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Abstract. There are many similarities between rough set theory and
matroid theory. Recently, many researchers explore the connections be-
tween them. In this paper, we apply matroid theory to rough set theory
through approximation operators. Firstly, a series of matroidal structures
induced by equivalence relations are proposed, then we combine degree
rough sets with matroids, and characterize the circuit, independent set,
rank function, base, closure and so on of these matroids by degree ap-
proximation operators. Secondly, we discuss the connections between gen-
eralized degree rough sets and matroids. Finally, conditions of the same
matroid induced by different binary relations are studied.
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1. Introduction

Rough set theory has been proposed by Pawlak [18] as a tool for dealing with un-
certainty, and it has been widely applied to pattern recognition, attribute reduction,
rule extraction, granular computing and data mining, etc [2, 3, 4, 6, 7, 8, 16, 19, 25].
The classical rough set theory is based on equivalence relations, however, it has been
extended to generalized rough sets based on relations [28], covering-based rough sets
[1, 15, 24], fuzzy rough sets [22], and degree rough sets [23, 26].

Matroid theory [9, 17] are a generalization of linear independence in vector spaces,
which provide a unifying abstract treatment of dependence in linear algebra and
graph theory. Matroidal structures are important structures from theory as well as
application. In theory, matroids can be defined in many different ways, they have
been combined with other theories deeply. Some authors have connected matroid
theory with classical rough sets [11, 20],covering-based rough sets [21], generalized
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rough sets based on relations [29] and so on. In application, it has widely been
applied to many fields, such as combinatorial optimization [10] and algorithm design
[5].

Recently, matroidal approaches to rough set theory is becoming popular. The
powerful axiomatic system and wide applications of matroid theory will be benefit
to the development of rough set theory. Liu et al. [11] proposed a parametric
matroid of the rough set through defining a parametric set family based on the lower
approximation operator, thereby obtaining significant results by combining Pawlak’s
rough set theory and matroid theory. Moreover, in order to take advantages of both
rough set theory and matroid theory, Liu et al. [12, 13, 14] also proposed k-rank
matroids, partition-circuit matroids and a matroidal structure of rough sets based
on a serial and transitive relation. Zhu et al. [29] established a matroidal structures
through the upper approximation number and studied generalized rough sets with
matroid approaches, where they obtained some new characteristics of rough sets.
Wang et al. [20] induced a matroid (2-circuit matroid) by equivalence relations,
and they studied some properties of this matroid. Moreover, matroidal approaches
were used to study rough sets and information systems in that paper. Inspired
by them, we study 2-circuit matroid from the viewpoint of upper approximation
number based on equivalence relations, it can be extended to a series of matroids.
Therefore, 2-circuit matroid is a special situation. It is interesting that we find the
connections between this kind of matroids and degree rough sets are closed, and we
can characterize the circuit, independent set, rank function, base, closure and so on
of these matroids by degree approximation operators, in other words, these matroids
can also induced by degree rough sets. Besides, we extend classical degree rough
sets to generalized degree rough sets. By this way, generalized degree approximation
operators can also induce matroid structures. Furthermore, this kind of matroids
can be determined by generalized degree approximation operators uniquely, that is,
only the same degree approximation operator can induce the same matroid.

The rest of this paper is arranged as follows. In Section 2, we review some
fundamental knowledge of rough sets and matroids. In section 3, we propose a series
of matroids induced by upper approximation number functions based on equivalence
relations, and we discuss the relationships between these matroids and degree rough
sets. In section 4, we extend equivalence relations to generalized binary relations, and
then we study the connections between generalized degree rough sets and matroids.
In section 5, we propose the conditions of the same matroids induced by different
binary relations. Finally, In, section 6, we conclude this paper and points out further
works.

2. Preliminaries

To facilitate our discussion, in this section, we recall some fundamental definitions
related to rough sets, degree rough sets and matroids.

Classical rough sets are based on equivalence relations. In rough sets, a pair of
approximation operators are used to describe an object.
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Definition 2.1 ([18]). (Approximation space). Let U be a nonempty and finite
set called universe. Let R be an equivalence relation on U , that is, R is reflexive,
symmetric and transitive. The ordered pair (U,R) is called an approximation space.

Definition 2.2 ([18]). (Approximation operator). Let R be an equivalence relation
on U. A pair of approximation operators R,R : P (U)→ P (U), are defined as follows:
for all X ⊆ U ,
R(X) = {x ∈ U | [x]R ⊆ X} =

⋃
{K ∈ U/R | K ⊆ X},

R(X) = {x ∈ U | [x]R ∩X 6= ∅} =
⋃
{K ∈ U/R | K ∩X 6= ∅},

where [x]R = {y ∈ U | (x, y) ∈ R}, U/R = {[x]R | x ∈ U}. They are called the lower
and upper approximation operators with respect to R, respectively.

Definition 2.3 ([18]). (R-precise and R-rough set). Let R be an equivalence relation
on U . For all X ⊆ U , if R(X) = R(X), then we say X is a R-precise set; otherwise,
we say X is a R-rough set.

Definition 2.4 ([23]). Let R be an equivalence relation on U . For all X ⊆ U ,
Rk(X) =

⋃
{K ∈ U/R | |K| − |K ∩X| ≤ k},

Rk(X) =
⋃
{K ∈ U/R | |K ∩X| > k},

are called the lower and upper degree approximations of X respectively, k is an
arbitrary natural number, which is called degree. If Rk(X) 6= Rk(X), then we say
X is an R-rough set with respect to the degree of k; otherwise, we say X is an
R-precise set.

In classical rough sets, R is an equivalence relation. However, it is very limit in
practical problems. Therefore, we often extend it to the generalized binary relation
based rough sets.

Definition 2.5 ([26]). Let R be a binary relation on U . The ordered pair (U,R)
is called a generalized approximation space. Denote Rs(x) = {y ∈ U | (x, y) ∈
R}, Rs(x) is called the successor neighbourhood of x. For all X ⊆ U , the lower
approximation apr(X) and upper approximation apr(X) of X with respect to R are
defined as follows respectively:
apr(X) = {x ∈ U | Rs(x) ⊆ X},
apr(X) = {x ∈ U | Rs(x) ∩X 6= ∅}.

Definition 2.6 ([26]). Let (U,R) is a generalized approximation space. For all
X ⊆ U ,
apr

k
(X) = {x ∈ U | |Rs(x)| − |Rs(x) ∩X| ≤ k},

aprk(X) = {x ∈ U | |Rs(x) ∩X| > k},
are called the lower and upper generalized degree approximations of X respectively,
k is an arbitrary natural number.

Proposition 2.7 ([27]). The properties of binary relation R can be described by it’s
neighbourhood operators :
R is a serial relation ⇔ ∀ x ∈ U,Rs(x) 6= ∅.
R is an inverse serial relation ⇔ Rs(U) = U .
R is a reflexive relation ⇔ ∀ x ∈ U, x ∈ Rs(x).
R is a symmetric relation ⇔ ∀ x, y ∈ U, x ∈ Rs(y)⇒ y ∈ Rs(x).
R is a transitive relation ⇔ ∀ x, y ∈ U, y ∈ Rs(x)⇒ Rs(y) ⊆ Rs(x).
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R is an Euclid relation ⇔ ∀ x, y ∈ U, y ∈ Rs(x)⇒ Rs(x) ⊆ Rs(y).

Matroids can be regarded as an algebra structure which generated by linearly
independent sets in vector spaces, and it also can be regarded as some dependent sets
which determined by the circle subgraph which generated by edge sets. Therefore,
one of main characteristics of matroids is that there are many equivalent ways to
define them.

Definition 2.8 ([9]). (Matroid). A matroid is an ordered pair M = (U, I), where
U (the ground set) is a finite set, and I (the independent sets) a family of subsets
of U with the following properties :

(I1) ∅ ∈ I,
(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I,
(I3) If I1, I2 ∈ I, and |I1| < |I2|, then there exists u ∈ I2 − I1 such that

I1 ∪ {u} ∈ I, where |I| denotes the cardinality of I.

Definition 2.9 ([9]). Let A be a family of subsets of U, we denote
Upp(A) = {X ⊆ U | ∃ A ∈ A, such that A ⊆ X}.
Low(A) = {X ⊆ U | ∃ A ∈ A, such that X ⊆ A}.
Max(A) = {X ∈ A | ∀ Y ∈ A, X ⊆ Y ⇒ X = Y }.
Min(A) = {X ∈ A | ∀ Y ∈ A, Y ⊆ X ⇒ X = Y }.

The dependent set of a matroid generalizes the linear dependence in vector spaces
and the cycle in graphs. The circuit of a matroid is a minimal dependent set.

Definition 2.10 ([9]). (Circuit). Let M = (U, I) be a matroid. A minimal depen-
dent set in M is called a circuit of M , and we denote the family of all circuits of M
by C(M), that is, C(M) = Min(Ic), where Ic is the complement of I in P (U).

In Ref. [9], there is an axiom about circuit in matroids, which shows that a
matroid and it’s circuits are determined by each other.

Proposition 2.11 ([9]). (Circuit axiom). Let C be a family of subsets of U . Then
there exists M = (U, I) such that C = C(M) if and only if C satisfies the following
three conditions :

(C1) ∅ /∈ C.
(C2) If C1, C2 ∈ C, and C1 ⊆ C2, then C1 = C2.
(C3) If C1, C2 ∈ C, C1 6= C2, and u ∈ C1 ∩C2, then there exists C3 ∈ C such that

C3 ⊆ C1 ∪ C2 − {u}.

The base is another important feature of a matroid, which generalized from the
maximal linearly independent group in vector space and the spanning tree in graph.

Definition 2.12 ([9]). (Base). Let M = (U, I) be a matroid. A maximal indepen-
dent set of M is called a base of M , and the family of all bases of M is denoted by
B(M), that is, B(M) = Max(I).

Similarly, an axiom of the matroid is constructed from the viewpoint of the base.

Proposition 2.13 ([9]). (Base axiom). Let B be a family of subsets of U . Then
there exists a matroid M = (U, I) such that B = B(M) if and only if B satisfies the
following two conditions :
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(B1) B 6= ∅.
(B2) If B1, B2 ∈ B and x ∈ B1 − B2, then there exists y ∈ B2 − B1 such that

(B1 − {x}) ∪ {y} ∈ B.

The rank function of a matroid is a generalization of the dimension of a vector
space and the rank of a matrix, which is a very important concept. It can be used
for define the closure operator, which reflects the dependency between a set and
elements.

Definition 2.14 ([9, 17]). (Rank function). Let M = (U, I) be a matroid and
X ⊆ U . We define the rank r(X) of X to be the size of a basis B of M | X.
Evidently r maps P (U) into the set of non-negative integers, and is called the rank
function of M and written as rM . When there is no confusion, the subscript M can
be omitted.

Proposition 2.15 ([9]). Let M = (U, I) be a matroid. Then the rank function rM
of M satisfies the following properties :

(1) For all X ⊆ U , 0 ≤ rM (X) ≤ |X|.
(2) If X ⊆ Y ⊆ U , then rM (X) ≤ rM (Y ).
(3) If X,Y ⊆ U , then rM (X) + rM (Y ) ≥ rM (X ∪ Y ) + rM (X ∩ Y ).

Definition 2.16 ([9]). (Closure). Let M = (U, I) be a matroid. The closure
operator clM of M is defined as clM (X) = {u ∈ U | rM (X) = rM (X ∪ {u})} for all
X ⊆ U . clM (X) is called the closure of X in M .

Definition 2.17 ([9]). (Closed set). Let M = (U, I) be a matroid. For all X ⊆ U ,
X is called a closed set of M if clM (X) = X.

The following closure axiom shows that a matroid uniquely determines a closure
operator, and vice versa.

Proposition 2.18 ([9]). (Closure axiom). Let cl : P (U) → P (U) be an operator.
Then there exists a matroid M = (U, I) such that cl = clM if and only if cl satisfies
the following conditions :

(CL1) For all X ⊆ U , X ⊆ cl(X).
(CL2) If X ⊆ Y ⊆ U , then cl(X) ⊆ cl(Y ).
(CL3) For all X ⊆ U , cl(cl(X)) = cl(X).
(CL4) For all x, y ∈ U , if y ∈ cl(X ∪ {x})− cl(X), then x ∈ cl(X ∪ {y}).

Definition 2.19 ([21]). ((Upper approximation number). Let R be an equivalence
relation on U . For all X ⊆ U , we can define fR(X) = |{K ∈ U/R | K ∩X 6= ∅}|.
fR(X) is called the upper approximation number of X, fR the upper approximation
number function with respect to R.

3. The relationships between classical degree rough sets and
matroids

Wang et al. induced a matroid by an equivalence relation in Ref. [20]:
Let R be an equivalence relation on U . we define a family C(R) of subsets of U

as follows:
∀ x, y ∈ U and x 6= y, (x, y) ∈ R⇔ {x, y} ∈ C(R),
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where C(R) satisfies the circuit axiom. Therefore, there is a unique matroid M(R)
which determined by C(R). We can propose another equivalent description of C(R)
if we characterize it from the viewpoint of upper approximation number, that is,

C(R) = {X ⊆ U | fR(X) = 1 and |X| = 2}.

We can replace 2 with an arbitrary positive integer k, and get the family of subsets
of U as follows :

(3.1) Ck(R) = {X ⊆ U | fR(X) = 1 and |X| = k}.

Remark 3.1. In this paper, all of k are positive integers.

In the following theorem, we show that Ck(R) is the family of circuits of a matroid.

Theorem 3.2. Let R be an equivalence relation on U , and Ck(R) = {X ⊆ U |
fR(X) = 1 and |X| = k}. Then Ck(R) satisfies the circuit axiom.

Proof. (1) Since fR(∅) = 0, ∅ /∈ Ck(R). Then Ck(R) satisfies (C1).
(2) For all C1, C2 ∈ Ck(R), by formula (3.1), we have that |C1| = |C2| = k. Then

C1 ⊆ C2 implies C1 = C2. We have proved that Ck(R) satisfies (C2).
(3) For all C1, C2 ∈ Ck(R), C1 6= C2 and z ∈ C1 ∩ C2. Then
|C1| = |C2| = k,
|(C1 ∪ C2)− {z}| = |C1 ∪ C2| − 1

= |C1|+ |C2| − |C1 ∩ C2| − 1
= k + (k − |C1 ∩ C2|)− 1
> k − 1 ≥ k.

Thus we can take C3 ⊆ (C1 ∪ C2) − {z} and |C3| = k. It is straightforward that
fR(C1∪C2) = 1, which implies fR(C3) = 1. Thus C3 ∈ Ck(R). We have proved that
there exists C3 ∈ Ck(R) such that C3 ⊆ (C1 ∪ C2)− {z}. So Ck(R) satisfies (C3).

In summary, by Proposition 2.11, Ck(R) satisfies the circuit axiom. �

Remark 3.3. According to Theorem 3.2 and Proposition 2.11, there exists a ma-
troid on the universe such that Ck(R) is the family of its circuits, denote this matroid
as Mk(R). Especially, if k = 2, then the matroid M2(R) is coincided with the ma-
troid induced by equivalence relation in Ref. [20].

Example 3.4. Let U = {1, 2, 3, 4, 5, 6, 7}, R be an equivalence relation on U , and
U/R = {{1, 2, 3}, {4, 5, 6, 7}}. If k = 3, then C3(R) = {{1, 2, 3}, {4, 5, 6}, {4, 5, 7}, {4,
6, 7}, {5, 6, 7}}.

Next, we discuss the relationship between degree rough sets and the dependent
sets, independent sets of the matroid Mk(R).

For each X ⊆ U : Rk−1(X) 6= ∅ if and only if there exists K ∈ U/R such that
|K

⋂
X| > k − 1 ≥ k, i.e., |X| ≥ k and fR(X) ≥ 1 if and only if X is a dependent

set of Mk(R). Thus the following two propositions are obvious.

Proposition 3.5. Let R be an equivalence relation on U . For all X ⊆ U , X is a
dependent set in the matroid Mk(R) if and only if Rk−1(X) 6= ∅.

Proposition 3.6. Let R be an equivalence relation on U . For all X ⊆ U , X is an
independent set in the matroid Mk(R) if and only if Rk−1(X) = ∅.
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The above two conclusions link the dependent sets and the independent sets of
matroids to degree approximation operators closely. Then we can characterize the
circuit, rank function, base, closure and so on of the matroid Mk(R) by degree
approximation operators. In the following proposition, we present the circuit of the
matroid Mk(R) by degree approximation operators.

Proposition 3.7. Let R be an equivalence relation on U . Denote Ck(R) = {X ⊆
U | fR(X) = 1, Rk−1(X) 6= ∅ and Rk(X) = ∅}. Then Ck(R) is the family of all
circuits of the matroid Mk(R).

This proposition can be directly proved by Proposition 3.5, Proposition 3.6 and
Theorem 3.2.

In the follows, we will discuss the independent sets of the matroid Mk(R).

Remark 3.8. Mk(R) = (U, Ik(R)) are a series of matroids, which induced by upper
approximation number functions. So it is necessary for us to discuss the different
situations in which the positive integer k are different.

Proposition 3.9. Let R be an equivalence relation on U and Ck(R) = {X ⊆ U |
fR(X) = 1 and |X| = k} be the family of all circuits. Then the family of independent
sets Ik(R) of the matroid Mk(R) has following properties :

(1) If k = 1, then Ik(R) = {∅}.
(2) If k = 2, then Ik(R) = {X ⊆ U | ∀ x, y ∈ X,x 6= y ⇒ (x, y) /∈ R}.
(3) If k > λ, then Ik(R) = P (U), where λ = max{|K| | K ∈ U/R}.

Proof. (1) If k = 1, |X| = 1, then X is a single point set, that is, all single point sets
are dependent sets, thus any nonempty set is dependent set. It is straightforward
that there is only ∅ is independent set, that is, Ik(R) = {∅}.

(2) According to Ref. [20], it is straightforward.
(3) By formula (3.1) , λ = max{|K| | K ∈ U/R} and k > λ, we have that

there not exists X ∈ Ck(R) such that fR(X) = 1 and |X| = k, that is, Ck(R) = ∅.
In other words, there has no dependent set in the family of subsets of universe U .
Hence Ik(R) = P (U). �

Now we discuss the rank function of the matroid Mk(R).

Lemma 3.10. Let R be an equivalence relation on U , X ⊆ U and K ∈ U/R. Then
the following properties hold :

(1) If |K ∩X| > k − 2, then rMk(R)(K ∩X) = k − 1.
(2) If |K ∩X| ≤ k − 2, then rMk(R)(K ∩X) = |K ∩X|.

Proof. (1) Since |K ∩X| > k − 2, |K ∩X| ≥ k − 1. Let K ∩X = {x1, x2, · · · , xm},
where m is a positive integer and m ≥ k − 1. Thus {x1, x2, · · · , xk−1} ⊆ K ∩ X.
According to Definition 2.4, Rk−1({x1, x2, · · · , xk−1}) = ∅, according to Proposition
3.5, {x1, x2, · · · , xk−1} is an independent set. According to formula (3.1), every
subset of k elements in K∩X is dependent set. So {x1, x2, · · · , xk−1} is a maximum
independent set in K ∩X. Hence by Definition 2.14, we can get that

rMk(R)(K ∩X) = |{x1, x2, · · · , xk−1}| = k − 1.

(2) Since |K ∩X| ≤ k − 2, according to Definition 2.4, Rk−1(K ∩X) = ∅. Thus
K ∩X is an independent set in Mk(R). So, according to Definition 2.14,
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rMk(R)(K ∩X) = |K ∩X|.

�

Proposition 3.11. Let R be an equivalence relation on U . Then for all X ⊆ U ,

rMk(R)(X) = (k − 1)fR(Rk−2(X)) + |X −Rk−2(X)|.

Proof. Let fR(Rk−2(X)) = s, where s is a positive integer. By Definition 2.19, we
may assume that

{K ∈ U/R | |K ∩X| > k − 2} = {K1,K2, · · · ,Ks}

and

U/R = {K1,K2, · · · ,Ks, Ks+1, · · · ,Kn},

where n is a positive integer. Then |Kj ∩ X| ≤ k − 2, j = s + 1, s + 2, · · · , n. By
Lemma 3.10, we can get that

rMk(R)(Ki ∩X) = k − 1, i = 1, 2, · · · , s

and

rMk(R)(Kj ∩X) = |Kj ∩X|, j = s+ 1, s+ 2, · · · , n.

Since X = (K1 ∩ X) ∪ (K2 ∩ X) ∪ · · · ∪ (Kn ∩ X) and (Ki ∩ X) ∩ (Kj ∩ X) = ∅,
where i 6= j and i, j = 1, 2, · · · , n, it follows from Proposition 2.15 that

rMk(R)(X)
= rMk(R)((K1 ∩X) ∪ (K2 ∩X) ∪ · · · ∪ (Kn ∩X))
≤ rMk(R)(K1 ∩X) + rMk(R)(K2 ∩X) + · · ·+ rMk(R)(Kn ∩X)
= (k − 1) + · · ·+ (k − 1) + |Ks+1 ∩X|+ |Ks+2 ∩X|+ · · ·+ |Kn ∩X|
= (k − 1) · s+ |X −Rk−2(X)|
= (k − 1)fR(Rk−2(X)) + |X −Rk−2(X)|.

On the other hand, let

Xi = {xi1, xi2, · · · , xi,k−1} ⊆ Ki ∩X, i = 1, 2, · · · , s

and

Xj = Kj ∩X, j = s+ 1, s+ 2, · · · , n.

Then Y = X1 ∪X2 ∪ · · · ∪Xs ∪Xs+1 ∪ · · · ∪Xn ⊆ X. According to Definition 2.4,
Rk−1(Y ) = ∅. Thus, by Proposition 3.5, Y is an independent set in Mk(R). It
follows from Definition 2.14 that

rMk(R)(X) ≥ |Y |
= (k − 1) · s+ |Ks+1 ∩X|+ |Ks+2 ∩X|+ · · ·+ |Kn ∩X|
= (k − 1)fR(Rk−2(X)) + |X −Rk−2(X)|.

Hence rMk(R)(X) = (k − 1)fR(Rk−2(X)) + |X −Rk−2(X)|. �
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According to Proposition 3.5 and Proposition 3.6, we can present two formulations
of the base of the matroid Mk(R) :

(1) B(Mk(R)) = {X ⊆ U | Rk−1(X) = ∅ and ∀ Y ⊆ U, X ⊂ Y ⇒ Rk−1(Y ) 6= ∅},

(2) B(Mk(R)) = {X ∪Rk−2(∅) | X ⊆ U,Rk−2(X) = Rk−2(U) and Rk−1(X) = ∅},
k ≥ 2;
where R be an equivalence relation on U .

Example 3.12. Let U = {a, b, c, d, e}, R be an equivalence relation on U , and
U/R = {{a, b, c}, {d, e}}. If k = 3, X = {a, d}, Y = {a, c, d, e}, then rM3(R)(X) = 2,
rM3(R)(Y ) = 4, rM3(R)(U) = 4; B(M3(R)) = {{a, b, d, e}, {a, c, d, e}, {b, c, d, e}}.
Proposition 3.13. [9] Let M be a matroid, X ⊆ U , and x ∈ U . Then x ∈
clM (X)⇔ x ∈ X or there exists a circuit C of M such that C − {x} ⊆ X.

We know that a closure operator uniquely determines a matroid. In the following
proposition, we characterize the closure operator of the matroid Mk(R) from the
viewpoint of degree rough sets.

Lemma 3.14. Let R be an equivalence relation on U , X ⊆ U , K ∈ U/R, and
|K| > k − 2. Then |K ∩X| > k − 2 if and only if K ⊆ clMk(R)(X).

Proof. (⇒): Suppose |K ∩ X| > k − 2. Then |K ∩ X| ≥ k − 1. Let K ∩ X =
{x1, x2, · · · , xm}, where m is a positive integer and m ≥ k − 1. For all u ∈ K,
if u ∈ X, then, by Definition 2.16, u ∈ clMk(R)(X). If u /∈ X, then, according
to formula (3.1), {x1, x2, · · · , xk−1, u} ∈ Ck(R), that is, {x1, x2, · · · , xk−1, u} is a
circuit of Mk(R). Thus, according to Proposition 3.13, u ∈ clMk(R)(X). So K ⊆
clMk(R)(X).

(⇐): If K ⊆ X, then it is straightforward. If K * X, we may assume that
∃ u ∈ K and u /∈ X. Since K ⊆ clMk(R)(X), we have that u ∈ clMk(R)(X).
Then, according to Proposition 3.13, there exists C ∈ Ck(R) such that u ∈ C and
C − {u} ⊆ X. Thus, according to formula (3.1), C − {u} ⊆ K and |C| = k. So
C − {u} ⊆ K ∩X. Hence |K ∩X| ≥ |C − {u}| = k − 1 > k − 2. �

Proposition 3.15. Let R be an equivalence relation on U and X ⊆ U . Then

clMk(R)(X) = Rk−2(X) ∪X.

Proof. Let x ∈ Rk−2(X) ∪ X. Then x ∈ X or x ∈ Rk−2(X). If x ∈ X, then,
according to Definition 2.16, x ∈ clMk(R)(X). If x ∈ Rk−2(X), then, according to
Definition 2.4, there exists K ∈ U/R such that |K ∩X| > k − 2 and x ∈ K. Thus,
according to Lemma 3.14, x ∈ K ⊆ clMk(R)(X). So Rk−2(X) ∪X ⊆ clMk(R)(X).

On the other hand, let u /∈ Rk−2(X) ∪ X. Then u /∈ Rk−2(X) and u /∈ X. By
u /∈ Rk−2(X) and Definition 2.4, |[u]R ∩X| ≤ k − 2.

(i) If |[u]R∩X| = k−2, by u /∈ X, we have that |[u]R∩(X∪{u})| = k−1 > k−2.
Thus, by Definition 2.4, [u]R ∈ {K ∈ U/R | |K ∩ (X ∪ {u})| > k − 2}. So, it is easy
to prove that Rk−2(X ∪ {u}) =

⋃
{K ∪ [u]R | K ∈ U/R and K ⊆ Rk−2(X)}. Hence

(3.2) (X ∪ {u})−Rk−2(X ∪ {u}) = (X −Rk−2(X))− (X ∩ [u]R)
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and

(3.3) fR(Rk−2(X ∪ {u})) = fR(Rk−2(X)) + 1.

Since R is an equivalence relation, X ∩ [u]R ⊆ X −Rk−2(X). Thus

(3.4) |(X ∪ {u})−Rk−2(X ∪ {u})| = |X −Rk−2(X)| − |X ∩ [u]R|.

Therefore, according to Proposition 3.11, formula (3.3) and formula (3.4),

rMk(R)(X ∪ {u}) = (k − 1)fR(Rk−2(X ∪ {u})) + |(X ∪ {u})−Rk−2(X ∪ {u})|
= (k − 1)(fR(Rk−2(X)) + 1) + |X −Rk−2(X)| − |X ∩ [u]R|
= (k − 1)fR(Rk−2(X)) + (k − 1) + |X −Rk−2(X)| − (k − 2)

= (k − 1)fR(Rk−2(X)) + |X −Rk−2(X)|+ 1

= rMk(R)(X) + 1 6= rMk(R)(X).

(ii) If |[u]R ∩ X| < k − 2, then |[u]R ∩ (X ∪ {u})| ≤ k − 2. Thus [u]R /∈ {K ∈
U/R | |K ∩ (X ∪ {u})| > k − 2}. So

(3.5) Rk−2(X ∪ {u}) = Rk−2(X)

and

(3.6) fR(Rk−2(X ∪ {u})) = fR(Rk−2(X)).

Because u /∈ X,

(3.7) |(X ∪{u})−Rk−2(X ∪{u})| = |(X ∪{u})−Rk−2(X)| = |X −Rk−2(X)|+ 1.

By Proposition 3.11, formula (3.6) and formula(3.7),

rMk(R)(X ∪ {u}) = (k − 1)fR(Rk−2(X ∪ {u})) + |(X ∪ {u})−Rk−2(X ∪ {u})|
= (k − 1)fR(Rk−2(X)) + |X −Rk−2(X)|+ 1

= rMk(R)(X) + 1 6= rMk(R)(X).

According to (i) and (ii), if u /∈ Rk−2(X) ∪X, then

u /∈ {u ∈ U | rMk(R)(X) = rMk(R)(X ∪ {u})}.

Thus, according to Definition 2.16, u /∈ clMk(R)(X). So,

clMk(R)(X) ⊆ Rk−2(X) ∪X.

Hence clMk(R)(X) = Rk−2(X) ∪X. �

Example 3.16. In Example 3.12, k = 3, R3−2(X) = ∅. Then

clM3(R)(X) = X = {a, d}; R3−2(Y ) = {a, b, c, d, e}.

Thus clM3(R)(Y ) = R3−2(Y ) ∪ Y = {a, b, c, d, e} ∪ {a, c, d, e} = {a, b, c, d, e} = U .
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4. The relationships between generalized degree rough setsaAnd
matroids

We have discussed the relationships between classical rough sets and matroids in
Section 3. However, it is difficult to ensure the relation R is equivalence relation
always. Then we will discuss the relationships between generalized degree rough sets
which based on generalized binary relations and matroids. According to Proposition
3.7, if replace the equivalence relation by binary relation, that is, R is a binary
relation, denote

(4.1) C′k(R) = Min{X ⊆ U |aprk−1(X) 6= ∅}.

Whether C′k(R) can induce an matroid structure?

Definition 4.1. Let R be a binary relation on U . For all x, y ∈ U , if Rs(x)∩Rs(y) 6=
∅ implies ∃ z ∈ U , such that Rs(x)∪Rs(y) ⊆ Rs(z), then R is called an union closed
relation.

Lemma 4.2. Let R be a binary relation on U and C′k(R) = Min{X ⊆ U |
aprk−1(X) 6= ∅}. Then for all C ∈ C′k(R), there exists x ∈ U such that C ⊆ Rs(x)
and |C| = k.

Proof. ∀ C ∈ C′k(R), according to formula (4.1), aprk−1(C) 6= ∅. By Definition
2.6, there exists x ∈ U such that |Rs(x) ∩ C| > k − 1. That is, |Rs(x) ∩ C| ≥ k.
Let K ⊆ Rs(x) ∩ C and |K| = k. Then k = |K| = |K ∩ Rs(x)| > k − 1. Thus
x ∈ aprk−1(K). So aprk−1(K) 6= ∅. That is to say, K ∈ {X ⊆ U | aprk−1(X) 6= ∅}.
By C ∈ C′k(R), K ⊆ C and formula (4.1), we can get K = C. Hence |C| = |K| = k
and C = K ⊆ Rs(x). �

In the following theorem, we present the condition of a matroid induced by a
generalized binary relation.

Theorem 4.3. Let R be a union closed relation on U . Then C′k(R) satisfies the
circuit axiom.

Proof. (1) By Definition 2.6, it is easy to verify aprk−1(∅) = ∅. Thus, by formula
(4.1), ∅ /∈ C′k(R).

(2) For all C1, C2 ∈ C′k(R), by formula (4.1), C1 and C2 are minimum sets of
{X ⊆ U | aprk−1(X) 6= ∅}. Then, if C1 ⊆ C2, we can get that C1 = C2.

(3) Let C1, C2 ∈ C′k(R), C1 6= C2 and z ∈ C1 ∩ C2. By Lemma 4.2, there exists
x, y ∈ U such that C1 ⊆ Rs(x), C2 ⊆ Rs(y) and |C1| = |C2| = k. By C1 ∩ C2 6= ∅,
we have that Rs(x) ∩ Rs(y) 6= ∅. Since R is a union closed relation, there exists
a ∈ U such that Rs(x) ∪ Rs(y) ⊆ Rs(a). Thus (C1 ∪ C2) − {z} ⊆ Rs(a). It is easy
to prove that |(C1 ∪ C2) − {z}| > k − 1. So |Rs(a) ∩ ((C1 ∪ C2) − {z})| > k − 1.
It follows from Definition 2.6 that aprk−1((C1 ∪ C2) − {z}) 6= ∅. This implies
(C1 ∪ C2) − {z} ∈ {X ⊆ U | aprk−1(X) 6= ∅}. Hence there exists C3 ∈ Min{X ⊆
U | aprk−1(X) 6= ∅} such that C3 ⊆ (C1 ∪ C2)− {z}, that is, C3 ∈ C′k(R).

In summary, by Proposition 2.11, C′k(R) satisfies the three conditions of circuit
axiom. �
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Corollary 4.4. Let R be a binary relation on U . For all x, y ∈ U , if Rs(x) ∩
Rs(y) 6= ∅ implies Rs(x) ⊆ Rs(y) or Rs(y) ⊆ Rs(x), then C′k(R) = Min{X ⊆ U |
aprk−1(X) 6= ∅} satisfies the circuit axiom.

We can find some binary relations satisfying the condition in Corollary 4.4. In the
following conclusions, we show that the generalized degree approximation operators
with respect to R can also induce matroids when R is a symmetric and transitive
relation or transitive and Euclid relation on U .

Lemma 4.5. Let R be a symmetric and transitive relation on U . Then for all
x, y ∈ U , x ∈ Rs(y) implies Rs(x) = Rs(y).

Proof. Since R is a symmetric relation and x ∈ Rs(y), according to Proposition 2.7,
y ∈ Rs(x). Since R is a transitive relation, according to Proposition 2.7, Rs(x) ⊆
Rs(y), Rs(y) ⊆ Rs(x). Then Rs(x) = Rs(y). �

According to Corollary 4.4, Lemma 4.5 and Proposition 2.11, the generalized
degree approximation operators with respect to R can induce matroids when R is a
symmetric and transitive relation on U .

Proposition 4.6. Let R be a symmetric and transitive relation on U . Then C′k(R)
satisfies the circuit axiom.

Lemma 4.7. Let R be a transitive and Euclid relation on U . Then for all x, y ∈ U ,
x ∈ Rs(y) implies Rs(x) = Rs(y).

Proof. Since R is a transitive relation and x ∈ Rs(y), according to Proposition
2.7, Rs(x) ⊆ Rs(y). Since R is an Euclid relation, according to Proposition 2.7,
Rs(y) ⊆ Rs(x). Then Rs(x) = Rs(y). �

According to Corollary 4.4, Lemma 4.7 and Proposition 2.11, the generalized
degree approximation operators with respect to R can also induce matroids when R
is a transitive and Euclid relation on U .

Proposition 4.8. Let R be a transitive and Euclid relation on U . Then C′k(R)
satisfies the circuit axiom.

However, the generalized degree approximation operators with respect to R can
induce matroids not only when R is a symmetric and transitive relation or transitive
and Euclid relation on U . In Example 4.9, R isn’t a reflexive, symmetric, transitive
or Euclid relation, its generalized degree approximation operators can also induce a
matroid.

Example 4.9. Let U = {1, 2, 3, 4, 5}, Rs(1) = {1, 2, 3}, Rs(2) = {3}, Rs(3) =
{4, 5}, Rs(4) = {4}, Rs(5) = {5}. If k = 2, then C′2(R) = {{1, 2}, {1, 3}, {2, 3}, {4, 5}}.

5. The same matroid induced by different relations

According to the above sections, there are many ways to induce matroids by
binary relations, and these matroid structures induced by same relation coincide
with each other. However, whether different relations can induce the same matroid?
In the following section, we discuss the conditions of inducing the same matroid.
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Symbol description. In this section, for all X ⊆ U , we denote the upper ap-
proximation numbers of X with respect to R1, R2 as fR1(X), fR2(X) respectively.
Denote the upper degree approximations of X with respect to equivalence relations
R1, R2 as R1,(k−1)(X), R2,(k−1)(X) respectively. Denote the upper generalized de-
gree approximations of X with respect to binary relations R1, R2 as apr1,(k−1)(X),

apr2,(k−1)(X) respectively.

Theorem 5.1. Let R1, R2 be equivalence relations on U , k is a positive integer.
Then the following three conditions are equivalent :

(1) Ck(R1) = Ck(R2).
(2) For all x ∈ U , if |[x]R1

| > k − 1 or |[x]R2
| > k − 1, then [x]R1

= [x]R2
.

(3) For all X ⊆ U , R1,(k−1)(X) = R2,(k−1)(X).

Proof. (1)⇒(2): Let x ∈ U and assume that |[x]R1
| > k − 1. Then |[x]R1

| ≥ k.
Take X ⊆ [x]R1

and |X| = k. Then, according to formula (3.1), X ∈ Ck(R1).
Since Ck(R1) = Ck(R2), X ∈ Ck(R2). By formula (3.1), fR2(X) = 1. According to
fR2(X) = 1, |X| = k, and Definition 2.4, we can get that X ⊆ R2,(k−1)(X) and

R2,(k−1)(X) = [x]R2
, that is, X ⊆ [x]R2

. We have proved that for all X ⊆ [x]R1
, if

|X| = k, then X ⊆ [x]R2
. Thus [x]R1

⊆ [x]R2
.

Similarly, we can prove that [x]R2
⊆ [x]R1

. So [x]R1
= [x]R2

.
(2)⇒(3): For all x ∈ U , if |[x]R1

| > k − 1 or |[x]R2
| > k − 1 ⇒ [x]R1

= [x]R2
,

then, by Definition 2.4, R1,(k−1)([x]R1
) = R2,(k−1)([x]R2

). In consideration of the

arbitrariness of x, we have that ∀ X ⊆ U , R1,(k−1)(X) = R2,(k−1)(X).

(3)⇒(1): For all X ⊆ U , if R1,(k−1)(X) = R2,(k−1)(X), then

Min{X ⊆ U | R1,(k−1)(X) 6= ∅} = Min{X ⊆ U | R2,(k−1)(X) 6= ∅}.

Since Min{X ⊆ U | Rk−1(X) 6= ∅} = {X ⊆ U | fR(X) = 1 and |X| = k}, (1)
holds. �

In the above theorem, we present the necessary and sufficient condition of the
same matroid induced by different equivalence relations. Next, we discuss the situ-
ation of binary relations.

Proposition 5.2. Let R1, R2 be binary relations on U , and X ⊆ U . If apr1,(k−1)(X)

= apr2,(k−1)(X), then C′k(R1) = C′k(R2).

Proof. According to formula (4.1), it is straightforward. �

However, in the following example, we demonstrate that Proposition 5.2 is not
sufficient.

Example 5.3. Let U = {1, 2, 3, 4, 5}, R1 = {(1, 1), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4,
4), (5, 5)}, R2 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 4), (3, 5), (4, 4), (5, 5)}, k = 2.
Then C′2(R1) = C′2(R2) = {{1, 2}, {1, 3}, {2, 3}, {4, 5}}. If we let that X = {1, 2, 3},
then apr1,(2−1)(X) = {1}, apr2,(2−1)(X) = {1, 2}.
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6. Conclusions And Future Works

This paper established a bridge between degree rough sets and matroids. Specif-
ically, upper approximation number functions based on equivalence relations were
used to induce the kind of matroids, then we found many connections between de-
gree rough sets and these matroids. Therefore, we used degree rough sets to study
matroids in detail. We also extended degree rough sets to generalized degree rough
sets, and studied the relationships between generalized degree rough sets and ma-
troids. Finally, we discussed the conditions of the same matroid induced by different
binary relations. In a word, this paper provided a new perspective, that is, we stud-
ied matroids by degree rough sets. Though much research has been conducted in
this paper, there are still many interesting issues worth studying in future work.

1. Applications of the matroids induced by upper approximation number func-
tions(or degree approximation operators) in attribute reduction.

2. The methods of matroids induced by lower approximation number functions.
3. The more relationships with generalized degree rough sets and matroids.
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