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Abstract. Applications of fuzzy closure operators in several areas of
fuzzy system are well known. Especially its applications in the field of
formal concept analysis (FCA) are considered in this paper. It is known
that in FCA, computation of all formal concepts from data table with
graded attributes can be reduced to the problem of computing fix points
of two fuzzy closure operators, ↑↓ and ↓↑. It is also true that as the size of
datasets grows, the fuzzy concepts generated from fuzzy context become
larger in number. Therefore for large and complex datasets, it is very
hard to deal with such a large number of fuzzy concepts. In this paper,
we focus on establishing some rules for computing fix points of ↑↓, and
↓↑ from a data table with graded attributes. The motivation is to reduce
considerably the number of generated fuzzy concepts than the number of
all fuzzy concepts. Considering Gödel operations over unit interval [0,1],
we establish all the rules theoretically.
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1. Introduction

Formal Concept Analysis (FCA) is a data analysis technique for discovering
conceptual structures in a large amount of data. R. Wille[33] and B. Ganter[13] de-
veloped this idea in 1982. It is a method for data analysis, knowledge representation
and information management. Data are repesented in the form of concept lattice
after generating so-called formal concepts. Over last two decades the theoretical
development of FCA has established the core theory to a stable state. In this paper
we deal with FCA of data in fuzzy setting.
As far as our knowledge is concerned, Burusco and Fuentes-Ganzáles[7, 8] first intro-
duced the theory of FCA in fuzzy setting. Later a feasible way has been emerged to
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develop FCA and related structure in fuzzy setting by the works of Pollandt[27] and,
independently by Bělohlávek[2]. Generating fuzzy concepts from a given data with
fuzzy attributes is one of the fundamental problems in the theory of fuzzy concept
lattice. Since fuzzy concepts are the fix points of a particular fuzzy operator that is
associated with input data[1], the problem of generating fuzzy concepts turn out to
be the problem of computing all fix points of this operator. Two important works
have been reported (by Bělohlávek et al.[3, 4] . They evaluated experimentally or
theoretically all fix points of a fuzzy closure. Inspired by a well known observation
that each fuzzy concept lattice can be viewed as a crisp concept lattice [see [5] and
[27], Bělohlávek extended Ganter’s NEXTCLOSURE algorithm in fuzzy setting to
compute all fix points of a fuzzy closure. He first transformed a fuzzy context into a
formal context. Then he used Ganter’s NEXTCLOSURE [ see [12, 13]] algorithm to
generate all fix points of an ordinary closure. Finally he transformed all fix points
of ordinary closure back to fix points of a fuzzy closure. Lindig’s Next Neighbor
algorithm [22], motivated Bělohlávek et al.[4] to consider one more approach for gen-
erating all fix points of a fuzzy closure together with their subconcept-superconcept
hierarchy. In [4], they also showed that the computing time only for generating fuzzy
concepts by using the algorithm in [3] is less than that by using the algorithm in
[4]. But for the case of generating fuzzy concepts along with their concept hierarchy,
the algorithm proposed in [4] is considerably faster than that in [3]. The computa-
tional aspects concerning algorithms for generating all fix points of a fuzzy closure
operator, along with their partial ordering are discussed in the paper by Belohlavek
et al.[6]. Recently some interesting approaches are proposed to the fuzzy concept
lattice theory [9, 14, 15, 21, 24, 28, 29, 30]. An extensive overview of the papers
published between 2003 and 2011 on FCA with fuzzy attributes and rough FCA in
knowledge discovery etc. can be found in [26]. Very recently some articles [23, 31, 32]
have been published on reduction of formal concepts and concept lattice in formal
concept analysis with fuzzy setting. In [23], the the authors studied the reduction of
the concept lattices based on rough set theory [11, 20, 25] and proposed two kinds of
reduction methods for the concept lattices. In [31], the authors proposed a method
for reducing the number of formal concepts in formal concept analysis with fuzzy
setting using Shanon entropy. A method for reducing the size of fuzzy concept lat-
tice are proposed in [32] using Shannon entropy and Huffman coding.
In this paper we propose some rules for generating the fix points of two fuzzy closure
operators ↑↓ and ↓↑ which would help in deducing the fuzzy concepts in fuzzy FCA.
We establish all of these rules theoretically. All of our proposed rules are based on
Gödel algebra L = 〈L,∧,∨,

⊗
,→, 0, 1〉.

The paper is organized as follows. In Section 2, some preliminary notion on fuzzy
logic, fuzzy sets and Fuzzy concept lattice are recalled. In Section 3, the rules for
computing fix points of two fuzzy closures are introduced and established. Finally in
Section 4, we discuss the proposed rules for computing fix points with an illustration.

2. Mathematical background – explanations on the fundamentals
applied

2.1. Basics of fuzzy logic, fuzzy sets. In this section we recall the basics of fuzzy
sets and fuzzy logic (for more extensive overviews see the references [10, 16, 17, 19])
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as needed for this paper.
Since fuzzy logic are developed using general structure of truth degree. We use a
complete residuated lattice [18] as a basic structure of truth degree. A complete
residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that (1) 〈L,∧,∨, 0, 1〉
is a complete lattice with 0 and 1 being the least and greatest element of L, respec-
tively; (2) 〈L,⊗, 1〉 is a monoid; (3) ⊗ and → satisfy so called adjointness property,
i.e., a ⊗ b ≤ c if and only if a ≤ b → c, for each a, b, c ∈ L. Operations ⊗ and →
are known as ”fuzzy conjunction” and ”fuzzy implication”. All elements a of L are
called truth degrees. Usually, the common choice of L is a structure with L = [0, 1],
with ∨ and ∧ being maximum and minimum, respectively, ⊗ being a left-continuous
t−norm with the corresponding →. One of the most important pairs of adjoint
operation on [0, 1] is due to Gödel: a⊗ b = min(a, b), a→ b = 1 if a ≤ b, a→ b = b
else. One may consider a finite set {a0 = 0, a1, ....., an = 1}(a0 < a1 < ..... < an) as
the set of truth values with ⊗ given by a ⊗ b = amin(k,l) and the corresponding →
given by ak → al = an for ak ≤ al and ak → al = al otherwise. Such an L is called
a finite Gödel chain.
Now based on the structure of complete residuated Lattice L, we present the basic
notions of L-set and fuzzy relation. An L-set [13] A in a universe set X is a map-
ping A : X → L. A(x) is called the truth value (or membership value) of x in A
which maps X to the membership space L. Similarly, an L-relation I is a mapping
I : X × Y → L assigning to any x ∈ X and y ∈ Y a truth value I(x, y) to which
x and y is related under I. The collection of all L-sets in X is denoted by the set
LX . For every t ∈ L, At = {x ∈ X | A(x) ≥ t} are called level sets or t-cut of
A. We let supp(A) = {x ∈ X | A(x) > 0}. We call supp(A) the support of A.
An L-set A is nontrivial if supp(A) 6= ∅. We use the notation

∨
for supremum

and
∧

for infimum. Let A1 and A2 be any two L-sets of X. Then A1 ⊆ A2 if
A1(x) ≤ A2(x) for all x ∈ X. The union A1 ∪ A2 of A1, A2∈ LX is a subset of X
defined by (A1 ∪ A2)(x) = A1(x) ∨ A2(x) for all x ∈ X and intersection A1 ∩ A2

of A1, A2 is also a subset of X defined by (A1∩A2)(x) = A1(x)∧A2(x) for all x ∈ X.

2.2. Fuzzy contexts and fuzzy concepts. Formal Concept Analysis is a math-
ematical technique based on lattice theory. It aims to formulate the philosophical
understanding of a concept as a unit of two parts: its extent (the set of the ob-
jects which fall under this concept) and its intent (the set of attributes covered by
this concept). In addition, certain objects have certain attributes; in other words,
objects are related to attributes. The sets of objects and attributes together with
their relation to each other form a ”formal context”. Ganter-Wille’s approach was
based on bivalent logic, in which objects (attributes) either crisply belong or not
to the extent (intent) of the concept. But many of the information people facing
are usually fuzzy and imprecise, so can not be described by a concept in the formal
setting, e.g., if we consider the concept “POLITICAL LEADER” then the attributes
(say, contributions in the society, contributions in the economy, power of leadership
etc.) of “POLITICAL LEADER” can not be delineated. Therefore, it would not be
the proper way to analyze the intent by bivalent logic. By introducing Fuzzy sets
into formal context, one can express the fuzzy characteristic between the objects
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and attributes. The theory of concept lattices has been generalized from the point
of view of fuzzy logic in [1, 2, 7, 8, 27]. In this sub-section we recall the basics of
fuzzy concept lattice.

We start with a set X of objects, a set Y of attributes, a complete residuated
lattice L and a fuzzy relation I between X and Y. The key idea of a fuzzy context
(L-context) is as follows: it is a triplet 〈X,Y, I〉, where I(x, y) ∈ L (the set of truth
values of complete residuated lattice L) is interpreted as the truth value of the fact,
“the object x ∈ X has the attribute y ∈ Y ”. For fuzzy sets A ∈ LX and B ∈ LY ,
Bělohlávek [1] and, independently, Pollandt[27] defined the fuzzy sets A↑ ∈ LY and
B↓ ∈ LX by

A↑(y) =
∧

x∈X{A(x)→ I(x, y)},
B↓(x) =

∧
y∈Y {B(y)→ I(x, y)}.

One can easily interpret the element A↑(y) ∈ A↑ as the truth degree of “y is
shared by all objects from A”and B↓(x) ∈ B↓ as the truth degree of ”x has all
attributes from B”.

A fuzzy concept 〈A,B〉 consists of a fuzzy set A of objects (the extent of the
concept) and a fuzzy set B of attributes (the intent of the concept) such that A↑ = B
and B↓ = A. If B〈X,Y, I〉 = {〈A,B〉 |A↑ = B,B↓ = A} denotes the set of all
fuzzy concepts of the fuzzy context 〈X,Y, I〉, then the set B〈X,Y, I〉 with the order
relation:
〈A1, B1〉 ≤ 〈A2, B2〉 if and only if A1 ⊆ A2 (or, equivalently B1 ⊇ B2) is a

complete lattice. The lattice (B〈X,Y, I〉 ,≤ ) is called a fuzzy concept lattice.

Example 2.1. Consider the following fuzzy context 〈X,Y, I〉 given by Table 1,
inwhich the rows represent objects, and columns represent attributes of these objects.
The truth values of the fuzzy context have been chosen randomly from [0,1].

Table 1. Fuzzy context

1 2 3 4 5

1 0.9 0.7 0.2 0.4 1
2 0.8 1 0.3 0.7 0.9
3 0.2 0.2 0.2 0.1 0.3
4 0.3 0.6 0.3 0.2 0.2
5 0.5 0.8 0.4 0.3 0.4

Considering Gödel fuzzy logical connectives we see that
〈{0.2/1, 0.9/2, 0.1/3, 0.2/4, 0.3/5}, {0.8/1, 1/2, 0.3/3, 0.7/4, 1/5}〉
is a fuzzy concept. {0.2/1, 0.9/2, 0.1/3, 0.2/4, 0.3/5} is the extent of this fuzzy con-
cept, and {0.8/1, 1/2, 0.3/3, 0.7/4, 1/5} is the intent.

3. Proposed rules for computing all fix points of the fuzzy closure
operators ↑↓ and ↓↑ from L-context

A fuzzy concept is completely determined by its extent, or by its intent. It is also
a well-known fact that A is an extent iff A is a fixed point of ↑↓: LX → LX , i.e.,
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A↑↓ = A, and B is an intent iff B is a fixed point of ↓↑: LY → LY , i.e., B↓↑ = B
[see in 2]. Therefore, in order to compute a fuzzy concept, it is sufficient to compute
its extent. Some rules are presented for computing fix points of ↑↓, and ↓↑ based on
Gödel operations. The main purpose of consideration of Gödel operations is given
below:

If we use Gödel algebra to generate all fix points of the closure operator ↑↓ from
L-context, then it is obvious from the definition of ↑↓ and definition of Gödel im-
plication that membership values of each object in the fix points must be either 1
or some values of L. It is also true that for any L-context, there always exists a fix
point of ↑↓ in which the membership value of each object is the smallest truth value
of each row of the L-context. Considering this fix point as an initial fix point, we
think about any other fix points in which the membership value of any object, say
xk ∈ X, is different from 1 as well as smallest truth value of the row correspond-
ing to the object xk ∈ X in the L-context table. If such type of fix points exist,
then membership values of xk ∈ X in those fix points should be second smallest
truth value, third smallest truth value, fourth smallest truth value and so on of the
row corresponding to the object xk ∈ X in the L-context table. Based on these
observations, we establish a set of rules for generating fix points of ↑↓ so that we
can easily compute the membership values of the fix points directly from L-context.
Analogously, if we use Gödel algebra for generating the fix points of the closure op-
erator ↓↑ from L-context, then membership value of each attribute can be computed
directly from L-context by considering all the smallest truth values of each column
of the L-context.

Let us first introduce the notations used for computing fix points of ↑↓ and
↓↑. Since, the input for our analysis is an L-context 〈X,Y, I〉. Without loss of
generality, we take X = {1, 2, ....,m} and Y = {1, 2, ...., n} be the sets of ob-
jects and attributes, respectively. Then I(i, j) ∈ L is interpreted as the truth
value of the fact, “the object i ∈ X has the property j ∈ Y ”. Now, we de-
note each smallest value of the row corresponding to the object i ∈ X by r[i1],
where i = 1, 2, ...,m. Similarly, r[i2], r[i3], ..., r[in] denotes the second smallest,
third smallest,,...,n-th smallest value of the row corresponding to the object i ∈ X,
respectively. Also for each i ∈ X, we denote col[r[ip]] as appearing column of
r[ip] in the L-context table, where p = 1, 2, ...., n. There may be several equal
truth values in the row corresponding to the object i ∈ X. But for those equal
truth values we always select each r[ip] at random. From context table 1, we can
see that for i = 1, r[11] = 0.2, r[12] = 0.4, r[13] = 0.7, r[14] = 0.9, r[15] = 1,
and col[r[11]] = 3, col[r[12]] = 4, col[r[13]] = 2, col[r[14]] = 1, col[r[15]] = 5. Ob-
viously, the column, col[r[ip]] must corresponds some attribute j ∈ Y . In the
similar manner, for each j ∈ Y = {1, 2, ...., n}, we denote the smallest, second
smallest,...,m-th smallest value of the column corresponding to the column j by
c[1j], c[2j], ..., [mj], respectively, and for each j ∈ Y , row[c[qj]] denotes the appear-
ing row of c[qj] in the L-context table, where q = 1, 2, ....,m. Again, there may
be several equal truth values in the column corresponding to the attribute j ∈ Y .
But for those equal truth values we always select c[qj] at random. In context ta-
ble 1, for j = 1, c[11] = 0.2, c[21] = 0.3, c[31] = 0.5, c[41] = 0.8, c[51] = 0.9, and
row[c[11]] = 3, row[c[21]] = 4, row[c[31]] = 5, row[c[41]] = 2, row[c[51]] = 1. With

717



Partha Ghosh et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 5, 713–728

these notation and using Gödel operation on L we now state and prove the following
all rules for computing fix points of the fuzzy closure operators ↑↓ and ↓↑ from a
L-context.

Rule 1. Let 〈X,Y, I〉 be an L-context and j ∈ Y be an attribute. Then Aj ∈ LX

defined by Aj(i) = I(i, j) for each i ∈ X is a fix point of ↑↓.
Analogously, let 〈X,Y, I〉 be an L-context and i ∈ X be an object. Then Bi ∈ LY

defined by Bi(j) = I(i, j) for each j ∈ Y is a fix point of ↓↑.

Proof. To show that A is a fix point of ↑↓, we need to prove A↑↓ = A.

Let for any l ∈ Y , Al(i) = I(i, l) for all i ∈ X. Then A↑l (l) = 1 and thus A↑l (l) →
I(i, l) = I(i, l). Now for j ∈ Y − {l}, A↑l (j) → I(i, j) = 1, or I(i, j). This is also

obvious that if A↑l (j) → I(i, j) = 1, then for each l ∈ Y , A↑↓l (i) = I(i, l) = Al(i),

where i ∈ X. Hence Al is a fix point of ↑↓. Now, we let A↑l (j) → I(i, j) = I(i, j)
for some j ∈ Y − {l}. For this case, to prove Al is a fix point of ↑↓, we need to

prove that I(i, j) ≮ I(i, l) for those j which gives A↑l (j) → I(i, j) = I(i, j). This is

true, because if I(i, j) < I(i, l), then A↑l (j) ≤ I(i, l) which is a contradiction, since

from Gödel implication, A↑l (j) → I(i, j) = I(i, j) implies A↑l (j) > I(i, l). Thus, if

A↑l (j) → I(i, j) = I(i, j) for some or all j ∈ Y − {l}, then I(i, j) ≥ I(i, l). Hence

A↑↓l (i) = I(i, l) = Al(i), i.e., Al is a fix point of ↑↓.
Proof is similar for analogous part. �

In context table 1, we can easily check that for each j ∈ Y ,
A1 = {I(1, 1)/1, I(2, 1)/2, I(3, 1)/3, I(4, 1)/4, I(5, 1)/5}

={0.9/1, 0.8/2, 0.2/3, 0.3/4, 0.5/5},
A2 = {I(1, 2)/1, I(2, 2)/2, I(3, 2)/3, I(4, 2)/4, I(5, 2)/5}

={0.7/1, 1/2, 0.2/3, 0.6/4, 0.8/5},
A3 = {I(1, 3)/1, I(2, 3)/2, I(3, 3)/3, I(4, 3)/4, I(5, 3)/5}

={0.2/1, 0.3/2, 0.2/3, 0.3/4, 0.4/5},
A4 = {I(1, 4)/1, I(2, 4)/2, I(3, 4)/3, I(4, 4)/4, I(5, 4)/5}

={0.4/1, 0.7/2, 0.1/3, 0.2/4, 0.3/5}
A5 = {I(1, 5)/1, I(2, 5)/2, I(3, 5)/3, I(4, 5)/4, I(5, 5)/5}

={1/1, 0.9/2, 0.3/3, 0.2/4, 0.4/5}
are fix points of ↑↓.

Similarly, we can also check that for each i ∈ X
B1 = {I(1, 1)/1, I(1, 2)/2, I(1, 3)/3, I(1, 4)/4, I(1, 5)/5}

={0.9/1, 0.7/2, 0.2/3, 0.4/4, 1/5},
B2 = {I(2, 1)/1, I(2, 2)/2, I(2, 3)/3, I(2, 4)/4, I(2, 5)/5}

={0.8/1, 1/2, 0.3/3, 0.7/4, 0.9/5},
B3 = {I(3, 1)/1, I(3, 2)/2, I(3, 3)/3, I(3, 4)/4, I(3, 5)/5}

={0.2/1, 0.2/2, 0.2/3, 0.1/4, 0.3/5},
B4 = {I(4, 1)/1, I(4, 2)/2, I(4, 3)/3, I(4, 4)/4, I(4, 5)/5}

={0.3/1, 0.6/2, 0.3/3, 0.2/4, 0.2/5},
B5 = {I(5, 1)/1, I(5, 2)/2, I(5, 3)/3, I(5, 4)/4, I(5, 5)/5}
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={0.5/1, 0.8/2, 0.4/3, 0.3/4, 0.4/5}
are fix points of ↑↓.

Rule 2. Let 〈X,Y, I〉 be an L-context, k ∈ X be an object, and p < n be a posi-
tive integer. Also, let for each p′ ∈ {1, 2, ...., p}, Ak,p′ ∈ LX is a fix point of ↑↓, where

Ak,p′(i) =

{
r[i1] for i ∈ X − {k}
r[kp′] if i = k.

If for i ∈ X − {k} none of r[i1] appears in the column of r[kp], then Ak,p+1 ∈ LX

defined by

Ak,p+1(i) =

{
r[i1] for i ∈ X − {k}
r[k(p + 1)] if i = k

is a fixpoint of ↑↓. Analogously, let 〈X,Y, I〉 be an L-context, l ∈ Y be an attribute,
and q < m be a positive integer. Also, let for each q′ ∈ {1, 2, ...., q}, Bl,q′ ∈ LY are
fixpoints of ↓↑, where

Bl,q′(j) =

{
c[1j] for j ∈ Y − {l}
c[q′l] if j = l.

If for j ∈ Y−{l} none of c[1j] appears in the row of c[ql], then Bl,q+1 ∈ LY defined by

Bl,q+1(i) =

{
c[1j] for j ∈ Y − {l}
c[(q + 1)l] if j = l

is a fixpoint of ↓↑.

Proof. To show that Ak,p+1 is a fixed point of ↑↓, we need to prove A↑↓k,p+1 = Ak,p+1.
Since for each j ∈ Y ,

A↑k,p+1(j) =
∧
{r[11]→ I(1, j), ...., Ak,p+1(k)→ I(k, j), ...., r[m1]→ I(m, j)}

and

r[i1] ≤ I(i, j) for i ∈ X − {k},

for all j ∈ Y , r[i1] → I(i, j) = 1 for i ∈ X − {k}. Again Ak,p+1(k) = r[k(p + 1)].
If r[k(p + 1)] = r[kp], then the rule follows. We assume that r[k(p + 1)] 6= r[kp].
Then Ak,p+1(k) = r[k(p + 1) > r[kp′] for each p′ ∈ {1, 2, ...., p}. Now, for each

p′ ∈ {1, 2, ...., p}, A↑k,p+1(col[r[kp′]]) = r[kp′]. Let Y ′ = {col[r[kp′]] ∈ Y | p′ ∈
{1, 2, ...., p}}. Then A↑k,p+1(j) = 1 for j ∈ Y − Y ′. Thus
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A↑↓k,p+1(k) =
∧

j∈Y=Y ′ ⋃(Y−Y ′)

(A↑k,p+1(j)→ I(k, j))

=
∧

j∈Y−Y ′

(A↑k,p+1(j)→ I(k, j)) ∧
∧

j∈Y ′

(A↑k,p+1(j)→ I(k, j))

=
∧

j∈Y−Y ′

(1→ I(k, j)) ∧
∧

j∈Y ′

(r[kj]→ I(k, col[r[kj]]))

=
∧

j∈Y−Y ′

(1→ I(k, j)) ∧
∧

j∈Y ′

(r[kj]→ r[kj])

=
∧
{1→ r[k(p + 1)], 1→ r[k(p + 2)], ...., 1→ r[kn]} ∧ 1

= r[k(p + 1)] = Ak,p+1(k).

Let Y ′′ = Y − {col[r[kp]]}. Since Ak,p ∈ LX is a fix point of ↑↓, where

Ak,p(i) =

{
r[i1] for i ∈ X − {k}
r[kp] if i = k,

A↑↓k,p(k) = r[kp] and A↑↓k,p(i) =
∧

j∈Y=Y ′′ ⋃(Y−Y ′′)

(A↑k,p(j)→ I(i, j)) = r[i1]

for i ∈ X − {k}.
Now for i ∈ X − {k},

A↑↓k,p+1(i)

=
∧

j∈Y=Y ′ ⋃(Y−Y ′)

(A↑k,p+1(j)→ I(i, j))

=
∧

j∈Y=Y ′′ ⋃(Y−Y ′′)

(A↑k,p+1(j)→ I(i, j)) ∧ (A↑k,p+1(col[r[kp]])→ I(i, col[r[kp]]))

=
∧

j∈Y ′′ ⋃(Y−Y ′′)

(A↑k,p+1(j)→ I(i, j)) ∧ (r[kp]→ I(i, col[r[kp]])).

Since for i ∈ X −{k} none of r[i1] appears in col[r[kp]] which gives I(i, col[r[kp]]) 6=
r[i1]. Also Ak,p ∈ LX is a fix point of ↑↓ and Ak,p(i) = Ak,p+1(i) for i ∈ X − {k}.
Thus for all i ∈ X − {k},∧

j∈Y ′′ ⋃(Y−Y ′′)

(A↑k,p+1(j)→ I(i, j)) = r[i1], i.e., A↑↓k,p+1(i) = Ak,p+1(i).

Hence Ak,p+1 is a fix point of ↑↓.
Proof is similar for analogous part. �

In context table 1, if we consider the object 2 ∈ X, then for each p′ ∈ {1, 2, 3},
we can easily check that each A2,p′ ∈ LX is a fix points of ↑↓, where

A2,p′(i) =

{
r[i1] for i ∈ X − {2}
r[2p′] if i = 2

i.e., A2,1 = {0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.3/5}, A2,2 = {0.2/1, 0.7/2, 0.1/3, 0.2/4, 0.3/5},
and A2,3 = {0.2/1, 0.8/2, 0.1/3, 0.2/4, 0.3/5} are fix points of ↑↓. Now we can see

720



Partha Ghosh et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 5, 713–728

that for i ∈ X − {2} none of r[i1] appears in col[r[23]] = 1. Thus using Rule 2,
A2,4 ∈ LX defined by

A2,4(i) =

{
r[i1] for i ∈ X − {2}
r[24] if i = 2

i.e., A2,4 = {0.2/1, 0.9/2, 0.1/3, 0.2/4, 0.3/5} is a fix point of ↑↓.

Rule 3. Let 〈X,Y, I〉 be an L-context, k ∈ X be an object, and p < n be a posi-
tive integer. Also, let for each p′ ∈ {1, 2, ...., p}, Ak,p′ ∈ LX is a fix point of ↑↓, where

Ak,p′(i) =

{
r[i1] for i ∈ X − {k}
r[kp′] if i = k.

If for i ∈ X − {k} some r[i1] appears in the column of r[kp] but each of these r[i1]
are less than r[kp], then Ak,p+1 ∈ LX defined by

Ak,p+1(i) =

{
r[i1] for i ∈ X − {k}
r[k(p + 1)] if i = k

is a fixpoint of ↑↓.
Analogously, let 〈X,Y, I〉 be an L-context, l ∈ Y be an attribute, and q < m be a

positive integer. Also, let for each q′ ∈ {1, 2, ...., q}, Bl,q′ ∈ LY are fix points of ↓↑,
where

Bl,q′(j) =

{
c[1j] for j ∈ Y − {l}
c[q′l] if j = l.

If for j ∈ Y − {l} some c[1j] appears in the row of c[ql] but each of these c[1j] are
less than c[ql], then Bl,q+1 ∈ LY defined by

Bl,q+1(i) =

{
c[1j] for j ∈ Y − {l}
c[(q + 1)l] if j = l

is a fixpoint of ↓↑.

Proof. To show that Ak,p+1 is a fixed point of ↑↓, we need to prove A↑↓k,p+1 = Ak,p+1.
Since for each j ∈ Y ,

A↑k,p+1(j) =
∧
{r[11]→ I(1, j), ...., Ak,p+1(k)→ I(k, j), ...., r[m1]→ I(m, j)}

and

r[i1] ≤ I(i, j) for i ∈ X − {k},

for all j ∈ Y , r[i1] → I(i, j) = 1 for i ∈ X − {k}. Again Ak,p+1(k) = r[k(p + 1)].
If r[k(p + 1)] = r[kp], then the rule follows. We assume that r[k(p + 1)] 6= r[kp].
Then Ak,p+1(k) > r[kp′] for each p′ ∈ {1, 2, ...., p}. Now, for each p′ ∈ {1, 2, ...., p},
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A↑k,p+1(col[r[kp′]]) = r[kp′]. Let Y ′ = {col[r[kp′]] ∈ Y | p′ ∈ {1, 2, ...., p}}. Then

A↑k,p+1(j) = 1 for j ∈ Y − Y ′. Thus

A↑↓k,p+1(k) =
∧

j∈Y=Y ′ ⋃{Y−Y ′}

(A↑k,p+1(j)→ I(k, j))

=
∧

j∈Y−Y ′

(A↑k,p+1(j)→ I(k, j)) ∧
∧

j∈Y ′

(A↑k,p+1(j)→ I(k, j))

=
∧

j∈Y−Y ′

(1→ I(k, j)) ∧
∧

j∈Y ′

(r[kj]→ I(k, col[r[kj)]])

=
∧

j∈Y−Y ′

(1→ I(k, j)) ∧
∧

j∈Y ′

(r[kj]→ r[kj])

=
∧
{1→ r[k(p + 1)], 1→ r[k(p + 2)], ...., 1→ r[kn]} ∧ 1

= r[k(p + 1)] = Ak,p+1(k).

Since corresponding to some or all i′ ∈ X − {k}, r[i′1] < I(k, col[r[i′1]]) = r[kp](6=
r[k(p+ 1)]). Without loss of generality, we assume col[r[i′1]] = j′ ∈ Y . This implies

that I(i′, j′) = r[i′1] and I(k, col[r[i′1]]) = I(k, j′) = r[kp]. Also, A↑k,p+1(j′) =

r[ip] and r[kp] → I(i′, j′) = r[kp] → r[i′1] = r[i′1]. Thus A↑↓k,p+1(i′) = r[i′1] =

Ak,p+1(i′). Also, since col[r[kp′]] 6= col[r[i1]] for remaining i ∈ X − {k}, i 6= i
′
,

A↑k,p+1(col[r[ip]]) = 1 and A↑↓k,p+1(i) = r[i1] = Ak,p+1(i) for i ∈ X − {k}, i 6= i
′
. So

Ak,p+1 is a fixed point of ↑↓.
Proof is similar for analogous part. �

In context table 1, if we consider the object 5 ∈ X, then for p′ ∈ {1} we can easily
check that A5,1 ∈ LX , where

A5,1(i) =

{
r[i1] for i ∈ X − {5}
r[51] if i = 5

i.e., A5,1 = {0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.3/5} is a fixed point of ↑↓.
Now we can see that r[31] and r[41] appears in col[r[51]] = 4 and both of them are
less than r[51]. Therefore A5,2 ∈ LX defined by

A5,2(i) =

{
r[i1] for i ∈ X − {5}
r[52] if i = 5

i.e., A5,2 = {0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.4/5} is a fix point of ↑↓. Since r[52] =
r[53] = 0.4, we may select any of them as second smallest element of the fifth row
irrespective of any choice.

Rule 4. Let 〈X,Y, I〉 be an L-context, k ∈ X be an object, and p < n be a positive
integer. Also, let for each p′ ∈ {1, 2, ...., p}, Ak,p′ ∈ LX are fix points of ↑↓, where

Ak,p′(i) =

{
r[i1] for i ∈ X − {k}
r[kp′] if i = k.

If for i ∈ X − {k} some r[i1] appears in the column of r[kp] and none of these r[i1]
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are greater than r[kp] but may be equal with r[kp], then Ak,p+1 ∈ LX defined by

Ak,p+1(i) =

 r[i2] for i ∈ X ′ = {i ∈ X − {k}|col[r[i1] = col[r[kp]] and r[i1] = r[kp]}
r[k(p + 1)] if i = k
r[i1] for i ∈ X − ({k} ∪X ′)

is a fixpoint of ↑↓.
Analogously, let 〈X,Y, I〉 be an L-context, l ∈ Y be an attribute, and q < m be a

positive integer. Also, let for each q′ ∈ {1, 2, ...., q}, Bl,q′ ∈ LY are fix points of ↓↑,
where

Bl,q′(j) =

{
c[1j] for j ∈ Y − {l}
c[q′l] if j = l

If for j ∈ Y − {l} some or all c[1j] appears in the row of c[ql] and none of these
c[1j] greater than c[ql] but may be equal with c[1j], then Bl,q+1 ∈ LY defined by

Bl,q+1(i) =

 c[2j] for j ∈ Y ′ = {j ∈ Y − {l}|row[c[1j]] = row[c[ql]] and c[1j] = c[ql]}
c[(q + 1)l] if j = l
c[1j] for j ∈ Y − ({l} ∪ Y ′)

is a fixpoint of ↓↑.

Proof. To show that Ak,p+1 is a fixed point of ↑↓, we need to prove A↑↓k,p+1 = Ak,p+1.

Since for each j ∈ Y , r[i1] ≤ I(i, j) for i ∈ X − X ′, where X ′ = {i ∈ X −
{k}|col[r[i1] = col[r[kp]] and r[i1] = r[kp]}, for all j ∈ Y , r[i1] → I(i, j) = 1,
where i ∈ X − X ′. Again, Ak,p+1(k) = r[k(p + 1)], and Ak,p+1(i) = r[i2] for
i ∈ X ′ = {i ∈ X − {k}|col[r[i1] = col[r[kp]] and r[i1] = r[kp]}. For i ∈ X ′ if
r[kp] = r[k(p + 1)] = r[i2], then obviously Ak,p+1 is a fix point of ↑↓. Consider
the case, when both of r[k(p + 1)] and r[i2] are not equal to r[kp](= r[i1]), where

i ∈ X ′. In this case, A↑k,p+1(col[r[kp]]) = r[i1] = r[kp], i ∈ X ′. Without loss of

generality, we assume that r[kp] 6= r[k(p + 1)]. Then A↑k,p+1(col[r[kp′]]) = r[kp′]

for each p′ ∈ {1, 2, ...., p − 1}. Let Y ′ = {col[r[kp′]] ∈ Y | p′ ∈ {1, 2, ...., p}}.
Then A↑k,p+1(j) = 1 for j ∈ Y − Y ′, j 6= col[r[kp]]. Again if i ∈ X ′, then

r[i1] = I(k, col[r[i1]]) = r[kp]. We put col[r[i1]] = j′. Thus

A↑↓k,p+1(k)

=
∧

j∈Y=Y ′ ⋃(Y−Y ′)
⋃
{col[r[kp]]}

(A↑k,p+1(j)→ I(k, j), r[kp]→ I(k, col[r[kp]]))

=
∧

j∈Y−Y ′

(A↑k,p+1(j)→ I(k, j)) ∧
∧

j∈Y ′

(A↑k,p+1(j)→ I(k, j)) ∧ 1

=
∧

j∈Y−Y ′

(1→ I(k, j)) ∧
∧

j∈Y ′

(r[kj]→ I(k, col[r[kj)]])

= r[k(p + 1)] ∧ 1

= r[k(p + 1)] = Ak,p+1(k).
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For i ∈ X ′,

A↑↓k,p+1(i)

=
∧
{1→ I(i, 1), ...., r[kp]→ I(i, j′) = r[i1], ...., 1→ I(i, n)}

= r[i2]

and

A↑↓k,p+1(i) =
∧

j∈Y
(I(i, j)) = r[i1] = Ak,p+1(i) for remaining i ∈ X −X ′.

So Ak,p+1 is a fix point of ↑↓.
Proof is similar for analogous part. �

In context table 1, if we want to compute fix points considering the attribute
2 ∈ Y , then for q′ ∈ {1} we can easily check that B1,1 ∈ LY , where

B2,1(j) =

{
c[1j] for j ∈ Y − {2}
c[12] if j = 2

i.e., B2,1 = {0.2/1, 0.2/2, 0.2/3, 0.1/4, 0.2/5} is a fix point of ↓↑.
Now we can see that both c[11] and c[14] appears in row[c[12]] = 3, but c[11] =

c[12]. Thus B2,2 ∈ LY defined by

B2,2(i) =

 c[21] for j ∈ Y ′ = {1}
c[22] for j = 2
c[1j] for j ∈ Y − {2} ∪ Y ′}

i.e., B2,2 = {0.3/1, 0.6/2, 0.2/3, 0.1/4, 0.2/5} is a fix point of ↓↑.

Rule 5. Let 〈X,Y, I〉 be an L-context, k ∈ X be an object, and p < n be a positive
integer. Also, let for each p′ ∈ {1, 2, ...., p}, Ak,p′ ∈ LX are fix points of ↑↓, where

Ak,p′(i) =

{
r[i1] for i ∈ X − {k}
r[kp′] if i = k.

If for i ∈ X − {k} some or all r[i1] appears in the column of r[kp] and at least one
of these r[i1], say r[i′1](6= r[i′2]), i′ ∈ {X} − {k} is greater than r[kp], then for any
p′ ∈ {p + 1, ...., n} the set Ak,p′ ∈ LX defined by

Ak,p′(i) =

{
r[i1] for i ∈ X − {k}
r[kp′] if i = k

is not a fixpoint of ↑↓
Analogously, let 〈X,Y, I〉 be an L-context, l ∈ Y be an attribute, and q < m be a

positive integer. Also, let for each q′ ∈ {1, 2, ...., q}, Bl,q′ ∈ LY are fix points of ↓↑,
where

Bl,q′(j) =

{
c[1j] for j ∈ Y − {l}
c[q′l] if j = l.
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If for j ∈ Y − {l} some or all c[1j] appears in the row of c[ql] and and at least one
of these c[1j], say c[1j′](6= c[2j′]), j′ ∈ {Y } − {l} greater than c[ql], then for any
q′ ∈ {q + 1, ....,m} the set Bl,q+1 ∈ LY defined by

Bl,q′(j) =

{
c[1j] for j ∈ Y − {l}
c[q′l] if j = l

is not a fixpoint of ↓↑.

Proof. Since corresponding to some i′ ∈ X − {k}, r[i′1] > I(k, col[r[i′1]) = r[kp](6=
r[kp + 1]). Without loss of generality, we assume col[r[i′1]] = j′ ∈ Y . This implies
that I(i′, j′) = r[i′1] and I(k, col[r[i′1]]) = I(k, j′) = r[kp]. Since for all j ∈ Y ,

r[i′1]→ I(i′, j) = 1 for i′ ∈ X −{k}, for Ak,p+1(k) = r[k(p+ 1)], A↑k,p+1(j′) = r[i′p]

and r[i′p](= A↑k,p+1(j′)) → r[i′1] = 1. Thus A↑↓k,p+1(i′) 6= r[i′1] = Ak,p+1(i′). So for

any p′ ∈ {p + 1, ...., n}, the set Ak,p′ ∈ LX defined by

Ak,p′(i) =

{
r[i1] for i ∈ X − {k}
r[kp′] if i = k

is not a fixpoint of ↑↓
Proof is similar for analogous part. �

In context Table 1, if we consider the object 1 ∈ X, then for p′ ∈ {1} we can easily
check that A1,1 ∈ LX , where

A1,1(i) =

{
r[i1] for i ∈ X − {1}
r[11] if i = 1

i.e., A1,1 = {0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.3/5} is a fixpoint of ↑↓
Now we can see that r[21](6= r[22]) appears in col[r[11]] = 3, and also r[21] > r[11].
Therefore A1,2 ∈ LX defined by

A1,2(i) =

{
r[i1] for i ∈ X − {1}
r[12] if i = 1

i.e., A1,2 = {0.4/1, 0.3/2, 0.1/3, 0.2/4, 0.3/5} can not be a fix point of ↑↓.

4. Discussion

Consider the fuzzy context given by Table 1, where truth values have been chosen
randomly from [0,1]. Since for any L-context 〈X,Y, I〉, Ai,1 ∈ LX , where Ai,1(i) =
r[i1] for i ∈ X is a fix point of ↑↓, and Bj,1 ∈ LY , where Bj,1(j) = c[1j] for j ∈ Y is
a fix point of ↓↑. Therefore we can generate fix points of ↑↓ for each i ∈ X starting
with Ai,1 ∈ LX , and fix points of ↓↑ for each j ∈ Y starting with Bj,1 ∈ LY . Now
form the context table, we can see that because of rule 5 no fix point of ↑↓ can be
generated corresponding to the objects 1 ∈ X, 3 ∈ X, and 4 ∈ X. Corresponding to
2 ∈ X, the fix points A2,2, A2,3 ∈ LX are generated using Rule 3, and the fix points
A2,4, A2,5 ∈ LX are generated using rule 2. Corresponding to 5 ∈ X, the fix points
A5,2 = (A5,3) ∈ LX are generated using Rule 3, and the fix points A5,4, A5,5 ∈ LX
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are generated using Rule 2. Now starting with Bj,1 ∈ LY , we generate fix point
B1,2 of ↓↑ corresponding to the attribute 1 ∈ Y using Rule 4. No more fix point
can be generated corresponding to the attribute 1 ∈ Y using the above rules, since
col[c[12]] = col[c[21]] and c[12] > c[21]. Corresponding to the attribute 2 ∈ Y , the
fix point B2,2(= B1,2) ∈ LY is generated using Rule 4, the fix points B2,3, B2,4 ∈ LY

are generated using Rule 3, and B2,5 ∈ LY is generated using Rule 2. Corresponding
to the attribute 3 ∈ Y , the fix point B3,2(= B1,2 = B2,2) ∈ LY is generated using
Rule 2, the fix points B3,3 is generated using Rule 4, B3,4(= B3,3) ∈ LY is generated
using again the Rule 2. Corresponding to the attribute 4 ∈ Y no fix point can be
generated because of Rule 5. Lastly, corresponding to the attribute 5 ∈ Y , the fix
point B5,2 ∈ LY of ↓↑ is generated using Rule 2, the fix points B5,3 is generated using
Rule 3, B5,4, B5,6 ∈ LY are generated using again the Rule 2. In previous section we
have already discussed that the fix points A1, A2, A3, A4, A5 of ↑↓ corresponding to
each attribute j ∈ Y , and the fix points B1, B2, B3, B4, B5 of ↓↑ corresponding to
each object i ∈ X can be obtained using Rule 1. All the fuzzy concepts corresponding
to the above fix points are listed below, where a fuzzy concept corresponding to any
fix point is denoted as C(fixpoint).

1. C(Ai,1) = 〈{0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.3/5}, {1/1, 1/2, 1/3, 1/4, 1/5}〉, i ∈ X
2. C(A2,2) = 〈{0.2/1, 0.7/2, 0.1/3, 0.2/4, 0.3/5}, {1/1, 1/2, 0.3/3, 1/4, 1/5}〉
3. C(A2,3) = 〈{0.2/1, 0.8/2, 0.1/3, 0.2/4, 0.3/5}, {1/1, 1/2, 0.3/3, 0.7/4, 1/5}〉
4. C(A2,4) = 〈{0.2/1, 0.9/2, 0.1/3, 0.2/4, 0.3/5}, {0.8/1, 1/2, 0.3/3, 0.7/4, 1/5}〉
5. C(A2,5) = C(B2)

= 〈{0.2/1, 1/2, 0.1/3, 0.2/4, 0.3/5}, {0.8/1, 1/2, 0.3/3, 0.7/4, 0.9/5}〉
6. C(A5,2 = A5,3)

= 〈{0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.4/5}, {1/1, 1/2, 1/3, 0.3/4, 1/5}〉
7. C(A5,4) = 〈{0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.5/5}, {1/1, 1/2, 0.4/3, 0.3/4, 0.4/5}〉
8. C(A5,5) = 〈{0.2/1, 0.3/2, 0.1/3, 0.2/4, 0.8/5}, {0.5/1, 1/2, 0.4/3, 0.3/4, 0.4/5}〉
9. C(A1) = 〈{0.9/1, 0.8/2, 0.2/3, 0.3/4, 0.5/5}, {1/1, 0.7/2, 0.2/3, 0.1/4, 0.2/5}〉
10. C(A2) = C(B2,5)

= 〈{0.7/1, 1/2, 0.2/3, 0.6/4, 0.8/5}, {0.3/1, 1/2, 0.2/3, 0.1/4, 0.2/5}〉
11. C(A3) = 〈{0.2/1, 0.3/2, 0.2/3, 0.3/4, 0.4/5}, {1/1, 1/2, 1/3, 0.1/4, 0.2/5}〉
12. C(A4) = 〈{0.4/1, 0.7/2, 0.1/3, 0.2/4, 0.3/5}, {1/1, 1/2, 0.2/3, 1/4, 1/5}〉
13. C(A5) = C(B5,5)

= 〈{1/1, 0.9/2, 0.3/3, 0.2/4, 0.4/5}, {0.2/1, 0.2/2, 0.2/3, 0.1/4, 1/5}〉
14. C(Bj,1) = 〈{1/1, 1/2, 1/3, 1/4, 1/5}, {0.2/1, 0.2/2, 0.2/3, 0.1/4, 0.2/5}〉, j ∈ Y
15. C(B1,2 = B2,2 = B3,2)

= 〈{1/1, 1/2, 0.2/3, 1/4, 1/5}, {0.3/1, 0.6/2, 0.2/3, 0.1/4, 0.2/5}〉
16. C(B2,3) = 〈{1/1, 1/2, 0.2/3, 0.6/4, 1/5}, {0.3/1, 0.7/2, 0.2/3, 0.1/4, 0.2/5}〉
17. C(B2,4) = 〈{0.7/1, 1/2, 0.2/3, 0.6/4, 1/5}, {0.3/1, 0.8/2, 0.2/3, 0.1/4, 0.2/5}〉
18. C(B3,3) = 〈{0.2/1, 1/2, 0.2/3, 1/4, 1/5}, {0.3/1, 0.6/2, 0.3/3, 0.1/4, 0.2/5}〉
19. C(B5,2 = B3)

= 〈{1/1, 1/2, 0.3/3, 0.2/4, 1/5}, {0.2/1, 0.2/2, 0.2/3, 0.1/4, 0.3/5}〉
20. C(B5,3 = 〈{1/1, 1/2, 1/3, 0.2/4, 1/5}, {0.2/1, 0.2/2, 0.2/3, 0.1/4, 0.4/5}〉
21. C(B5,4) = 〈{1/1, 1/2, 0.3/3, 0.2/4, 0.4/5}, {0.2/1, 0.2/2, 0.2/3, 0.1/4, 0.9/5}〉
22. C(B1) = 〈{1/1, 0.8/2, 0.1/3, 0.2/4, 0.3/5}, {0.9/1, 0.7/2, 0.2/3, 0.4/4, 1/5}〉
23. C(B4) = 〈{0.2/1, 1/2, 0.1/3, 1/4, 1/5}, {0.3/1, 0.6/2, 0.3/3, 0.2/4, 0.2/5}〉
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24. C(B5) = 〈{0.2/1, 0.3/2, 0.1/3, 0.2/4, 1/5}, {0.5/1, 0.8/2, 0.4/3, 0.3/4, 0.4/5}〉

From above list we observe that there are several fix points of ↑↓, which are equal,
and also several fix points of ↓↑, which are equal. It also may be possible that for
a fix point of ↑↓ there exists a fix point of ↓↑ both of which produce same fuzzy
concept.

5. Conclusion

This paper presents the rules, along with justification of their correctness for
computing the fix points of the fuzzy closure operators ↑↓ and ↓↑ from an L-context.
Based on Gödel operation on [0, 1], this is the first contribution on computing the
fix points of the operators ↑↓ and ↓↑, directly from an L-context. As our rules based
on Gödel operation on [0, 1], these rules may be used for generating all the one-
sided fuzzy concepts and proto-fuzzy concepts. In our future work we will develop
algorithms for generating the all one-sided fuzzy concepts and proto-fuzzy concepts
by using the above rules. Our future research will also be directed towards the
development of an algorithm for computing the fix points together with the lattice
order on the set of the fix points of the closure operators ↑↓ and ↓↑.
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