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1. Introduction

In 1999, Molodtsov [36] has introduced the concept of soft sets. The soft set
theory successfully models the problems which contains uncertainties. In literature,
there are theories, such as probability, fuzzy sets [47], intuitionistic fuzzy sets [8],
rough sets [41] that are dealing with the uncertain data.

In this work we use soft set theory. The operations (e.g. [16, 19, 33, 43]) and
applications (e.g. [2, 3, 4, 5, 7, 15, 17, 38, 42, 45]) on soft set theory have been studied
by some researcher. In recent years, many decision making on soft set theory have
been expanded by embedding the ideas of fuzzy sets (e.g. [1, 6, 10, 11, 18, 20, 21,
22, 23, 29, 32, 35, 40, 46, 44]), intuitionistic fuzzy sets (e.g. [8, 9, 12, 13, 14, 27, 30,
31, 37, 39]) and rough sets [6, 24].

Majumdar and Samanta[34] give two types of similarity measure between soft sets
and have shown an application of this similarity measure of soft sets. Kharal [26] give
counterexamples to show that Definition 2.7 and Lemma 3.5 contain errors in [34].
In [26], a new measures have been presented and this measures have been applied
to the problem of financial diagnosis of firms. Also, Jiang et al. [28] further studied
on intuitionistic fuzzy soft sets based on distance measure and entropy measure.

In this paper, we first present the basic definitions and theorem of soft sets, fuzzy
sets, intuitionistic fuzzy sets and intuitionistic fuzzy soft sets that are useful for sub-
sequent discussions. We then define distances and similarity measures between two
intuitionistic fuzzy soft (IFS) sets. By using the similarity we construct a decision
making method. We finally give an application, which shows that the similarity
measures can be successfully applied to a medical diagnosis problem that contains
uncertainties.

2. Preliminary

In this section, we present the basic definitions of soft set theory [19, 36], fuzzy set
theory [47], intuitionistic fuzzy set theory [8] and intuitionistic fuzzy soft set theory
[14] that are useful for subsequent discussions.

Definition 2.1 ([19]). Let U be a universe, P (U) be the power set of U , E be a set
of parameters that are describe by the elements of U , and A ⊆ E. Then, a soft set
FA over U is a set defined by a set valued function fA representing a mapping

(2.1) fA : E → P (U) such that fA(x) = ∅ if x ∈ E −A,

where fA is called approximate function of the soft set FA. In other words, the soft
set is a parametrized family of subsets of the set U , and therefore it can be written
a set of ordered pairs

FA = {(x, fA(x)) : x ∈ E, fA(x) = ∅ if x ∈ E −A}.

Definition 2.2 ([47]). Let U be a universe. Then a fuzzy set X over U is defined
as;

X = {(µX(u)/u) : u ∈ U},

where µX : U → [0.1].
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Here, µX is called membership function of X, and the value µX(u) is called the
grade of membership of u ∈ U in the fuzzy set X. The value represents the degree
of u belonging to the fuzzy set X.

Definition 2.3 ([8]). Let E be a universe. An intuitionistic fuzzy set A on E can
be defined as follows:

A = {< x, µA(x), νA(x) >: x ∈ E}

where, µA : E → [0, 1] and νA : E → [0, 1] such that 0 ≤ µA(x) + νA(x) ≤ 1
for any x ∈ E. Here, µA(x) and νA(x) is the degree of membership and degree of
non-membership of the element x, respectively.

Definition 2.4 ([8]). A = {< x, µA(x), νA(x) >: x ∈ E} andB = {< x, µB(x), νB(x) >:
x ∈ E} are two intuitionistic fuzzy sets on E. Then

(1) A ⊂ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) ∀x ∈ E.
(2) A = B if and only if µA(x) = µB(x) and νA(x) = νB(x) ∀x ∈ E.
(3) Ac = {< x, νA(x), µA(x) >: x ∈ E}.
(4) A ∪B = {< x,max(µA(x), µB(x)),min(νA(x), νB(x) >: x ∈ E}.
(5) A ∩B = {< x,min(µA(x), µB(x)),max(νA(x), νB(x) >: x ∈ E}.
(6) A+B = {< x, µX(x) + µY (x)− µX(x)µY (x), νX(x)νY (x) >: x ∈ E}.
(7) A ·B = {< x, µA(x)µB(x), νA(x) + νB(x)− νA(x)νB(x) >: x ∈ E}.

Definition 2.5 ([14]). Let U be a initial universe, F̂ be a intuitionistic fuzzy subset
of U , E be a set of all parameters. Then an intuitionistic fuzzy soft set(or namely
IFS-set), denoted ΓA, is defined as

ΓA = {(x, γA(x)) : x ∈ E, γA(x) ∈ F̂ (U)},

where γA : E → F̂ (U) such that γA(x) = ∅̂ if x /∈ A and ∅̂ is intuitionistic fuzzy
empty set. Moreover γA(x) is an intuitionistic fuzzy set. So it is denoted by

γA(x) = {(u, µA(u), νA(u)) : u ∈ U}

for all x ∈ E. Moreover, µA : U → [0, 1] and νA : U → [0, 1] with the condition
0 ≤ µA(u) + νA(u) ≤ 1, for all u ∈ U . The numbers µA(u) and νA(u) denote the
membership degree end non-membership degree of u ∈ U to the intuitionistic fuzzy
set γA(x), respectively.

Example 2.6. Suppose that there are five cars in the universe U = {ul, u2, u3, u4, u5}
under consideration “x1 =large”, “x2 =costly”, “x3 =secure”, “x4 =strong”, “x5 =
economic” and”, “x6 = repair”. Therefore parameter set is E = {x1, x2, x3, x4,
x5, x6}. Let A = {x1, x2, x3, x4}.

A customer to select a car from the auto agent, can construct a IFS-set ΓA that
describes the characteristic of cars according to own requests. Assume that

γA(x1) = {(u1, 0.5, 0.2), (u2, 0.5, 0.2), (u3, 0.5, 0.2), (u4, 0.5, 0.2)},

γA(x2) = {(u1, 0.6, 0.4), (u2, 0.9, 0.1), (u3, 0.5, 0.3), (u4, 0.1, 0.9)},
γA(x3) = {(u1, 0.7, 0.2), (u2, 0.8, 0.1), (u3, 0.2, 0.16), (u4, 0.4, 0.5)},
γA(x4) = {(u1, 0.4, 0.3), (u2, 0.2, 0.7), (u3, 0.8, 0.2), (u4, 0.2, 0.1)}.
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Then we have

ΓA =

{
(x1, {(u1, 0.5, 0.2), (u2, 0.5, 0.2), (u3, 0.5, 0.2), (u4, 0.5, 0.2)},

(x2, {(u1, 0.6, 0.4), (u2, 0.9, 0.1), (u3, 0.5, 0.3), (u4, 0.1, 0.9)},
(x3, {(u1, 0.7, 0.2), (u2, 0.8, 0.1), (u3, 0.2, 0.16), (u4, 0.4, 0.5)},

(x4, {(u1, 0.4, 0.3), (u2, 0.2, 0.7), (u3, 0.8, 0.2), (u4, 0.2, 0.1)}
}
.

3. Similarity Measures of IFS-Sets

In this section, we first present the basic definitions of distances between two
intuitionistic fuzzy sets [9] and two soft sets [34] that are useful for subsequent
discussions. We then define some distances and similarity measures of IFS-sets.

Definition 3.1 ([9]). Let U = {x1, x2, x3, ..., xn} be a universe and A,B be two
intuitionistic fuzzy sets over U with their membership functions µA, µB and non-
membership functions νA, νB , respectively. Then the distances of A and B are
defined as,

(1) Hamming distance(HD);

d(A,B) =
1

2

n∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|].

(2) Normalized Hamming distance(NHD);

l(A,B) =
1

2n

n∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|].

(3) Euclidean distance(ED);

e(A,B) =

√√√√1

2

n∑
i=1

[(µA(xi)− µB(xi))2 + (νA(xi)− νB(xi))2].

(4) Normalized Euclidean distance(NED);

q(A,B) =

√√√√ 1

2n

n∑
i=1

[(µA(xi)− µB(xi))2 + (νA(xi)− νB(xi))2].

Definition 3.2 ([34]). Let U = {u1, u2, u3, ...} be a universe, E = {x1, x2, x3, ...}
be a set of parameters, A,B ⊆ E, and FA and GB be two soft sets on U with their
approximate functions fA and gB , respectively.

If A = B, then similarity between FA and GB is defined by

S(FA, GB) =

∑
i=1

−−−−→
fA(xi) ·

−−−−→
gB(xi)∑

i=1max[
−−−−→
fA(xi)2,

−−−−→
gB(xi)2]

,

where −−−−→
fA(xi) = (χfA(xi)(u1), χfA(xi)(u2), χfA(xi)(u3), ...),
−−−−→
gB(xi) = (χgB(xi)(u1), χgB(xi)(u2), χgB(xi)(u3), ...)
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and

χfA(xi)(uj) =

{
1, uj ∈ fA(xi)
0, uj /∈ fA(xi)

, χgB(xi)(uj) =

{
1, uj ∈ gB(xi)
0, uj /∈ gB(xi).

If A 6= B and C = A ∩B 6= ∅, then
−−−−→
fA(xi) = 0 for xi ∈ B/C and

−−−−→
gB(xi) = 0 for

xi ∈ A/C.

If A ∩B = ∅, then S(FA, GB) = 0 and S(FA, F
c
A) = 0 as

−−−−→
fA(xi) ·

−−−−→
f cA(xi) = 0 for

all i.

Definition 3.3 ([34]). Let FA and GB be two soft sets over U . Then, FA and GB
are said to be α-similar, denoted as FA ≈α GB , if and only if S(FA, GB) ≥ α for
α ∈ (0, 1).

Definition 3.4 ([34]). Let U = {u1, u2, u3, ...} be a universe, E = {x1, x2, x3, ...}
be a set of parameters, A,B ⊆ E and FA, GB be two soft sets on U with their
approximate functions fA and gB , respectively. Then, the distances of FA and GB
are defined as,

(1) HD;

d(FA, GB) =
1

m

{ m∑
i=1

n∑
j=1

|fA(xi)(uj)− gB(xi)(uj)|
}
.

(2) NHD;

l(FA, GB) =
1

mn

{ m∑
i=1

n∑
j=1

|fA(xi)(uj)− gB(xi)(uj)|
}
.

(3) ED;

e(FA, GB) =

√√√√ 1

m

m∑
i=1

n∑
j=1

(fA(xi)(uj)− gB(xi)(uj))2.

(4) NED;

q(FA, GB) =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(fA(xi)(uj)− gB(xi)(uj))2.

Definition 3.5 ([34]). Let FA and GB be two soft sets over U . Then, by using the
ED, similarity measure of FA and GB is defined as,

s′(FA, GB) =
1

1 + e(FA, GB)
.

Another similarity measure of FA and GB can be defined as,

s′′(FA, GB) = e−αe(FA,GB),

where α is a positive real number called the steepness measure.
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Definition 3.6. Let U = {u1, u2, ..., un} be a universe, E = {x1, x2, ..., xm} be a set
of parameters, A,B ⊆ E and ΓA,ΛB be two IFS-sets on U with their intuitionistic
fuzzy approximate functions γA(xi) = {(u, µA(u), νA(u)) : u ∈ U} and λB(xi) =
{(u, µB(u), νB(u)) : u ∈ U}, respectively.

If A = B and µA(xi)(uj)− νA(xi)(uj) 6= 0 or µB(xi)(uj)− νB(xi)(uj) 6= 0 for at
least one i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}, then similarity between ΓA and ΛB is
defined by

SIFS(ΓA,ΛB) =∑m
i=1

∑n
j=1 |
−−−−−−−−→
(µA(xi)(uj)−

−−−−−−−→
νA(xi)(uj)) ·

−−−−−−−−→
(µB(xi)(uj)−

−−−−−−−→
νB(xi)(uj))|∑m

i=1

∑n
j=1max{

−−−−−−−−→
||µA(xi)(uj)−

−−−−−−−−→
νA(xi)(uj)||2,

−−−−−−−−→
||µB(xi)(uj)−

−−−−−−−−→
νB(xi)(uj)||2}

,

where

−−−−−−−→
µA(xi)(uj) = (µA(xi)(u1), µA(xi)(u2), ..., µA(xi)(un)),
−−−−−−−→
νA(xi)(uj) = (νA(xi)(u1), νA(xi)(u2), ..., νA(xi)(un)),
−−−−−−−→
µB(xi)(uj) = (µB(xi)(u1), µB(xi)(u2), ..., µB(xi)(un)),
−−−−−−−→
νB(xi)(uj) = (νB(xi)(u1), νB(xi)(u2), ..., νB(xi)(un)).

If A = B and µA(xi)(uj) − νA(xi)(uj) = 0 and µB(xi)(uj) − νB(xi)(uj) = 0 for
all i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}, then SIFS(ΓA,ΛB) = 1.

Example 3.7. Assume that U = {u1, u2, u3, u4} is a universal set, E = {x1, x2,
x3, x4} is a set of parameters, A = {x1, x2, x4}, B = {x1, x2, x4} are subsets of E.
If two IFS-sets ΓA and ΛB over U are contracted as follows;

ΓA =

{
(x1, {(u1, 0.5, 0.5), (u2, 0.4, 0.5), (u3, 0.7, 0.2), (u4, 0.8, 0.1)}),

(x2, {(u1, 0.4, 0.6), (u2, 0.2, 0.7), (u3, 0.2, 0.8), (u4, 0.2, 0.2)}),

(x4, {(u1, 0.2, 0.7), (u2, 0.1, 0.9), (u3, 0.5, 0.4), (u4, 0.7, 0.2)})
}
,

ΛB =

{
(x1, {(u1, 0.2, 0.7), (u2, 0.1, 0.9), (u3, 0.5, 0.4), (u4, 0.4, 0.4)}),

(x2, {(u1, 0.5, 0.5), (u2, 0.4, 0.5), (u3, 0.3, 0.6), (u4, 0.4, 0.5)}),

(x4, {(u1, 0.4, 0.6), (u2, 0.2, 0.7), (u3, 0.2, 0.8), (u4, 0.2, 0.5)})
}
.

Then we can obtain−−−−−−−→
µA(x1)(uj) = (0.5, 0.4, 0.7, 0.8),

−−−−−−−→
νA(x1)(uj) = (0.5, 0.5, 0.2, 0.1),

−−−−−−−→
µA(x2)(uj) = (0.4, 0.2, 0.2, 0.2),

−−−−−−−→
νA(x2)(uj) = (0.6, 0.7, 0.8, 0.2),

−−−−−−−→
µA(x4)(uj) = (0.2, 0.1, 0.5, 0.7),

−−−−−−−→
νA(x4)(uj) = (0.7, 0.9, 0.4, 0.2),

−−−−−−−→
µB(x1)(uj) = (0.2, 0.1, 0.5, 0.4),

−−−−−−−→
νB(x1)(uj) = (0.7, 0.9, 0.4, 0.4),

−−−−−−−→
µB(x2)(uj) = (0.5, 0.4, 0.3, 0.4),

−−−−−−−→
νB(x2)(uj) = (0.5, 0.5, 0.6, 0.5),

−−−−−−−→
µB(x4)(uj) = (0.4, 0.2, 0.2, 0.2),

−−−−−−−→
νB(x4)(uj) = (0.6, 0.7, 0.8, 0.5)

and−−−−−−−−→
(µA(x1)(uj)−

−−−−−−−→
νA(x1)(uj) = (0.0,−0.1, 0.5, 0.7),
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−−−−−−−−→
(µA(x2)(uj)−

−−−−−−−→
νA(x2)(uj) = (−0.2,−0.5,−0.6, 0.0),

−−−−−−−−→
(µA(x4)(uj)−

−−−−−−−→
νA(x4)(uj) = (−0.5,−0.8, 0.1, 0.5),

−−−−−−−−→
(µB(x1)(uj)−

−−−−−−−→
νB(x1)(uj) = (−0.5,−0.8, 0.1, 0.0),

−−−−−−−−→
(µB(x2)(uj)−

−−−−−−−→
νB(x2)(uj) = (0.0,−0.1,−0.3,−0.1),

−−−−−−−−→
(µB(x4)(uj)−

−−−−−−−→
νB(x4)(uj) = (−0.2,−0.5,−0.6,−0.3).

Now the similarity between ΓA and ΛB is calculated as

SIFS(ΓA,ΛB) = 0.31.

Theorem 3.8. Let E be a parameter set, A,B ⊆ E and ΓA and ΛB be two IFS-sets
over U . Then the followings hold :

(i) SIFS(ΓA,ΛB) = SIFS(ΛB ,ΓA).
(ii) 0 ≤ SIFS(ΓA,ΛB) ≤ 1.
(iii) SIFS(ΓA,ΓA) = 1.

Proof. Proof easly can be made by using Definition 3.6. �

Definition 3.9 ([28]). Let U = {u1, u2, ..., un} be a universe, E = {x1, x2, ..., xm}
be a set of parameters, A,B ⊆ E and ΓA,ΛB be two IFS-sets on U with their
intuitionistic fuzzy approximate functions γA(xi) = {(u, µA(u), νA(u)) : u ∈ U} and
λB(xi) = {(u, µB(u), νB(u)) : u ∈ U}, respectively. Then the distances of ΓA and
ΛB are defined as,

(1) HD,

dsIFS(ΓA,ΛB) =

1

2

{ m∑
i=1

n∑
j=1

|µA(xi)(uj)− µB(xi)(uj)|+ |νA(xi)(uj)− νB(xi)(uj)|
}
.

(2) NHD,

lsIFS(ΓA,ΛB) =

1

2mn

{ m∑
i=1

n∑
j=1

|µA(xi)(uj)− µB(xi)(uj)|+ |νA(xi)(uj)− νB(xi)(uj)|
}
.

(3) ED,

esIFS(ΓA,ΛB) =(
1

2

m∑
i=1

n∑
j=1

[(µA(xi)(uj)− µB(xi)(uj))
2 + (νA(xi)(uj)− νB(xi)(uj))

2]

) 1
2

.

(4) NED,

qsIFS(ΓA,ΛB) =(
1

2mn

m∑
i=1

n∑
j=1

[(µA(xi)(uj)− µB(xi)(uj))
2 + (νA(xi)(uj)− νB(xi)(uj))

2]

) 1
2

.
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Now we give distance measure of IFS-sets with propositions by adding a weighted
value for element of parameter set in Jiang et al. [28].

Definition 3.10. Let U = {u1, u2, ..., un} be a universe, E = {x1, x2, ..., xm} be a
set of parameters, A,B ⊆ E and ΓA,ΛB be two IFS-sets on U with their intuitionistic
fuzzy approximate functions γA(xi) = {(u, µA(u), νA(u)) : u ∈ U} and λB(xi) =
{(u, µB(u), νB(u)) : u ∈ U}, respectively. Then the distances of ΓA and ΛB are
defined as,

(1) weighted HD,

dwIFS(ΓA,ΛB) =

1

2

{ m∑
i=1

wi

n∑
j=1

|µA(xi)(uj)− µB(xi)(uj)|+ |νA(xi)(uj)− νB(xi)(uj)|
}
.

(2) weighted NHD,

lwIFS(ΓA,ΛB) =

1

2mn

{ m∑
i=1

wi

n∑
j=1

|µA(xi)(uj)− µB(xi)(uj)|+ |νA(xi)(uj)− νB(xi)(uj)|
}
.

(3) weighted ED,

ewIFS(ΓA,ΛB) =(
1

2

m∑
i=1

wi

n∑
j=1

[(µA(xi)(uj)− µB(xi)(uj))
2 + (νA(xi)(uj)− νB(xi)(uj))

2]

) 1
2

.

(4) weighted NED,

qwIFS(ΓA,ΛB) =(
1

2mn

m∑
i=1

wi

n∑
j=1

[(µA(xi)(uj)− µB(xi)(uj))
2 + (νA(xi)(uj)− νB(xi)(uj))

2]

) 1
2

,

where wi ∈ [0, 1] is called weight of xi.

Example 3.11. Let us consider the Example 3.7 and wi = 1 for all parameter xi.
Then, the distances of ΓA and ΛB are calculated as follows;

dwIFS(ΓA,ΛB) = 0.07,
lwIFS(ΓA,ΛB) = 0.37,
ewIFS(ΓA,ΛB) = 0.28,
qwIFS(ΓA,ΛB) = 0.19.

Theorem 3.12. Let E be a parameter set, A,B ⊆ E and ΓA and ΛB be two IFS-sets
over U . Then the followings hold :

(i) dwIFS(ΓA,ΛB) ≤ mn.
(ii) lwIFS(ΓA,ΛB) ≤ 1.
(iii) ewIFS(ΓA,ΛB) ≤

√
mn.
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(iv) qwIFS(ΓA,ΛB) ≤ 1.

Proof. Proof easily can be made by using Definition 3.10. �

Theorem 3.13. Let IFS(U) be a set of all IFS-sets over U . Then the distances
functions dwIFS, IwIFS, ewIFS, and qwIFS defined from IFS(U) to the non-negative real
number R+, are metric.

Proof. We give only proof for dwIFS . If ΓA,ΛB andΥC ∈ IFS(U), then

• dwIFS(ΓA,ΛB) ≥ 0 ∀i = {1, 2, ...,m}, j = {1, 2, ..., n}.
Suppose dwIFS(ΓA,ΛB) = 0. Then

|µA(xi)(uj)− µB(xi)(uj)|+ |νA(xi)(uj)− νB(xi)(uj)| = 0.

Thus

µA(xi)(uj) = µB(xi)(uj) ∧ νA(xi)(uj) = νB(xi)(uj).

So ΓA = ΛB .
Conversely, suppose ΓA = ΛB . Then

µA(xi)(uj) = µB(xi)(uj) ∧ νA(xi)(uj) = νB(xi)(uj).

Thus

|µA(xi)(uj)− µB(xi)(uj)|+ |νA(xi)(uj)− νB(xi)(uj)| = 0.

So dwIFS(ΓA,ΛB) = 0.
• Clearly, dwIFS(ΓA,ΛB) = dwIFS(ΛB ,ΓA).
• Triangle inequality follows easily from the observation that for any three

IFS-sets ΓA. ΛB and ΥC , ∀i = {1, 2, ...,m}, j = {1, 2, ..., n}. For

|µA(xi)(uj)− µB(xi)(uj)|+ |νA(xi)(uj)− νB(xi)(uj)|
= |µA(xi)(uj)− µC(xi)(uj) + µC(xi)(uj)− µB(xi)(uj)|

+ |νA(xi)(uj)− νC(xi)(uj) + νC(xi)(uj)− νB(xi)(uj)|
≤ |µA(xi)(uj)− µC(xi)(uj)|+ |µC(xi)(uj)− µB(xi)(uj)|

+ |νA(xi)(uj)− νC(xi)(uj)|+ |νC(xi)(uj)− νB(xi)(uj)|.

Then, we have

dwIFS(ΓA,ΛB) ≤ dwIFS(ΓA,ΥC) + dwIFS(ΥC ,ΛB).

The others proofs can made similarly. �

Definition 3.14. Let ΓA and ΛB be two IFS-sets over U . Then, by using the
Hamming distance, similarity measure of ΓA and ΛB is defined as

S′IFS(ΓA,ΛB) =
1

1 + dwIFS(ΓA,ΛB)
.

Another similarity measure of FA and GB can be defined as,

S′′IFS(ΓA,ΛB) = e−αd
w
IFS(ΓA,ΛB)

where α is a positive real number called the steepness measure.
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Definition 3.15. Let ΓA and ΛB be two IFS-sets over U . Then, ΓA and ΛB are said
to be α-similar, denoted as ΓA ≈α ΛB , if and only if S′(ΓA,ΛB) ≥ α for α ∈ (0, 1).

We call the two IFS-sets significantly similar if S′IFS(ΓA,ΛB) > 1
2 .

Example 3.16. Let us consider the Example 3.11. Similarity measure of ΓA and
ΛB is obtained as

S′IFS(ΓA,ΛB) =
1

1 + dwIFS(ΓA,ΛB)
= 0.73.

ΓA and ΛB is significantly similar because S′IFS(ΓA,ΛB) = 0.73 > 1
2 .

Theorem 3.17. Let E be a parameter set, A,B ⊆ E and ΓA and ΛB be two IFS-sets
over U . Then the followings hold :

(i) 0 ≤ S′IFS(ΓA,ΛB) ≤ 1.
(ii) S′IFS(ΓA,ΛB) = S′IFS(ΛB ,ΓA).
(iii) S′IFS(ΓA,ΛB) = 1⇔ ΓA = ΛB.

Proof. Proof easly can be made by using Definition 3.14. �

4. Decision Making Method

In this section, we construct a decision making method that is based on the
similarity measure of two IFS-sets. The algorithm of decision making method can
be given as;

Step 1 : Constructs a IFS-set ΓA over U based on an expert,
Step 2 : Constructs a IFS-set ΛB over U based on a responsible person for the

problem,
Step 3 : Calculate the distances of ΓA and ΛB ,
Step 4 : Calculate the similarity measure of ΓA and ΛB ,
Step 5 : Estimate result by using the similarity.

Now, we can give an application for the decision making method. By using the
weighted HD, similarity measure of two IFS-sets can be applied to detect whether
an ill person is suffering from a certain disease or not.

5. Application

In this applications, we will try to estimate the possibility that an ill person
having certain visible symptoms is suffering from cancer. For this, we first construct
a IFS-set for the illness and a IFS-set for the ill person. We then find the similarity
measure of these two IFS-sets. If they are significantly similar, then we conclude
that the person is possibly suffering from cancer. [It is adopted from [34]]

Example 5.1. Assume that our universal set contain only two elements cancer and
not cancer, i.e. U = {u1, u2}. Here the set of parameters A = B = E is the set
of certain visible symptoms, let us say, E = {x1, x2, x3, x4, x5, x6, x7, x8, x9} where
x1 = jaundice, x2 = bone pain, x3 = headache, x4 = loss of appetite, x5 = weight
loss, x6 = heal wounds , x7 = handle and shoulder pain, x8 = lump anywhere on
the body for no reason and x9 = chest pain and also wi = 1 for all i = 1, 2, ..., 9.
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Step 1 : Constructs a IFS-set ΓA over U for cancer is given below and this can
be prepared with the help of a medical person:

ΓA =

{
(x1, {(u1, 0.5, 0.5), (u2, 0.4, 0.5)}), (x2, {(u1, 0.7, 0.2), (u2, 0.8, 0.1)}),

(x3, {(u1, 0.4, 0.6), (u2, 0.2, 0.7)}), (x4, {(u1, 0.2, 0.8), (u2, 0.2, 0.2)}),
(x5, {(u1, 0.2, 0.7), (u2, 0.1, 0.9)}), (x6, {(u3, 0.5, 0.4), (u4, 0.7, 0.2)}),
(x7, {(u1, 0.3, 0.7), (u2, 0.4, 0.4)}), (x8, {(u1, 0.5, 0.2), (u2, 0.7, 0.1)}),

(x9, {(u1, 0.3, 0.4), (u2, 0.7, 0.1)})
}
.

Step 2 : Constructs a IFS-set ΛB over U based on data of ill person:

ΛB =

{
(x1, {(u1, 0.9, 0.1), (u2, 0.9, 0.0)}), (x2, {(u1, 0.1, 0.9), (u2, 0.1, 0.8)}),

(x3, {(u1, 0.7, 0.1), (u2, 0.8, 0.9)}), (x4, {(u1, 0.9, 0.1), (u2, 0.9, 0.8)}),
(x5, {(u1, 0.9, 0.1), (u2, 0.9, 0.2)}), (x6, {(u3, 0.1, 0.9), (u4, 0.1, 0.8)})
(x7, {(u1, 0.9, 0.1), (u2, 0.7, 0.9)}), (x8, {(u1, 0.9, 0.9), (u2, 0.1, 0.9)}),

(x9, {(u1, 0.8, 0.1), (u2, 0, 1)})
}
.

Step 3 : Calculate weighted HD of ΓA and ΛB ,

dwIFS(ΓA,ΛB) ∼= 1.1.

Step 4 : Calculate the similarity measure of ΓA and ΛB ,

S′IFS(ΓA,ΛB) =
1

1 + dwIFS(ΓA,ΛB)
∼= 0.48 <

1

2
.

Step 5 : Hence the two IFS-sets, i.e. two symptoms ΓA and ΛB are not
significantly similar. Therefore, we conclude that the person is not possibly
suffering from cancer.

Example 5.2. Let us consider Example 5.1 with different ill person.

Step 1 : Constructs a IFS-set for cancer ΓA is in the Example 5.1.
Step 2 : A person suffering from the following symptoms whose corresponding

IFS-set ΥC is given below:

ΥC =

{
(x1, {(u1, 0.5, 0.4), (u2, 0.4, 0.4)}), (x2, {(u1, 0.7, 0.1), (u2, 0.8, 0.1)}),

(x3, {(u1, 0.4, 0.5), (u2, 0.2, 0.6)}), (x4, {(u1, 0.2, 0.7), (u2, 0.2, 0.1)}),
(x5, {(u1, 0.2, 0.6), (u2, 0.1, 0.8)}), (x6, {(u3, 0.5, 0.3), (uC , 0.7, 0.1)})
(x7, {(u1, 0.2, 0.6), (u2, 0.1, 0.8)}), (x8, {(u1, 0.5, 0.3), (u2, 0.7, 0.1)}),

(x9, {(u1, 0.5, 0.3), (u2, 0.7, 0.1)})
}
.

Step 3 : Calculate weighted HD of ΓA and ΛB ,

dwIFS(ΓA,ΛB) ∼= 0, 41.

Step 4. : Find the similarity measure of these two IFS-sets as:

S′IFS(ΓA,ΥC) =
1

1 + dwIFS(ΓA,ΥC)
∼= 0.71 >

1

2
.
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Step 5 : Here the two IFS-sets, i.e. two symptoms ΓA and ΥC are significantly
similar. Therefore, we conclude that the person is possibly suffering from
cancer.

6. Conclusion

In this paper, we have defined four types of distances between two IFS-sets and
proposed similarity measures of two IFS-sets. Then, we construct a decision making
method based on the similarity measures. Finally, we give two simple examples to
show the possibility of using this method by using Hamming distance for diagnosis
of diseases. In these example, if we use the other distances, we can obtain similar
result. The method can be applied to problems that contain uncertainty such as
problems in social, economic systems, pattern recognition, medical diagnosis, game
theory, coding theory and so on.
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