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1. Introduction

In this paper, starting from the article of Kirk [7], we study Extensions of Ba-
nach’s theorem on fuzzy α−norm spaces, and we give some fuzzy fixed points of such
theorem. In 1992, Felbin [5] has offered in 1992 an alternative definition of a fuzzy
norm on a linear space with an associated metric of the Kaleva and Seikkala type [6].
He has shown that every finite dimensional normed linear space has a completion.
Then Xiao and Zhu [10] have modified the definition of this fuzzy norm and studied
the topological properties of fuzzy normed linear spaces. Thereafter the concept of
fuzzy norm space has been introduced and generalized in different ways by Bag and
Samanta in [1], [2]. Moreover, some authors introduce some reasonable versions of
fixed point theorems on fuzzy normed spaces (see [3, 4]).
Throughout this article, the symbols ∧ and ∨mean the inf and the sup, respectively.

2. Preliminaries

We start our work with the following definitions.
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Definition 2.1 ( [10]). A mapping η : R −→ [0, 1] is called a fuzzy real number
with α-level set [η]α = {t : η(t) ≥ α}, if it satisfies the following conditions :

(N1) there exists t0 ∈ R such that η(t0) = 1.
(N2) for each α ∈ (0, 1], there exist real numbers η−α ≤ η+α such that the α−level

set [η]α is equal to the closed interval [η−α , η
+
α ].

The set of all fuzzy real numbers is denoted by F (R).
Since each r ∈ R can be considered as the fuzzy real number r̃ ∈ F (R) defined by

r̃(t) =

{
1, ift = r
0, ift 6= r,

it follows that R can be embedded in F (R).

Definition 2.2 ([6]). The arithmetic operations +, −, × and / on F (R)×F (R) are
defined by

(η + γ)(t) = sup
t=x+y

(min(η(x), γ(y))),

(η − γ)(t) = sup
t=x−y

(min(η(x), γ(y))),

(η × γ)(t) = sup
t=xy

(min(η(x), γ(y))),

(η/γ)(t) = sup
t=x/y

(min(η(x), γ(y))),

which are special cases of Zadeh’s extension principle.

Definition 2.3 ([6]). Let η ∈ F (R). If η(t) = 0, for all t < 0, then η is called a
positive fuzzy real number. The set of all positive fuzzy real numbers is denoted by
F+(R).

Definition 2.4 ([6]). Let η, γ ∈ F (R) and [η]α = [η−α , η
+
α ], [γ]α = [γ−α , γ

+
α ], for all

α ∈ (0, 1]. Define a partial ordering by η ≤ γ if and only if η−α ≤ γ−α and η+α ≤ γ+α ,
for all α ∈ (0, 1]. Strict inequality in F (R) is defined by η < γ if and only if η−α < γ−α
and η+α < γ+α , for all α ∈ (0, 1].

Lemma 2.5. Let η ∈ F (R). Then η ∈ F+(R) if and only if 0̃ ≤ η.

Definition 2.6 ([1]). Let X be a linear space over R. Let N be A fuzzy subset of
X × R such that for all x, u ∈ X and c ∈ R,

(N1) N(x, t) = 0, for all t ≤ 0,
(N2) x = 0 if and only if N(x, t) = 1, for all t > 0,
(N3) If c 6= 0 then N(cx, t) = N(x, t/|c|), for all t ∈ R,
(N4) N(x+ u, s+ t) ≥ min{N(x, s), N(u, t)}, for all s, t ∈ R,
(N5) N(x, .) is a nondecreasing function of R and limt→∞N(x, t) = 1.

Then N is called a fuzzy norm on X.

Sometimes, we need two additional conditions as follows :
(N6) N(x, t) > 0, for all t > 0 implies x = 0,
(N7) For x 6= 0, N(x, .) is a continuous function of R and strictly increasing on

the subset {t : 0 < N(x, t) < 1} of R.
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Definition 2.7 ([1]). Let (X,N) be a fuzzy normed linear space.
(i) A sequence {xn} ⊆ X is said to converge to x ∈ X ( lim

n→∞
xn = x), if

lim
n→∞

N(xn − x, t) = 1, for all t > 0.

(ii) A sequence {xn} ⊆ X is called Cauchy, if lim
n,m→∞

N(xn − xm, t) = 1, for all

t > 0.

Definition 2.8 ([2]). Let (X,N) and (Y,N) be fuzzy normed linear spaces. Fur-
thermore, let f : X −→ Y be a function. The function f is said to be continuous at
x0 ∈ X, if for any sequence {xn} ⊆ X with xn −→ x0 implies f(xn) −→ f(x0). f is
said fuzzy continuous on X if f be fuzzy continuous at each point of X.

Definition 2.9. If X is a vector space over R, a seminorm is a function p : X −→
[0,∞) having the properties :

(i) p(cx) = |c|p(x), for all c ∈ R and x ∈ X.
(ii) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X.

Theorem 2.10 ([8]). Let (X,N) be a fuzzy normed linear space. Define

‖x‖α = inf{t > 0 : N(x, t) ≥ α}, α ∈ (0, 1).

Then {‖.‖α : α ∈ (0, 1)} is an ascending family of seminorms on X and they are
called α-seminorms on X corresponding to the fuzzy norm N on X.

Example 2.11. Let (X, ‖.‖) be a normed linear space. Define a fuzzy norm N as
follows:

N(x, t) =

{
t/(t+ ‖x‖), ift > 0
0 , ift ≤ 0.

We have

‖x‖α = ∧{t > 0 : N(x, t) ≥ α}
= ∧{t > 0 : t/(t+ ‖x‖) ≥ α}
= ∧{t > 0 : t ≥ α‖x‖/(1− α)}
= (α/(1− α))‖x‖.

3. Fuzzy fixed point theorems

In this section, we will obtain the theorems and result about fuzzy α-norm fixed
point.

Theorem 3.1. Let (X,N) be a fuzzy Banach space and f : X → X a continuous
map. Moreover, there exists a fuzzy real number 0̃ < η < 1̃ such that

N(x− f(x), t) ≥ α implies that N(f(x)− f2(x), tη−α ) ≥ α, for all x ∈ X.
Then f has a fixed point in X.

Proof. Let {‖.‖α : α ∈ (0, 1)} is an ascending family of α-seminorms on X corre-
sponding to the fuzzy norm N on X.

Suppose that x0 ∈ X. If N(x0 − f(x0), t) ≥ α, then N(f(x0)− f2(x0), tη−α ) ≥ α.
Thus ‖f(x0)− f2(x0)‖α ≤ tη−α . So

‖f(x0)− f2(x0)‖α ≤ η−α ‖f(x0)− x0‖α, for all α ∈ (0, 1).
33
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By induction, we obtain that

‖fn(x0)− fn+1(x0)‖α ≤ (η−α )n‖f(x0)− x0‖α, for all α ∈ (0, 1) and n ∈ N.

Hence

‖fn(x0)− fm(x0)‖α ≤ (

m−1∑
k=n

(η−α )k)‖f(x0)− x0‖α, for all α ∈ (0, 1) and m > n.

Since 0̃ < η < 1̃, it follows that 0 < η−α < 1, for all α ∈ (0, 1). Thus
∑∞
n=1(η−α )n

is convergent, for all α ∈ (0, 1). So for all ε > 0 and α ∈ (0, 1), there exists
Nα > 0 such that ‖fn(x0) − fm(x0)‖α < ε, for all n,m ≥ Nα. Let t > 0 and
0 < ε < 1 be given. Then there is N > 0 such that ‖fn(x0) − fm(x0)‖1−ε < t,
for all n,m ≥ N. Thus inf{s > 0 : N(fn(x0) − fm(x0), s) ≥ 1 − ε} < t, for all
n,m ≥ N. So N(fn(x0) − fm(x0), t) ≥ 1 − ε, for all n,m ≥ N . Hence {fn(x0)} is
a Cauchy sequence. Since (X,N) is a Banach Space, there exists y ∈ X such that
fn(x0) −→ y. Since f is continuous, fn+1(x0) −→ f(y). Therefore

f(y) = lim
n→∞

fn+1(x0) = lim
n→∞

fn(x0) = y.

�

Corollary 3.2. Let (X,N) be a fuzzy Banach space and f : X −→ X a continuous
map. Moreover, there exists a fuzzy real number 0̃ < η < 1̃ such that

N(f(x)− f2(x), tη−α ) ≥ N(x− f(x), t), for all x ∈ X.
Then f has a fixed point in X.

Theorem 3.3. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(x − y, t) ≥ α implies that N(f(x) − f(y), tη−α ) ≥ α, for all x ∈ A and

y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃.
Then f has a fixed point in A ∩B.

Proof. Let {‖.‖α : α ∈ (0, 1)} is an ascending family of α-seminorms on X corre-
sponding to the fuzzy norm N on X. Suppose that x0 ∈ X. Then it readily follows
that N(x0−f(x0), t) ≥ α implies that N(f(x0)−f2(x0), tη−α ) ≥ α. Similar to proof
of Theorem 3.1, {fn(x0)} is a Cauchy sequence. Consequently {fn(x0)} converges
to some point z ∈ A ∪B. Since f is continuous,

f(z) = lim
n→∞

fn+1(x0) = lim
n→∞

fn(x0) = z.

If z ∈ A, then z = f(z) ∈ B. If z ∈ B, then z = f(z) ∈ A. Thus z ∈ A ∩ B.
So A ∩ B 6= ∅. Since A and B are closed and X is complete, A ∩ B is a complete
subspace of X. Since f : A ∩B −→ A ∩B is a continuous and N(x− f(x), t) ≥ α,

N(f(x)− f2(x), tη−α ) ≥ α, for all x ∈ A ∩B.

Hence by Theorem 3.1, f has a fixed point in A ∩B. �

Now by example we show that these theorems are extension of classical analysis
to fuzzy analysis.
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Example 3.4. Let (X, ‖.‖) be a Banach space and A, B be non-empty closed subsets
of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) ‖f(x)−f(y)‖ ≤ k‖x−y‖, for all x ∈ A and y ∈ B, where k ∈ R and 0 < k < 1.

Define a fuzzy norm N as follows :

N(x, t) =

 t/‖x‖ , 0 < t ≤ ‖x‖
1 , ‖x‖ < t
0 , t ≤ 0.

Let k̃ ∈ F (R) and [k̃]α = [k, k]. Assume that x ∈ A, y ∈ B and N(x− y, t) ≥ α.
Case1: Let t < ‖x− y‖. Then t/‖x− y‖ = N(x− y, t) ≥ α. Thus

α‖f(x)− f(y)‖ ≤ αk‖x− y‖ ≤ kt.
So kt/‖f(x)− f(y)‖ ≥ α. Hence N(f(x)− f(y), kt) ≥ α.

Case2: Let t ≥ ‖x− y‖. Then kt ≥ k‖x− y‖ ≥ ‖f(x)− f(y)‖. This implies that

N(f(x)− f(y), tk) ≥ α.
Thus f has a fixed point in A ∩B.

Example 3.5. Let R be a real number set and A = [−1, 0], B = [0, 1]. Suppose
that map f : A ∪ B −→ A ∪ B defined by f(x) = (−1/2)x. Define a fuzzy norm N
as follows:

N(x, t) =

 t/|x| , 0 < t ≤ |x|
1 , |x| < t
0 , t ≤ 0.

It is clear that f satisfies
(1) f(A) ⊆ B and f(B) ⊆ A,
(2) |f(x)− f(y)| = (1/2)|x− y|, for all x ∈ A and y ∈ B.

By Example 3.4, f has a fixed point in A ∩B.

Corollary 3.6. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)− f(y), tη−α ) ≥ N(x− y, t), for all x ∈ A and y ∈ B, where η ∈ F (R)

and 0̃ < η < 1̃.
Then f has a fixed point in A ∩B.

Corollary 3.7. Let (X,N) be a fuzzy Banach space and A, B be two non-empty
closed subsets of X. Suppose that f : A −→ B and g : B −→ A be two functions
such that

N(x− y, t) ≥ α implies that N(f(x)− g(y), tη−α ) ≥ α, for all x ∈ A, y ∈ B,
where η ∈ F (R) and 0̃ < η < 1̃. Then f has a fixed point in A ∩B.

Corollary 3.8. Let (X,N) be a fuzzy Banach space and A, B be two non-empty
closed subsets of X. Suppose that f : A −→ B and g : B −→ A be two functions
such that

N(f(x)− g(y), tη−α ) ≥ N(x− y, t), for all x ∈ A, y ∈ B,
where η ∈ F (R) and 0̃ < η < 1̃. Then f has a fixed point in A ∩B.
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Theorem 3.9. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x) − x, t) ≥ α and N(f(y) − y, s) ≥ α imply that N(f(x) − f(y), (t +

s)η−α ) ≥ α, for all x ∈ A and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/4.
Then f has a unique fixed point in A ∩B.

Proof. Let {‖.‖α : α ∈ (0, 1)} is an ascending family of α-seminorms on X corre-
sponding to the fuzzy norm N on X.

Assume that N(f(x)− x, t) ≥ α and N(f(y)− y, s) ≥ α. Then

N(f(x)− f(y), (t+ s)η−α ) ≥ α, for all x ∈ A and y ∈ B.
Thus ‖f(x)− f(y)‖α ≤ (t+ s)η−α . So

‖f(x)− f(y)‖α ≤ (‖f(x)− x‖α + ‖f(y)− y‖α)η−α , for all x ∈ A, y ∈ B.

Suppose that x ∈ A. Then we have

‖f2(x)− f(x)‖α ≤ (‖f2(x)− f(x)‖α + ‖f(x)− x‖α)η−α ,

which implies that ‖f2(x)−f(x)‖α ≤ tα‖f(x)−x‖α where tα = η−α /(1−η−α ) ∈ (0, 1).
By induction, we obtain that ‖fn+1(x) − fn(x)‖α ≤ tnα‖f(x) − x‖α, for all n ∈ N.
Thus

‖fn(x)− fm(x)‖α ≤ (

m−1∑
k=n

tkα)‖f(x)− x‖α, for all α ∈ (0, 1) and m > n.

Since 0 < tα < 1, for all α ∈ (0, 1),
∑∞
n=1 t

n
α is convergent, for all α ∈ (0, 1). So for

all ε > 0 and α ∈ (0, 1), there exists Nα > 0 such that

‖fn(x)− fm(x)‖α < ε, for all n,m ≥ Nα.
Let x0 ∈ A, t > 0 and 0 < ε < 1 be given. Then there is N > 0 such that

‖fn(x0)− fm(x0)‖1−ε < t, for all n,m ≥ N.
Thus

inf{s > 0 : N(fn(x0)− fm(x0), s) ≥ 1− ε} < t, for all n,m ≥ N.

So

N(fn(x0)− fm(x0), t) ≥ 1− ε, for all n,m ≥ N .

Hence {fn(x0)} is a Cauchy sequence. Since (X,N) is a Banach Space, there exists
z ∈ X such that fn(x0) −→ z. By (1), we get z ∈ A ∩B.

Let t > 0 fixed. Then we have

N(f(z)− z, t) ≥ min{N(f(z)− fn(x0), t/2), N(fn(x0)− z, t/2)}.
By (2), we observe that

N(f(z)− fn(x0), t/2) ≥ min{N(fn−1(z)− fn(x0), t/(4η−α )), N(f(z)− z, t/(4η−α ))},
for all n ∈ N. Since {fn(x0)} is a Cauchy sequence and fn(x0) −→ z, there exists
N > 0 such that
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min{N(fn−1(x)− fn(x0), t/(4η−α )), N(fn(x0)− z, t/2)} ≥ α, for all n,m ≥ N.

Thus N(f(z)− z, t) ≥ min{α,N(f(z)− z, t/(4η−α ))}. So we obtain that

N(f(z)− z, t) ≥ min{α,N(f(z)− z, t/(4η−α )n)}, for all n ∈ N.

Since 0̃ < η < 1̃/4, it follows that limn→∞ t/(4η−α )n = ∞. By (N5), we have
limn→∞N(f(z) − z, t/(4η−α )n) = 1. Hence N(f(z) − z, t) ≥ α, for all α ∈ (0, 1).
Which implies that N(f(z)− z, t) = 1, for all t > 0, so f(z) = z.

To prove the uniqueness of z, assume that there exists w ∈ A∩B such that f(w) =
w. Then N(f(z)− z, t/(2η−α )) = 1 = N(f(w)−w, t/(2η−α )), for all α ∈ (0, 1) and all
t > 0, by (2), N(f(z)− f(w), t) ≥ α, for all α ∈ (0, 1). Thus N(f(z)− f(w), t) = 1,
for all t > 0. So z = f(z) = f(w) = w. �

Example 3.10. Let (X, ‖.‖) be a Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) ‖f(x)− f(y)‖ ≤ k(‖f(x)− x‖+ ‖f(y)− y‖), for all x ∈ A and y ∈ B, where

k ∈ R and 0 < k < 1/4.
Define a fuzzy norm N as follows :

N(x, t) =

 t/‖x‖ , 0 < t ≤ ‖x‖
1 , ‖x‖ < t
0 , t ≤ 0.

Let k̃ ∈ F (R) and [k̃]α = [k, k]. Assume that x ∈ A, y ∈ B and N(f(x)− x, t) ≥ α,
N(f(y)− y, s) ≥ α.

Case1: Let t < ‖f(x)− x‖ and s < ‖f(y)− y‖. Then

t/‖f(x)− x‖ = N(f(x)− x, t) ≥ α
and

s/‖f(y)− y‖ = N(f(y)− y, t) ≥ α.

Thus

α‖f(x)− f(y)‖ ≤ αk(‖f(x)− x‖+ ‖f(y)− y‖) ≤ k(t+ s).

So k(t+ s)/‖f(x)− f(y)‖ ≥ α. Hence N(f(x)− f(y), k(t+ s)) ≥ α.
Case2: Let t ≥ ‖f(x)− x‖ and s < ‖f(y)− y‖. Then

kt ≥ k‖f(x)− x‖ ≥ αk‖f(x)− x‖ and ks ≥ αk‖f(y)− y‖.

Thus α‖f(x)− f(y)‖ ≤ αk(‖f(x)− x‖+ ‖f(y)− y‖) ≤ k(t+ s).
So N(f(x)− f(y), k(t+ s)) ≥ α.

Case3: Let t < ‖f(x)− x‖ and s ≥ ‖f(y)− y‖. Similar to case2,

N(f(x)− f(y), k(t+ s)) ≥ α.

case4: Let t ≥ ‖f(x)− x‖ and s ≥ ‖f(y)− y‖. Then

kt ≥ k‖f(x)− x‖ and ks ≥ k‖f(y)− y‖.
Thus

‖f(x)− f(y)‖ ≤ k(‖f(x)− x‖+ ‖f(y)− y‖) ≤ k(t+ s).
37
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So

N(f(x)− f(y), k(t+ s)) ≥ α.
Hence f has a unique fixed point in A ∩B.

Example 3.11. Let R be a real number set and A = B = [0, 1]. Suppose that map
f : A ∪B −→ A ∪B defined by

f(x) =

{
1/6 , x = 1
1/3 , x 6= 1.

Define a fuzzy norm N as follows :

N(x, t) =

 t/|x| , 0 < t ≤ |x|
1 , |x| < t
0 , t ≤ 0.

It is clear that f satisfies
(1) f(A) ⊆ B and f(B) ⊆ A,
(2) |f(x)− f(y)| = (1/5)(|f(x)− x|+ |f(y)− y|), for all x ∈ A and y ∈ B.

By Example 3.10, f has a unique fixed point in A ∩B.

Corollary 3.12. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)−f(y), (t+s)η−α ) ≥ 1/2(N(f(x)−x, t)+N(f(y)−y, s)), for all x ∈ A

and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/4.
Then f has a unique fixed point in A ∩B.

Corollary 3.13. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)−f(y), (t+s)η−α ) ≥ min{N(f(x)−x, t), N(f(y)−y, s)}, for all x ∈ A

and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/4.
Then f has a unique fixed point in A ∩B.

Theorem 3.14. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x) − y, t) ≥ α and N(f(y) − x, s) ≥ α implies that N(f(x) − f(y), (t +

s)η−α ) ≥ α, for all x ∈ A and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/2.
Then f has a unique fixed point in A ∩B.

Proof. Let x ∈ A. Similar to proof of Theorem 3.9. Since {fn(x)} is a Cauchy
sequence, there exists z ∈ A ∩B such that fn(x) −→ z.
Now, we show that f(z) = z. Let t > 0 and ε > 0 fixed. Then, by (2), we have

N(fn(x)− f(z), t) ≥ min{N(fn(x)− z, t/(2η−α )), N(fn−1(x)− f(z), t/(2η−α ))}.

Since 0̃ < η < 1̃/2,

N(fn(x)− f(z), t) ≥ min{N(fn(x)− z, t/2), N(fn−1(x)− f(z), t/(2η−α ))}.
38
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Thus

N(fn(x)−f(z), t) ≥ min{N(fn(x)−z, t/2), N(f(z)−x, t/((2η−α )n))}, for all n ∈ N.

Since fn(x) −→ z, there exists N1 > 0 such that

N(fn(x)− z, t/2) ≥ 1− ε, for all n ≥ N1.

Since 0̃ < η < 1̃/2, limn→∞ t/(2η−α )n =∞. Thus limn→∞N(f(z)−z, t/(2η−α )n) = 1.
So there is N2 > 0 such that N(f(z)− z, t/(2η−α )n) > 1− ε, for all n ≥ N2. Which
implies that N(fn(x) − f(z), t) ≥ 1 − ε, for all n ≥ N = max(N1, N2). Hence
fn(x) −→ f(z) and thus f(z) = z.

To prove the uniqueness of z, assume that there exists w ∈ A ∩ B such that
f(w) = w. Then, by (2), we have

N(f(z)− f(w), t) ≥ min{N(f(z)− w, t/(2η−α )), N(f(w)− z, t/(2η−α ))}.

Thus

N(z − w, t) ≥ min{N(z − w, t/(2η−α )), N(w − z, t/(2η−α ))}
= N(w − z, t/(2η−α ))

≥ N(z − w, t),

So N(z − w, t) = N(w − z, t/(2η−α )) = N(w − z, t/((2η−α )n)), for all n ∈ N. Since
limn→∞ t/(2η−α )n = ∞, it follows that N(z − w, t) = 1, for all t > 0. Hence
z = w. �

Example 3.15. Let (X, ‖.‖) be a Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) ‖f(x)− f(y)‖ ≤ k(‖f(x)− y‖+ ‖f(y)− x‖), for all x ∈ A and y ∈ B, where

k ∈ R and 0 < k < 1/2.
Define a fuzzy norm N as follows :

N(x, t) =

 t/‖x‖ , 0 < t ≤ ‖x‖
1 , ‖x‖ < t
0 , t ≤ 0.

Let k̃ ∈ F (R) and [k̃]α = [k, k]. Assume that x ∈ A, y ∈ B and N(f(x)− y, t) ≥ α,
N(f(y)− x, s) ≥ α.

Case1: Let t < ‖f(x)− y‖ and s < ‖f(y)− x‖. Then

t/‖f(x)− y‖ = N(f(x)− y, t) ≥ α
and

s/‖f(y)− x‖ = N(f(y)− x, t) ≥ α.

Thus

α‖f(x)− f(y)‖ ≤ αk(‖f(x)− y‖+ ‖f(y)− x‖) ≤ k(t+ s).

So η(t+ s)/‖f(x)− f(y)‖ ≥ α. Hence N(f(x)− f(y), η−α (t+ s)) ≥ α.
Case2: Let t ≥ ‖f(x)− y‖ and s < ‖f(y)− x‖. Then

kt ≥ k‖f(x)− y‖ ≥ αk‖f(x)− y‖ and ks ≥ αk‖f(y)− x‖.
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Thus α‖f(x)− f(y)‖ ≤ αk(‖f(x)− y‖+ ‖f(y)− x‖) ≤ k(t+ s). So

N(f(x)− f(y), k(t+ s)) ≥ α.

Case3: Let t < ‖f(x)− y‖ and s ≥ ‖f(y)− x‖. Similar to case2,

N(f(x)− f(y), k(t+ s)) ≥ α.

case4: Let t ≥ ‖f(x)− y‖ and s ≥ ‖f(y)− x‖. Then

kt ≥ η‖f(x)− y‖ and ks ≥ η‖f(y)− x‖.
Thus

‖f(x)− f(y)‖ ≤ k(‖f(x)− y‖+ ‖f(y)− x‖) ≤ k(t+ s).

So

N(f(x)− f(y), k(t+ s)) ≥ α.
Hence f has a unique fixed point in A ∩B.

Corollary 3.16. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)−f(y), (t+s)η−α ) ≥ 1/2(N(f(x)−y, t)+N(f(y)−x, s)), for all x ∈ A

and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/2.
Then f has a unique fixed point in A ∩B.

Corollary 3.17. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)−f(y), (t+s)η−α ) ≥ min{N(f(x)−y, t), N(f(y)−x, s)}, for all x ∈ A

and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/2.
Then f has a unique fixed point in A ∩B.

Theorem 3.18. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x) − x, t) ≥ α, N(f(y) − y, s) ≥ α and N(x − y, r) ≥ α implies that

N(f(x) − f(y), (t + s + r)η−α ) ≥ α, for all x ∈ A and y ∈ B, where η ∈ F (R) and

0̃ < η < 1̃/6.
Then f has a unique fixed point in A ∩B.

Proof. Let x ∈ A. Similar to proof of Theorem 3.9, {fn(x)} is a Cauchy sequence.
Then there exists z ∈ A ∩B such that fn(x) −→ z.

Now, we show that f(z) = z. Let t > 0 and 0 < ε < 1. We have

N(f(z)− z, t) ≥ min{N(f(z)− fn(x), t/2), N(fn(x)− z, t/2)}.

Now by (2), we observe that

N(f(z)− fn(x), t/2) ≥ min{N(fn−1(x)− fn(x), t/(6η−α )), N(f(z)− z, t/(6η−α )),

N(fn−1(x)− z, t/(6η−α ))},
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for all n ∈ N . Since {fn(x)} is a Cauchy sequence and fn(x) −→ z, there exists
N > 0 such that min{N(fn−1(x) − fn(x), t/2), N(fn(x) − z, t/2)} ≥ 1 − ε, for all
n ≥ N. Thus N(f(z)− z, t) ≥ min{1− ε,N(f(z)− z, t/(6η−α ))}. So we obtain that

N(f(z)− z, t) ≥ min{1− ε,N(f(z)− z, t/(6η−α )n)}, for all n ∈ N.

Since 0̃ < η < 1̃/6, limn→∞ t/(6η−α )n =∞. Thus limn→∞N(f(z)−z, t/(6η−α )n) = 1.
So N(f(z)− z, t) ≥ 1 − ε, for all ε ∈ (0, 1). Which implies that N(f(z)− z, t) = 1,
for all t > 0, so f(z) = z.

To prove the uniqueness of z, assume that there exists w ∈ A ∩ B such that
f(w) = w. By (2), we have

N(w − z, t) = N(f(z)− f(w), t)

≥ min{N(f(z)− z, t/(3η−α )), N(f(w)− w, t/(3η−α )),

N(w − z, t/(3η−α ))}
≥ N(w − z, t/(3η−α ))

≥ N(w − z, t).

Thus N(z − w, t) = N(w − z, t/(3η−α )) = N(w − z, t/(3η−α )n), for all n ∈ N . Since
limn→∞ t/(3η−α )n = ∞, it follows that N(z − w, t) = 1, for all t > 0. Hence
z = w. �

Corollary 3.19. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)−f(y), (t+s+r)η−α ) ≥ 1/3(N(f(x)−x, t)+N(f(y)−y, s)+N(x−y, r)),

for all x ∈ A and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/6.
Then f has a unique fixed point in A ∩B.

Corollary 3.20. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)−f(y), (t+s+r)η−α ) ≥ min{N(f(x)−x, t), N(f(y)−y, s), N(x−y, r)},

for all x ∈ A and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/6.
Then f has a unique fixed point in A ∩B.

Theorem 3.21. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x) − x, t) ≥ α, N(f(y) − y, s) ≥ α and N(x − y, r) ≥ α implies that

N(f(x) − f(y),max{t, s, r}η−α ) ≥ α, for all x ∈ A and y ∈ B, where η ∈ F (R) and

0̃ < η < 1̃/2.
Then f has a unique fixed point in A ∩B.

Proof. Let {‖.‖α : α ∈ (0, 1)} be an increasing family of α-seminorms on X corre-
sponding to the fuzzy norm N on X.

Assume that N(f(x)− x, t) ≥ α, N(f(y)− y, s) ≥ α and N(x− y, r) ≥ α. Then

N(f(x)− f(y),max{t, s, r}η−α ) ≥ α, for all x ∈ A and y ∈ B.
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Thus

‖f(x)− f(y)‖α ≤ max{t, s, r}η−α .
So ‖f(x)−f(y)‖α ≤ max{‖f(x)−x‖α, ‖f(y)−y‖α, ‖x−y‖α}η−α , for all x ∈ A, y ∈ B.

Let x ∈ A. If max{‖f(x)− x‖α, ‖f2(x)− f(x)‖α} = ‖x− f(x)‖α, then

‖f2(x)− f(x)‖α ≤ η−α ‖f(x)− x‖α.

If max{‖f(x)− x‖α, ‖f2(x)− f(x)‖α} = ‖f2(x)− f(x)‖α, then

‖f2(x)− f(x)‖α ≤ η−α ‖f2(x)− f(x)‖α.

Since 0̃ < η < 1̃/2, this is contradiction.Thus ‖f2(x) − f(x)‖α ≤ η−α ‖f(x) − x‖α.
By induction, we have ‖fn+1(x) − fn(x)‖α ≤ ηnα‖f(x) − x‖α. Similar to proof of
Theorem 3.1, {fn(x)} is a Cauchy sequence. So there exists z ∈ A ∩ B such that
fn(x) −→ z.

Now, we show that f(z) = z. Let t > 0 and 0 < ε < 1. We have

N(f(z)− z, t) ≥ min{N(f(z)− fn(x), t/2), N(fn(x)− z, t/2)}.

By (2), we observe that

N(f(z)− fn(x), t/2) ≥ min{N(fn−1(x)− fn(x), t/(2η−α )), N(f(z)− z, t/(2η−α )),

N(fn−1(x)− z, t/(2η−α ))},

for all n ∈ N . Since {fn(x)} is a Cauchy sequence and fn(x) −→ z, it follows that
there exists N > 0 such that

min{N(fn−1(x)−fn(x), t/(2η−α ), N(fn−1(x)−z, t/(2η−α )), N(fn(x)−z, t/2)} ≥ 1−ε,

for all n ≥ N . Then N(f(z) − z, t) ≥ min{1 − ε,N(f(z) − z, t/(2η−α ))}. Thus we
obtain that

N(f(z)− z, t) ≥ min{1− ε,N(f(z)− z, t/(2η−α )n)}, for all n ∈ N.

Since 0̃ < η < 1̃/2, it follows that limn→∞ t/(2η−α )n = ∞. So limn→∞N(f(z) −
z, t/(2η−α )n) = 1. Hence N(f(z)− z, t) ≥ 1− ε, for all ε ∈ (0, 1). Which implies that
N(f(z)− z, t) = 1, for all t > 0. Therefore f(z) = z.

Similar to proof of Theorem 3.18, z is a unique fixed point of f in A ∩B. �

Corollary 3.22. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x)−f(y),max{t, s, r}η−α ) ≥ 1/3(N(f(x)−x, t) +N(f(y)−y, s) +N(x−

y, r)), for all x ∈ A and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/6.
Then f has a unique fixed point in A ∩B.

Corollary 3.23. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : A ∪B −→ A ∪B satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) N(f(x) − f(y),max{t, s, r}η−α ) ≥ min{N(f(x) − x, t), N(f(y) − y, s), N(x −

y, r)}, for all x ∈ A and y ∈ B, where η ∈ F (R) and 0̃ < η < 1̃/6.
Then f has a unique fixed point in A ∩B.
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Definition 3.24. The function ϕ : [0,+∞) −→ [0,+∞) is called an altering dis-
tance function if the following properties are satisfied :

(i) ϕ is continuous and nondecreasing,
(ii) ϕ(t) = 0 if and only if t = 0.

Theorem 3.25. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : X −→ X satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) if N(f(x)−x, t1) ≥ α, N(f(y)−y, t2) ≥ α, N(x−y, t3) ≥ α, N(f(x)−y, t4) ≥

α and N(f(y)− x, t5) ≥ α then there exists t > 0 such that N(f(x)− f(y), t) ≥ α,
and ϕ(t) ≤ ϕ(max{t1, t2, t3, 1/2(t4 + t5)})−φ(max{t3, t2}), for all x ∈ A and y ∈ B,
where ϕ and φ are altering distance functions.
Then f has a unique fixed point in A ∩B.

Proof. Let {‖.‖α : α ∈ (0, 1)} be an increasing family of α-seminorms on X corre-
sponding to the fuzzy norm N on X.
Let N(f(x)− x, t1) ≥ α, N(f(y)− y, t2) ≥ α, N(x− y, t3) ≥ α, N(f(x)− y, t4) ≥ α
and N(f(y) − x, t5) ≥ α. Then there exists t > 0 such that N(f(x) − f(y), t) ≥ α,
and ϕ(t) ≤ ϕ(max{t1, t2, t3, 1/2(t4 + t5)})−φ(max{t3, t2}), for all x ∈ A and y ∈ B.
Thus ϕ(‖f(x) − f(y)‖α) ≤ ϕ(t) ≤ ϕ(max{t1, t2, t3, 1/2(t4 + t5)}) − φ(max{t3, t2}).
Since ϕ and φ are continuous,

ϕ(‖f(x)− f(y)‖α) ≤
ϕ(max{‖f(x)− x‖α, ‖f(y)− y‖α, ‖x− y‖α, 1/2(‖f(x)− y‖α + ‖f(y)− x‖α)})−

φ(max{‖f(y)− y‖α, ‖x− y‖α}),
for all x ∈ A, y ∈ B. Let x0 ∈ A. Since f(A) ⊆ B, we choose f(x0) = x1 ∈ B.
Continuing this process, we can construct sequences {xn} in X such that x2n ∈ A,
x2n+1 ∈ B. If x2n0+1 = x2n0

, for some n0 ∈ N , then x2n0+1 is a fixed point of f in
A ∩ B. Thus, we may assume that x2n+1 6= x2n, for all n ∈ N . Similar to proof of
Theorem 5 in [9], limn→∞ ‖xn−xn+1‖α = 0, for all α ∈ (0, 1). And for all α ∈ (0, 1)
and ε > 0, there exists N = N(α, ε) > 0 such that ‖xn−xm‖α < ε, for all n,m ≥ N.
Let t > 0 and 0 < ε < 1 be given. Then there exists N > 0 such that

‖xn − xm‖1−ε < t, for all n,m ≥ N.
Thus N(xn − xm, t) ≥ 1− ε, for all n,m ≥ N . So {xn} is a Cauchy sequence. Since
X is complete, {xn} converges to x ∈ A ∩B. Now we have

ϕ(‖x2n+1 − f(x)‖α) = ϕ(‖f(x2n)− f(x)‖α)

≤ ϕ(max{‖f(x2n)− x2n‖α, ‖f(x)− x‖α, ‖x2n − x‖α,
1/2(‖f(x)− x2n‖α + ‖f(x2n)− x‖α)})−
φ(max{‖f(x)− x‖α, ‖x− x2n‖α})

= ϕ(max{‖x2n+1 − x2n‖α, ‖f(x)− x‖α, ‖x2n − x‖α,
1/2(‖f(x)− x2n‖α + ‖x2n+1 − x‖α)})−
φ(max{‖f(x)− x‖α, ‖x− x2n‖α}),

for all α ∈ (0, 1). As n −→∞, we get that

ϕ(‖f(x)− x‖α) ≤ ϕ(‖f(x)− x‖α)− φ(‖f(x)− x‖α), for all α ∈ (0, 1).
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Then φ(‖f(x)− x‖α) = 0. Since φ is an altering distance function,

‖f(x)− x‖α = 0, for all α ∈ (0, 1).

Let t > 0. If N(f(x) − x, t) 6= 1. Then there exists α ∈ (0, 1) such that N(f(x) −
x, t) < α. Thus N(f(x)− x, s) < α, for all s ≤ t. Thus

‖f(x)− x‖α = inf{s > 0 : N(f(x)− x, s) ≥ α} ≥ t > 0,

which is a contradiction. Therefore N(f(x)− x, t) = 1, for all t > 0. So f(x) = x.
To prove the uniqueness of the fixed point, we let y be any other fixed point of f

in A ∩B. Now we have

ϕ(‖x− y‖α) = ϕ(‖f(x)− f(y)‖α)

≤ ϕ(max{‖y − x‖α, ‖y − y‖α, ‖x− x‖α})−
φ(max{‖x− y‖α, ‖y − y‖α})

= ϕ(‖x− y‖α)− φ(‖x− y‖α),

for all α ∈ (0, 1). Thus φ(‖x− y‖α) = 0 and ‖x− y‖α = 0, for all α ∈ (0, 1). Similar
to above x = y. �

Corollary 3.26. Let (X,N) be a fuzzy Banach space and A, B be non-empty closed
subsets of X. Suppose that map f : X −→ X satisfies

(1) f(A) ⊆ B and f(B) ⊆ A,
(2) if N(f(x) − x, t1) ≥ α, N(f(y) − y, t2) ≥ α, N(x − y, t3) ≥ α, N(f(x) −

y, t4) ≥ α and N(f(y)−x, t5) ≥ α then N(f(x)−f(y),max{t1, t2, t3, 1/2(t4 + t5)}−
φ(max{t3, t2})) ≥ α, for all x ∈ A and y ∈ B, where φ is an altering distance
functions.
Then f has a unique fixed point in A ∩B.

4. Conclusion

The theory of fuzzy approximate fixed points is not less interesting than that of
fuzzy fixed points and many results formulated in the latter can be adapted to a
less restrictive framework in order to guarantee the existence of the fuzzy α−norm
fixed points. We proved results about fuzzy fixed points on α−fuzzy norm spaces.
we think that this paper could be of interest to the researchers working in the field
fuzzy functional analysis in particular, fuzzy fixed point theory are used.
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