 1\}$ and $FGC(X) = \{(\frac{a}{u}, \frac{b}{v}) | u = 0, v = 0, u \in [0, 0.5], v \in [0, 0.5] \text{ and } u = 1, v = 1\}$. Thus (X, τ) is a fuzzy topological space. Clearly (X, τ) is fuzzy $T_{\ddot{a}}$ -Space but not fuzzy $T_{1/2}$ -space.

Definition 3.6. A fuzzy topological spaces (X, τ) is called a fuzzy T_{ω} -Space if every fuzzy ω -closed set in it is fuzzy closed.

Proposition 3.7. Every fuzzy T_{ω} -space is fuzzy $T_{\ddot{a}}$ -Space but not conversely

Proof. Let A be any fuzzy \ddot{g} -closed set of (X, τ) . Every fuzzy \ddot{g} -closed set is fuzzy ω -closed. Since (X, τ) be a fuzzy T_{ω} -space, A is fuzzy closed. Then (X, τ) be a fuzzy $T_{\ddot{g}}$ -Space.

Example 3.8. Let $X = \{a, b\}$ and $\alpha : X \to [0, 1]$ with $\tau = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(a) = \alpha(b) = 0.5$. Then $F\ddot{G}C(X) = \{(\frac{a}{u}, \frac{b}{v}) | u = 0, v = 0 \text{ and } u = 0.5, v = 0.5, u = 1, v = 1\}$ and $\omega C(X) = \{(\frac{a}{u}, \frac{b}{v}) | u = 0, v = 0, u \in [0, 1], v \in [0, 1] \text{ and } u = 1, v = 1\}$. Thus (X, τ) is a fuzzy topological space. Clearly (X, τ) be a fuzzy $T_{\ddot{a}}$ -Space but not a fuzzy T_{ω} -space.

Definition 3.9. A fuzzy topological spaces (X, τ) is called a fuzzy αT_b -Space if every fuzzy αg -closed set in it is fuzzy closed.

Proposition 3.10. Every fuzzy αT_b -Space is fuzzy $T_{\ddot{a}}$ -Space but not conversely

Proof. Let A be any fuzzy \ddot{g} -closed set of (X, τ) . Every fuzzy \ddot{g} -closed set is fuzzy α g-closed. Since (X, τ) be a fuzzy α T_b-space, A is fuzzy closed. Then (X, τ) be a fuzzy T_{\ddot{g}}-Space.

Example 3.11. Let $X = \{a, b\}$ and $\alpha : X \to [0, 1]$ with $\tau = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(a) = \alpha(b) = 0.5$. Then $F\ddot{G}C(X) = \{(\frac{a}{u}, \frac{b}{v}) | u = 0, v = 0 \text{ and } u = 0.5, v = 0.5, u = 1, v = 1\}$ and $F\alpha GC(X) = \{(\frac{a}{u}, \frac{b}{v}) | u \in [0, 1], v \in [0, 1], and u = 1, v = 1\}$. Thus (X, τ) is a fuzzy topological space. Clearly (X, τ) be a fuzzy $T_{\ddot{g}}$ -Space but not a fuzzy αT_b -space.

4. Fuzzy $GT_{\ddot{q}}$ -space

Definition 4.1. A fuzzy topological spaces (X, τ) is called a fuzzy $gT_{\ddot{g}}$ -Space if every fuzzy g-closed set in it is fuzzy \ddot{g} -closed set.

Example 4.2. Let X = {a, b} and α , β : X \rightarrow [0, 1] with τ = {0_X, α , β , 1_X} where α , β are fuzzy sets in X defined by α (a)=0.3, α (b)=0.3 and β (a)=0.5, β (b)=0.5. $F\ddot{G}C(X) = \{(\frac{a}{u}, \frac{b}{v}) | u = 0, v = 0, u = 0.5, v = 0.5, u = 0.7, v = 0.7 \text{ and } u = 1, v = 1\}$. Then (X, τ) is a fuzzy topological space. Thus (X, τ) be a fuzzy gT_g-Space.

Example 4.3. Let $X = \{a, b\}$ and $\alpha : X \to [0, 1]$ with $\tau = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(a)=1$, $\alpha(b)=0$. Then $F\ddot{G}C(X)=\{(\frac{a}{u}, \frac{b}{v}) | u=0, v=0 \text{ and } u \in [0, 1], v=1\}$. Thus (X, τ) is a fuzzy topological space. clearly (X, τ) is not a fuzzy $gT_{\ddot{q}}$ -Space.

Proposition 4.4. Every fuzzy $T_{1/2}$ -space is fuzzy $gT_{\ddot{g}}$ -Space but not conversely.

Proof. Let A be any fuzzy g-closed set of (X, τ) . Since (X, τ) be a fuzzy $T_{1/2}$ space, A is fuzzy closed. Then (X, τ) be a fuzzy $gT_{\ddot{q}}$ -Space.

Remark 4.5. Fuzzy T \ddot{g} -space and fuzzy gT $_{\ddot{g}}$ -Space are independent.

Example 4.6. Let $X = \{a, b\}$ and $\alpha, \beta : X \rightarrow [0, 1]$ with $\tau = \{0_X, \alpha, \beta, \alpha \lor \beta, 1_X\}$ where α, β are fuzzy sets in X defined by $\alpha(a)=0.6, \alpha(b)=0$ and $\beta(a)=0, \beta(b)=0.3$. $F\ddot{G}C(X)=\{(\frac{a}{u}, \frac{b}{v}) | u=0, v=0, \text{ and } u \in [0,1], v=1, u=0.4, v=0.7, u=1, v=0.7 \text{ and } u=1, v=1\}$. Then (X, τ) is a fuzzy topological space. Thus (X, τ) be a fuzzy $gT_{\ddot{\theta}}$ -Space but not a fuzzy $T_{\ddot{\theta}}$ -Space.

Example 4.7. Let $X = \{a, b\}$ and $\alpha : X \to [0, 1]$ with $\tau = \{0_X, \alpha, 1_X\}$ where α is a fuzzy set in X defined by $\alpha(a)=0.5$, $\alpha(b)=0.5$ Then $F\ddot{G}C(X)=\{(\frac{a}{u}, \frac{b}{v}) | u=0, v=0, u=0.5, v=0.5 \text{ and } u=1, v=1\}$. Then (X, τ) is a fuzzy topological space. Thus (X, τ) be a fuzzy $T_{\ddot{g}}$ -Space but not fuzzy $gT_{\ddot{g}}$ -Space.

Theorem 4.8. A fuzzy topological spaces (X, τ) is a fuzzy $T_{1/2}$ -space if and only if it is a fuzzy $T_{\ddot{g}}$ -Space and a fuzzy $gT_{\ddot{g}}$ -Space.

Proof. Necessity: Follow directly from Proposition 3.4 and 4.4.

Suffiency: Suppose that X is both a fuzzy $T_{\ddot{g}}$ -Space and fuzzy $gT_{\ddot{g}}$ -Space. Let A be a fg-closed set of (X, τ) . Since (X, τ) is fuzzy $gT_{\ddot{g}}$ -Space, A is a fuzzy \ddot{g} -closed set of (X, τ) . Since (X, τ) is a fuzzy $T_{\ddot{g}}$ -Space, A is a fuzzy closed set of (X, τ) . Then (X, τ) is a fuzzy $T_{1/2}$ -space.

References

- K. K. Azad, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997) 93–100.
- [3] G. Balasubramanian, On fuzzy pre-separation axioms, Bull. Cal. Math. Soc. 90 (6) (1998) 427-434.
- [4] S. Bin shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303–308.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [6] M. Jeyaraman, S. Vijayalakshmi, and O. Ravi, New Notions of closed sets in fuzzy topology, IJMA 4 (8) (2013) 67–73.
- [7] N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Math. Palermo 19 (1970) 89–96.
- [8] H. Maki et al., Generalized closed sets in fuzzy topological space, I, Meetings on topological space Theory and its Application (1998) 23–36.
- [9] R. Prasad, S. S.Thakur and R. K. Saraf, Fuzzy α-irresolute mappings, J. Fuzzy Math. 2 (2) (1994) 335–339.
- [10] R. K. Saraf, M. Caldas and S. Mishra, Results via Fgα-closed sets and Fαg-closed sets, (preprint).
- [11] M. Sudha, E. Roja and M. k. Uma, Slightly fuzzy ω-continous mappings, Int. Journal of Math Analysis 5 (16) (2011) 779–787.
- [12] P. Sundaram, Generalized continuity in fuzzy topology (preprint).
- [13] T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl. 132 (1988) 356–364.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

M. JEYARAMAN (jeya.math@gmail.com)

Department of Mathematics, Raja Duraisingam Govt. Arts College, Sivagangai-630561

 $\underline{S. ~VIJAYALAKSHMI} ~(\texttt{vimalvishali@gmail.com})$

Department of Mathematics, St. Michael College of Eng
g& Tech, Kalaiyarkovil-630551

 $\underline{\mathrm{R.~MUTHURAJ}} \; (\texttt{rmr1973@yahoo.co.in})$

Department of Mathematics, H. H. The Rajah's College, Pudukkottai-622001