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1. INTRODUCTION, DEFINITIONS AND NOTATIONS

The space of bicomplex numbers Cs is the first in an infinite sequence of mul-
ticomplex spaces which are the generalizations of the space of complex numbers C.
We write regular complex number as z = x + iy where x and y are real numbers and
2
¢ = —1.

To start our paper we just recall the following definitions:

Definition 1.1. The set of bicomplex numbers is defined as :
Co ={w :w=po +i1p1 + iap2 + i1iaps, pr € R,0 < k < 3}.
Since each elements in Co can be written as

w = po + i1p1 + iz (p2 +i1p3)
or
w = 21 + 1229,
we can express Co as
Cy = {w:z1 + 1929 | 21,22 € (C},

where z1 = pg +91p1, 22 = p2 +41p3 and i1, 12 are independent imaginary units such
that i3 = —1 = 43. the product of i; and iy defines a hyperbolic unit j such that
j2 = 1. The products of all units is commutative and satisfies

t1ie = J, i1J = —i2, 12j = —i1.
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Definition 1.2. Three kinds of conjugate can be defined on bicomplex numbers.
The bicomplex conjugates w' of w are defined as

(1) wtl = ,271 + igiz, (11) ’wt2 =Zz1 — iQZQ, and (111) wt3 = ,271 — igig,
where the bar (7) denotes the complex conjugate in C.

Definition 1.3. With each kind of conjugate, one can define a specific bicomplex
modulus in the following manner:

() fwlt, = wot = (12 - 2f) + 2R (25),
i) lwi = waw?=22+22and
2 1 2
(i) [wlt, = wat = (]2 + |2) + 29 (212) -
Definition 1.4. For a bicomplex number w = z; + i325, the norm denoted as

[|lw = 21 + i222]|| is defined in the following manner:
1
(11 + 122%)

1
<|Z1 - i12’2|2 + |21 +i122|2> ’

21 + d222]]

2
When w = pg + i1p1 + dop2 + i1i9p3, for pr € R,0 < k < 3 then

1
|w|l = (b5 +pT +p3+13)° .

Remark 1.5. We observe that the bicomplex conjugates w' | k = 1,2,3 of w
satisfy the following properties :

(1) wtfck =w, (2) (w iwg)t" = w’i’“ iwé"‘ ,

tr tr
. . w1 w
@(mwwW=w?w@w®(w> = o
2 Waq

(5) |wl,, = |w'

and (6) [w|| = ||w']|.

|tk

The idea of fuzzy subset p of a set X was primarily introduced by L.A. Zadeh [9]
as a function p : X — [0, 1]. Fuzzy set theory is a useful tool to describe situations
in which the data are imprecise or vague. Fuzzy sets handle such situation by
attributing a degree to which a certain object belongs to a set. Among the various
types of fuzzy sets, those which are defined on the universal set of real numbers or
complex numbers under certain conditions, be viewed as fuzzy real numbers or fuzzy
complex numbers respectively. Several researchers have done extensive works in the
field of fuzzy complex numbers. For references one can see [2, 3, 4, 8, 9]. Now we
wish to give a suitable definition of fuzzy bicomplex number in the following manner:

Definition 1.6. A fuzzy set w; may be defined by its membership function p (w | wy)
which is a mapping from the bicomplex numbers Cs into [0, 1] where w is a regular
bicomplex number as w = 21 41229, is called a fuzzy bicomplex number if it satisfies
the following conditions:
1. p(w | wy) is continuous,
682



S. K. Datta et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 5, 681-700

2. An a-cut of wy which is defined as w$ = {w | u(w | wy) > a}, where 0 < a <
1, is open, bounded, connected and simply connected and

3. w} = {w| p(w|wy) =1} is non-empty, compact, arc wise connected and
simply connected.

If wf where 0 < a < 1 is open and connected then it is automatically arc wise
connected. The simply connected assumption is to assure that w$, 0 < a <1, will
not contain any holes. w} being non-empty means that all fuzzy bicomplex numbers
are normalized i.e., pt (w | wy) =1 for some w.

In the sequel we now present some definitions that are also used in this paper.

Definition 1.7. The bicomplex conjugates w;’“ | £k =1,2,3 of wy may be defined

0 p(wlwy) = (ot w),
(i) p (w | w?) = p(w"”|wy) and
(iil) (w | wj;") = p(w" | wy).

where w* | k = 1,2, 3 are the bicomplex conjugates of w stated in Definition 1.2.

The bicomplex conjugates w}"‘ | k =1,2,3 of a fuzzy bicomplex number wjy is also
a fuzzy bicomplex number because the mappings w = 2 + iz — W' = 27 + i22,
W= 21 +i929 = W2 = 27 —i92ze and w = 21 +i029 — W = 2] —ig2y are continuous.

Definition 1.8. The modulus |wy|, [k =1,2,3 of a fuzzy bicomplex number wy
may be defined by

() pwly o) = sup{u<wwf>|w|t1=[ (I1f* = l=l*)} +2ia% (212)|

Nl

[Z%‘FZS]%} and
[ (121 + 1) +zjs(zlzg)}5},

Definition 1.9. The norm |Jwy|| of a fuzzy bicomplex number wy may be defined
in the following manner:

(i) g (wles | wgl) = sup {p(w | wp) | fwl,

(i) g1 (wley | Jog]) sup{mw | wg) | ol

p(r [ lwgl]) = sup {p (w [ wp) | Jwl| =7},

where 7 is the norm of w.

If we consider f (w1, ws) = y be any mapping from Cs x Cy into Cy, then we
may extend f to Co x Cy into Cy using the extension principle where Cy denotes
the space of fuzzy bicomplex numbers. So we may write f (w P wfz) =yy if

w(y | yp) = sup {A (wr,w2) | f (w1, w2) =y},

where

A(wlan) = mln{/u(wl | wfl)? :u(wQ | wa)} .
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One obtains yy = w, +wy, or yy = w, -wy, by using f(wi,wz) = w1 + w2
or f(wy,wz) = wi - wy respectively. For subtraction, we first define —w, in the
following manner:

pw | —w,) = p(-w | w,),
and then set
Wy — Wy, = Wy, + (7wf2) .

We also define the reciprocal wf_1 of w, as

p(w | wrh) = p(w™ [ w,) .
Now we consider some open surface centered at 0 (0 + 410 4 i20 + i1i20) disjoint
from w? CIf w? is not bounded away from zero, then w;l remains undefined. When

0 belongs to supp (wf) , then supp (wf_l) will not be bounded and by our definition
of fuzzy bicomplex numbers, wf_1 will not be fuzzy bicomplex number.

For the division of two fuzzy bicomplex numbers w, and wy,, we may write
w
— e w;zl.
Wi,

Next we wish to give an alternative definition of fuzzy bicomplex number in terms
of fuzzy complex numbers in the following way:

Definition 1.10. If z, and zy, are any two fuzzy complex numbers with member-
ship functions u(z1 | z, ) and p(z2 | 2, ) respectively, then

wy =2z, + 122y,
is a fuzzy bicomplex number with membership function
p(w | wy) = min (/1,(21 | Zfl) s p(22 | Zfz))
where w = z1 + 9225.

In this paper we wish to establish some few results related to fuzzy bicomplex
numbers on the basis of its definitions stated above.

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

[e3

Lemma 2.1 ([1]). If z; be any fuzzy complex number then |z;|" = |2¢| where

0 <a <1 and |zf| is a truncated real fuzzy number.

Lemma 2.2 ([5]). If M and N be any two real fuzzy numbers then (M + N)* =
M*+ N® and if M > 0,N >0 then (M.N)* = M*. N .
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3. MAIN RESULTS

In this section we present the main results of the paper.

Theorem 3.1. Let wy ,wy,,....wy, be any n number of fuzzy bicomplex numbers.
Also let B = wy, +wy, + ... +wy, . Then for any o, 0 < v < 1,
A% = B* .

holds where
A% = {wr +wa + ... Fws | (wr, wa,..wy) € WF, X WF, X o x W}

Proof. Case I. Let us suppose 0 < a < 1.
Now let

(3.1) wy +we + ... +w, =w € B*.
Then it follows from (3.1) that
A(wi,we ..cwp) >aas p(w| B)>a.
This implies that
plwr | w, ) > a, p(ws |wp,) > a,---and p(w, |wy,) >
which implies that

« « (e}
(w1, wa,...wy,) € wh X WE, X o X W

(3.2) ie, we B*=we A*.
Again let us suppose that
(3.3) wy + we + ... +w,, =w €AY

Therefore from (3.3) we obtain that
1 (wy | wfl) > a, p(we |wg,) > a,-- - and p(wy, | wy,) > a

which implies that
A (w1, we,.. wy) > .
Therefore from above it follows that u (w | B) also exceeds o and so

(3.4) weA*=we B*.
Thus from (3.2) and (3.4) we get that
(3.5) A*=B%for0<a<1.

Case II. Let a=1.

We may find n number of fuzzy bicomplex numbers w;,ws,... and w, so that
wy + we + ... + w, =w and w € B! .

We can also find w1, in supp (wf1 ), W, in supp (wy,) -+ and wyy, in supp (wfn)
so that wy, = +wy,  +....+wys, = w where m =2,3,4,----- and

1
A(wr,we,coywy,) >1—— .
m
Since the supports are compact we may choose a subsequence wim,, — w1, Wam, —
wy ++- and Wiy, — wy, with wy +wa+...+w, = w and A (wy, ws, ...,w,) > 1 because
A is continuous.
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This implies that

wy € wy,, Wy €Wy, Wy € WY, .
So
(3.6) weB'=we A .
Also let

wy +ws + ... +w, =w e A
which implies that
A (wy,we, ..., w,) =1.

Therefore from above it follows that

p(w| B) =1
(3.7) ie,we A =we B .
Now from (3.6) and (3.7) we obtain that
(3.8) A“=BYfora=1.
Thus the theorem follows from (3.5) and (3.8) . O
Theorem 3.2. Let wy, ,wy,,....wy, be any n number of fuzzy bicomplex numbers.
Also let us suppose M* = {w1 CWg e Wy | (W1, w2, W) € WE X WE, X X w?n}
and D = wyg, -wy, - ... -wy, , then for 0 < a <1

M = D" .

Proof. Case I. First of all we assume that 0 < a <1 .

Also let w € M.

Therefore we may find n number of fuzzy bicomplex numbers wy, wy ... w, soO
that w1 - Wa... * Wy = W.

Now we obtain from above that

W (wk | wfk) >afork=1,2..n
which implies that
A(wl,wl...wn) > o .
Thus it follows from above that p (w | D) exceeds « and so
(3.9) weM*=weDY.

Again suppose that w € D% where w = wy - wa... - Wy, .
Then from above we get that

A (w1, wg,...wy,) > e since p(w | D) > «
ie., i (wk | wfk) >afork=1,2..n,
which implies that

(w1, wa,..wy,) € W X W, X e X WE

(3.10) ie, weD¥=we M.
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Thus from (3.9) and (3.10) we get that
(3.11) M*=D%for0<a<1l.

Case II. Let a=1.

Now let wy - wa... - w, = w € M where wy, ws ...and w,, are n number of fuzzy
bicomplex numbers.

Hence

A(wl,wgﬁ...wn) =1.

So we get from above that

p(w| D) =1
(3.12) ie,weM'=weD'.
Also suppose that
Wy Wy - oWy, =w € DY
Therefore we can find wy,, in supp (wfl) , Wam in supp (wy,) - - - and wyy, in
supp (wy, ) so that wip, - Wom, - ...w2m = w where m =2,3,4,----- and
1
A (Wi, Womyy ooy Wiy ) > 1 — —
m
As the supports are compact, we may choose a subsequence wim,, — Wi, Wam, — W
. and Wy, — W, with wy - wsy - ... - w, = w and A (wy, wa, ..., w,) > 1 because A
is continuous.
Thus
wy € w}k fork=1,2,....n -
So
(3.13) we D' =we M.
Now from (3.12) and (3.13) we get that
(3.14) M*=D%fora=1.
Therefore the theorem follows from (3.11) and (3.14) . O

Remark 3.3. In view of Theorem 3.1 and Theorem 3.2 it can also be said that
(wf1 +wyp, + ...+ wf")a = wjfl + w}lz + wfp‘ and

(wy, ~wp - ewp, )" = W wf - wf for0<a <1,

Also for bicomplex conjugates w;" | k=1,2,3 of a fuzzy bicomplex number wy,
(w;k) = (w?)t" holds for any a with 0 < a <1.

Theorem 3.4. let us suppose B = wy, +wy, +.... +wy, or B=wy -wyp, ... Wy,
where Wy, , Wy,,.... and wy, are any n number of fuzzy bicomplex numbers. Also
suppose by, (b, € BY) converges to b and 11 (by, | B) converges to p in [0,1] . Then
pb|B)=p-
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Proof. Suppose B = wy, +wy, + ... + wy,.
Now for every e (> 0) there exists wy, in w?l
so that wi,, + waym + ... + Wpm = by, and

1 (b | B) > A (Wi, Womny oevy Win ) > 14 (b | B) — € .

, Woy in w% ... and Wy, in w?
. n

Now all the w1y, Wom, ..., W and by, belong to compact sets.
So we may choose a subsequence so that wi,x — w1, Womk — Wa, ... Wpmk — Wy
and b, — b where wy + ws + ... + w,, = b and obviously

pZA('LUl,/U)Q,...,wn) >p_‘€7

because A is continuous.
As ¢ is arbitrary, we have from above that

p=A(wy,wa,...,;wy),
which implies that
p|[B)=p.
This proves the first part of the theorem.
Analogously one may easily prove the second part of the theorem for B =

wy, - Wy, - ... - wy, and hence the proof is omitted. 0
Theorem 3.5. Let wy, ,wy,,....wy, be any n number of fuzzy bicomplex numbers
Also let B = wy, +wyp, + ... +wy, or B = wy, -wy, - ....-wy,. Then for any

a(0<a< 1), B*is open.

P?”OOf. Let B = Wi +Wey + oo W4, -

Alsolet b€ BY forany a, 0 < a<1.

Now in view of Theorem 3.1, we get that (w1, ws,...w,) € W X W, X ... X WE
where b = wy +wo + ... + w,, .

Now in view of Definition 1.4, w,, W, ..., s are all open.

-
So we can choose an open interval O ({32,, €), O (ws,,¢), ... and O (wy,,, €) centered
at ws,, ws, .. and w, respectively with radius € > 0.
Therefore it is natural that O (ws ,€), O (ws,,€), ... and O (w,, ,¢) contained in
W, WE, s e and we, respectively.

So the set w1 + O (we,,€) + O (w3, €) ... + O (wy,, €) is an open set containing b.

Also in view of Theorem 3.1, the set wy + O (wa,, &) + O (w3, €) ... + O (wy,,€)
wholelyl. Wholly inside B* .

Therefore B® is open.

Hence the first part of the theorem follows.

Similarly one may easily prove the second part of the theorem for B = wy, - wy, -
... -wy, and hence the proof is omitted. 0

Theorem 3.6. If wy,,wy,,....wy, be any n number of fuzzy bicomplex numbers,
then

(1) w, +wp, + ... +wy, and
(i) w, ~wp, o wy,

are also fuzzy bicomplexr numbers.
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Proof. Let us suppose that P = w, +wp+ .. +wy,.

We have to show that w(p | P) is continuous by arguing that p, — p implies
p(pn | P) = p(p|P) .

It suffices to choose that p,, in P .

Since p (py, | P) belongs to [0, 1] there is a subsequence p (pp, | P) converging to
some p in [0,1] .

We know that {cf. p. 31, [6]}

liminf yu (p, | P) < p < limsup i (pn | P) -
Also Theorem 3.5 implies that
blpul|P)<t

is closed for all ¢.
Therefore u (p | P) is lower semicontinuous and it follows that {cf. p. 74, [7]}

liminf p (p, | P) > limsupp(p | P) .
However from Theorem 3.4 we obtain that

pplP)=p.
Hence
liminfpu(pn | P)=p=pn(p|P) .
Therefore there is a subsequence p (pn]. | P) converging to limsup i (p, | P) ( [6], p.
32).
Also Theorem 3.4 implies that

liminfpu(p | P) = p(pn | P) -
Therefore
liminf yi (pn | P) = p(p | P) =limsup p (pn | P) .
So in view of ( [6], p. 31) we have

liminf p (pn | P) = p(p| P)
and p (p | P) is continuous.

In view of Theorem 3.1, it can be easily shown that P%, 0 < o < 1 is bounded
because it is the sum of n numbers of bounded sets.

Also from Theorem 3.5 we get P® is open for all 0 < a < 1 and P! is closed
because p (p | P) is continuous.

Finally we argue that P¢ is connected, arc wise connected and simply connected
for0<a<l1.

Now w§, i =1,2,3..n are connected, arc wise connected and simply connected
and therefore W X W X .. X W s also connected, arc wise connected and simply
connects for 0 < a <1.

Also from Theorem 3.1 we get that B is the continuous image of w§, x w§, x
e X WG it follows that P® = B is also connected, simply connected and arc wise
connected for all 0 < o < 1.

Thus we have shown that P satisfies all the conditions to be a fuzzy bicomplex
number.

Hence the first part of the theorem follows.
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The proof of the second part of the theorem is similar to the first part and so it
is omitted. g

Corollary 3.7. Suppose w, and wy, be any two fuzzy bicomplex numbers . Then

(1) w, —wyg, and (i) w% are also fuzzy bicomplex numbers.
2

f1 w

Proof. As wy, is a fuzzy bicomplex number,
then —wy, is also a fuzzy bicomplex number.
Therefore w, —wy, =w, + (—wy,) is also a fuzzy bicomplex number.
This proves the first part of the corollary.

« —1
Since the mapping wy — w2_1 ;wo # 0 is continuous and (w;) = (wi) for

any o, 0 < a < 1, we see that wf;l is a fuzzy bicomplex number as wy, is a fuzy
bicomplex number.

Thus 3—2 is a fuzzy bicomplex number.

Hence the second part of the corollary follows. 0

Remark 3.8. In view of Theorem 3.1 and Corollary 3.7, it can also be said that

. «
(1) (wf1 — wa) = w?l — w?‘z and
(i Wi o wi?l Y o)
ii) = o =wi - (W for0<a<l,
wfz wa ! 2

where w, and wy, are any two fuzzy bicomplex numbers .
Remark 3.9. In view of Remark 3.3 and Theorem 3.6, one can easily prove that
addition and multiplication of fuzzy bicomplex numbers are associative and commu-
tative. The bicomplex numbers zero and 141410414204 41i20 are the additive identity
and multiplicative identity respectively and there is no additive inverse or multiplica-
tive inverse. Also the addition and multiplication of fuzzy bicomplex numbers are
defined from the extension principle, the operations of addition and multiplication
will enjoy the same basic properties which have applied for real fuzzy numbers or
fuzzy complex numbers.

Theorem 3.10. The modulus |wy|, |k =1,2,3 of a fuzzy bicomplex number wy is
a fuzzy complex number .

Proof. A fuzzy complex number z; with membership function p (2 | z7) is specified
by (z1/72 , z3/24) where (1) z1 < 22 < 23 < z4, (2) n(z | zy) is continuous and
increasing from zero to one on [z1, 22|, (3) (2| zf) is one on [22, 23], (4) p(z | z¢)
is continuous and decreasing from one to zero on [z3, z4] and (5) p (z | z5) = 0 outside
(21,24) . In the degenerate case when zq = 25 = 23 = 24 = 2, zy is a complex number
z.

Now we notice the following cases for the modulus |wy| of a fuzzy bicomplex
number wy :

(1) If 04410 + 420 + i1i20 € w? and 0+ 410 + 920 + 41920 ¢ w]lc, then z; = 0 and

u(o | Jwgl,, k= 1,2,3) €(0,1).
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(2) If0+210+220+217,20 € w} but w} 7é {0 + 210 + 120 + 21220} s then Z1 = 2 = 0
and p (0 | fwgl,, ok = 1,2,3) = 0.

(3) If ’Ll}}c = {0 + 110 + ZQO + iliQO}, then 21 = 29 = 23 = 0.

(4) If 0+ 410 + 420 4 41420 is not in w?, then \wf|tk ,k=1,2 3 is a fuzzy complex
number with z; >0 .

Thus |wyl, ,k =1,2,3 is a fuzzy complex number. O

Theorem 3.11. The norm ||wy|| of a fuzzy bicomplex number wy is a truncated real
fuzzy number.

Proof. Let
ny = inf {|Jwy|| |w€w?},
ny = inf {|wg| |wewi},
ng = sup{|wy |w€w}} and
ng = sup{|wy |w€w?«} .

Clearly p(r | |lwy]) =1 on [ng, ns] .
We now argue that p (r | ||wyl|) is continuous.
Let r,, — r with r,, € |wy||°. There is a subsequence i (rn, | |wy]) = pin [0,1].
Now Hw?‘” is open for 0 < a < 1, so |lws||” is open and {r | u(r | ||wy]) < t}is
closed for all ¢.
Hence p (r | ||wy||) is lower semicontinuous and

liminf i (r | lwell) = p (r [ lwgl]) -

As 7, in |lws]|® converging to r and u(r, | |lwy||) converging to p in [0,1] implies
p(r | wgll) = p.
This implies liminf p (r,, | ||wy]||) > p and therefore we obtain that
liminf o (rp [ lwgll) = p = p(r | {lwgl]) -

We also have a subsequence converging to lim sup and from above we get that

p(r [ fwgl]) = Timsup p (r | flwgll) -

Therefore liminf is equal to limsup which equals p (7 | |Jws||) and this function is
continuous.

Finally, we show that p (r | ||wy]|) is increasing on [n1, na| or [0, no] and decreasing
on [n3,ny).

We first argue that

(3.15) p(r | Hlwgll) = sup {(w | wyp) [ lwyll <7}

for ni <r <ngor0<r<nsgand

(3.16) p(r [ Nlwgl]) = sup {(w [ wg) | [lwy]l =7}

for n3 < r < ny.
The proof of equations (3.15) and (3.16) are similar, so we will only prove equation
(3.15).
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Suppose for some fixed value of r, there is a wy so that ||wo|| < r and p(wo | wy)
exceeds p (w | [Jwg]) .
Now we know that
{w | w] =r}Nwf = ¢ for a > p(r|[lwsl).

Also zy € w?o for some ag > i (r | lwy|) . So w§ is a subset of {w | [w[| <7}, for
a > ag, since the w§ are connected.

This implies that ny < nq, a contradiction.

Now let nqy < a1 < a3 <ngor 0 <z <x9 < ns.

We see

@y | lwpll) < p (@ [ lwgll),
since
{wlllwl <z} c{w | [lw]] < 2}
If n3 < x1 < x5 < ny then
@y [ lwpll) = p (@ [ lwgll),
because
{w [[wl] <21} D {w [ |lw] <2}
This completes the proof that ||wy| is a truncated real fuzzy number. O

Theorem 3.12. Let wy be a fuzzy bicomplex number. Then for any o, 0 < a <1
lwgl|* = [Jwf]|
where ||wy|| is a truncated real fuzzy number.

Proof. Case I. Suppose 0 < a < 1.

Also let 7 € |Jwy||”, then there exist a bicomplex number w such that ||w|| = r
and pu (w | wy) > a.

Hence
(3.17) r € |wel|* =1 € Hw?‘” .

Further let r € Hw;‘c‘

and p(w | wy) > o
This implies

, then there exist a bicomplex number w such that r = ||w||

sup {p (w [ wy) | [Jw]| =7} > a.

So
(3.18) re€ ||wf| = re wpl|” .
Thus from (3.17) and (3.18) we get that
(3.19) [wg||* = ||w§| for0<a<1.
Case II. Let o =1 .
Suppose r € w} , then there is a bicomplex number w so that r = ||w]|| and
p(w | wyp) = 1.

Therefore the supremum of all 1 (w | wy) over all w such that ||w|| = r is also one

and 7 € |Jwg|" .
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Hence
1
(3.20) r € ||wi|| = r e flwll” -
Also let r € wa||1 .
For each m = 2,3, ... there is a wy, in w§ so that [Jwy,|| = r and

1
m >]-_7,
pwn | wg) > 1= —

where w,,, belong to compact supp(wy) so there is a subsequence wy,, — w with
|lwl| =7 and p(w | wy) > 1 and thus r € Hw}”

Hence
(3.21) r€ gl = e fJug]] -
Therefore from (3.20) and (3.21) we get that
1

(3.22) well” = [Jwy]| -
Thus the theorem follows from (3.19) and (3.22) . O
Theorem 3.13. Let wy be any fuzzy bicomplex numbers, then

(@) l=wsll = [lwyll and

(1) |laws]| = la|.||lws|| wherea e R.

Proof. The meaning of the equality is that the interval ||—w¢||” is equal to the
interval |Jws||* for 0 < a < 1.
From Theorem 3.12 we get that

(3.23) I=wgll® = [[=wf = {ll-wll [ w e wf}.
Again in view of Theorem 3.12 we have
(3:24) leol® = [}l = {llwl | w € wf}.
Hence the result follows from (3.23) and (3.24) as

[—wl| = [lwl]] .

This proves the first part of the theorem.

For the second part of the theorem we have to prove the a-cuts of ||a.w;|| equal
the corresponding a-cuts of |al . [|wy|].

Now in view of Lemma 2.1 it follows from Theorem 3.12 that

laws|* = l(aws)] = [|a-wf|
(3.25) = {llaw| |wewf}.
and
(lal Jlws D = lal - fJwsl|* = lal . [[wf|
(3.26) = {lal - flwsll | we wf}.

Thus the second part of the theorem follows from (3.25) and (3.26) . O
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Theorem 3.14. Let wyi and wy, be two fuzzy bicomplex numbers, then
(@) [lwg I = llwg, ]
(@) [llws, || = llwg |
Proof. For 0 < a <1, we have
Hws Il = lweII* = lwp | = llwg])®
= wall® = llwg, 1]
= [llwf, [ = [l ]I
(3.27) = {Jlwrll — Jws | wi € w,i=1,2},

and

< wpy +wp || < flwp || + lwp || and
< wpy —wp || <Hlwp, [ + lwpll -

lwg, +we, I = [[(ws, +wg,)”||

g, + uss|
(3.28) {llwr +wa| | wi € w§,i=1,2} .
We also deduce that

(Hwopll+ lwnl)® = lwpl®+ log |
]+
(3.29) {llwi]| + lwa |l | w; € w§,i=1,2}.
Hence the result follows from (3.27) , (3.28) and (3.29) because

]l = lwel| < flwr + we|| < flwil] + [[ws] -

Similarly with the help of Theorem 3.12 one can easily established the second part
of the theorem. d

Theorem 3.15. Let wyi and wy, be two fuzzy bicomplex numbers, then
1
lwp, - wg, || <27 [lwg, [ - lwg, || -
Proof. In order to prove this theorem, we wish to show that the interval ||wg, - wy,||”

(03
is less than or equal to the interval (2% lwg, || - ||wf2||) for 0 <a <1.
From Theorem 3.12 and in view of Lemma 2.2 we get that

lwp - wpl® = (wp - wp,)
— -]
(3.30) = {llwr - we| | w; € w§,i=1,2} .
Also in view of Theorem 3.12 Lemma 2.2 we have
Uwpll - lwn® = ol g

= - o)
(3.31) = {llwill - w2l | ws € w§,i=1,2}.
Since

[[wy - wa| < 22 [l | - [Jwal]
the theorem follows from (3.30) and (3.31) . O
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In the next theorem we have established a few properties of fuzzy bicomplex
conjugate number depending on the concept of it.

Theorem 3.16. Suppose w;" | k=1,2,3 be a fuzzy bicomplex conjugate number of
a fuzzy bicomplex number wy then

ik

t
(1) wf =wp, (2) (wp Twp)™ :w;’; Tw

tr tr
th w w
(3) (wp, - wp)™ = wlt -, (4 (ﬁ) Sy

tr
Wy

and (6) s = |

5) |lw = ’wt’“
6) frl,, =|uf|,

Proof. In view of Remark 3.3 we obtain for 0 < a < 1.

(F) = () = (e’

= {wtz'k | for all w e w?} :

Again
w§ = fwpw|wy) > a}
= {w] forallwewfc‘}.
As w'" = w. Hence the first part of the theorem follows from the above.
For the second part of the theorem we have to prove the a-cuts of (wy, 4 wy,)"™

equal the corresponding a-cuts of w;’; + w;’;
Now it follows from Theorem 3.1 and Remark 3.3 that

)& ant o o\ bk
((wn £wp)™) = ((wp, Fwp)™)™ = (wf, £uf,)™
= {(w1 + wy)™ | w; € w1 = 1,2}.
and
) )& th th
(wf?) = (wf);) = (w?él) + (w});)

= {wi* twy |w; € w§,i=1,2}.

t )&
k k
(wfl + wfz)

Thus the second part of the theorem established as (w; + ’U)Q)tk = wit + wi.
We also observe that
e\ antk t
(Copwp)™) = (g, - wp) )™ = (wf, - w)"
(3.32) = {(w1 cwp)™ | wy € Wi = 1,2}.
We can also see
¢ ) ) ) o \tr o\t
(“’f’i : wf'Z) = (“’fﬁ) : (wf';) = (wf,) " - (wh,)

(3.33) = {wl - wi |w; € wf,i=12}.

From (3.32)and (3.33) we obtain that the corresponding a-cuts are equal. Hence
the third part of the theorem established
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For the fourth part of the theorem we deduce that
N O\ ¢ e o th
()Y - (@) - )
W, wg,
ay tk tr
« -1 « a\—1
= (wfl' (wfz ) ) = <wf1' (wfz) )

wy )
{( 1) |wi6w?,,z‘=1,2}.
wo v
tr @
w « [ «@ ay —1
f _ t tr—1 _ t tp—1 o ti t
( t;) = (wf'?wf'; ) —(wﬁ) -(wfi ) = (wf,) ((Wﬁ))

W,
= (w5)"™ - ((wp)™)
tr
{Zik“ﬂi Ew%,izl,Z}.
2

173
Hence the a-cuts of (Z—;l) equal the corresponding a-cuts of
2

and

-1

tk
f1
tg

w

implying two

¥
fuzzy bicomplex numbers are equal. Thus the fourth part of the the2orern follows.
Again we have from the Remark 3.3 that
|wf|?k = |wj’c‘|tk = {|w\tk | for all w € wy}.

th “ . e\ a\te
Yrl, ) TI\"Yr) |, ~ (wf) .
k k k

Hence the forth part of the theorem follows as |w|, = Jw'|, .
Again we have in view of Theorem 3.12 that

and

= {|wt’“’tk | for allewf}.

lwe||® = Hw?‘“ = {|lw|| | for allw € wy}.
We can also see
Jt " = o) = )™ = Qe o it .
Hence the last part of the theorem follows as ||w]|| = ||w'*]| . O

Theorem 3.17. Let z, and zy, are any two fuzzy complex numbers with membership
functions p(z1 | 2, ) and (22 | z,,) respectively. Also let wy be fuzzy bicomplex
number such that wy = z,, + iz, . Then for any o, 0 <o <1,

wy =2z

«
MEET

Proof. Case I. Suppose 0 < a< 1.
Also let w € wf, then

min (p(21 | 2, ) (22 | zh)) >
where w = z1 + i222 implying that both the membership functions u(z1 | z,, ) and

p(z2 | z,,) exceed o and therefore (21 , 22) € 20 X 2.
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Thus
(3.34) w e w?‘ = (21, 29) € z;"l X z:]oc‘2 where w = 21 + 4925 .
Again suppose (z1 , 22) € z‘f’l X 2.

Then the minimum of the membership functions at z; and z, respectively exceeds
a so that p(w | wy) > .

Sow € w? where w = 21 + 925 .
Therefore

(3.35) (21, 22) € z;ll X 2§, = w € w} where w = z; + 1222 .
Thus from (3.34) and (3.35) we get that

(3.36) wf =z} xzf, for0<a<1.

Case II. Let a =1 .

If (21, 22) € z}l X 2}2 then we easily see that p (w | wy) = 1 where w = 21 + 14222

Therefore w € w} .

Hence
(3.37) (71, #2) € z}l X 2}2 =we w} .
Next let w € wjlc

Then for any z; and 2o we have w = 21 + 4320 and u(z | zfl) = (22 | zf2) =1.

Hence (21 , 22) € 2, X 25, .

Thus

1 1

(3.38) wEwy = (21, 22) € 2,
Therefore from (3.37) and (3.38) we get that
(3.39) w} = 2;1 X 2}2 .
Thus the theorem follows from (3.36) and (3.39) . O

><z}2 )

Theorem 3.18. Let wy, and wy, are any two fuzzy bicomplexr numbers such that
wy, =z, +izzg, and wy, = z, +iszyp, where z, , 2f,, 2, and zg, are any four fuzzy
complex numbers Then
wy, Twyp, = (zfl isz) + 19 (zf2 izf‘l) .
Proof. We show that the addition formula is true.
Let W = wy, +wy,, then

p(w | W) = sup {A (w1, w2) | w1 +ws = w},
where

A (wr,wz) = min {ja(wy |w,), plws | w)} -
Now we define T" (21, 22, 23, 24) to be the minimum of

u(zi|zfi) li=1,2,3,4.

So we can write that
I' (21, 22, 23, 24) = A (w1, w2) ,
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where
wizzi+i2zi|i:1,2.
Also let
P=z, +zp and Q =z, + z5, so that
p(p| P)=sup{A(z1,23)| 21 + 23 = p}
and

(] Q) =sup{A(22,24) | 22+ 24 = ¢} ,
where A (z1, z3) and A (22, 24) are the minimum of p (zZ | zfi) |i=1,3and p (zj | zfj> |
ji=2,4.
If G = P+ i2Q, then p(g|G) is the minimum of p(p| P), u(q| Q) where
g=p+iaq .
We first argue that
p(w[ W) <p(wl|G),
where w =p—+isq, z1+23=pand 20+ 24 =q .
Now I' (21, 22, 23, 24) is less than or equal to A (z1,23) and A (29, 24) implying it
is also less than or equal to p(p | P) and p(q| Q) .
Hence
[ (z1,29,23,24) < p(w|G),
which implies that
(3.40) p(w|[ W) <p(wl|G) .
Next we show that
p(wlG) <p(w|W),
where w = p + isq .
For any e > 0 there exists 2} (i = 1,2,3,4) so that p = 2§ + 25 and ¢ = 25 + 2}
for which
A(2f,23) > p(p| P)—¢
and
A(zy +23) > pu(q] Q) —e
holds.
Therefore it follows from above that
U (21,25, 23,21) > p(w [ G),
which implies that
w(w| W) > pw|G) .
Since € > 0 is arbitrary, we get from above that
(3.41) p(w|W)>p(wl|G) .
Therefore from (3.40) and (3.41) we get that
p(w|W)=pwl|G) .

Thus the result follows from above.
Similarly one can easily verify that

We —Wp, = (zfl — sz) + 19 (zf2 — zf4) .
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O

In view of Theorem 3.1 , Theorem 3.17 and Theorem 3.18 one can easily
verified the following corollary:

Corollary 3.19. Suppose wy, and wy, are any two fuzzy bicomplex numbers such
that wy, =z, +is2zf, and wy, =z, +iszy, where z, , zy,, z, and zy, are any four
fuzzy complex numbers Then for any o, 0 < a <1,

(wy, £ wp,)® = (zz + z;;) + i (2‘;‘2 iz;;) .

The proof is omitted.

3

Theorem 3.20. Let z, and zy, are any two fuzzy complex numbers . Also let wy
be fuzzy bicomplexr number such that wy =z, +iz2zf, . Then for any a, 0 < <1,

1
« 2 2
Jusl” = ( )
Proof. In view of Theorem 3.12 we have
1
st = gl = {2+ 1 e, e} = (

Hence the result follows. O

(03
Zfl

«
zfz

_|_

Theorem 3.21. Let wy be fuzzy bicomplex number such that wy = z;, +i2zy, where
z, and zyf, are any two fuzzy complex numbers. Then

. 14411 . 1—11.9
wy = (z,, —i125,) (22”2) + (2, +ir125,) (21”2>

Proof. The meaning of the equality is that the interval (z 5 T2z fg)a is equal to the

interval [(zfl —iyzyp,) (M) + (zf1 +i125,) (HT”Q)}Q for0 <o <1,
From Corollary 3.19 we get that

(3.42) wy = (zfl +i22f2)a = z;“l +i22f, = {zl +20 |2 € z‘f", 7= 1,2} .

Also in view of Corollary 3.19 we have

(3.43) (2, Hinzp)” =20 inzg, = {mtazm| e, i=12) .
Since ) )
. , + 1.0 . —11.1
z1 +ioz0 = (2, —i122) <212> + (21 +i122) (212> )
the theorem follows from (3.42) and (3.43) . O

Theorem 3.22. Suppose wy, and wy, are any two fuzzy bicomplex numbers such
that wy, = z, +izzy, and wy, =z, +iszy, where z, , zy,, z, and zy, are any four
fuzzy complex numbers Then

. . 1+11.2
wy +wp, = [(zf1 —i125,) + (zf3 —i12y,)] (;122)

1—41.4
(e + i) + (s, +inzn)] (52
699
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Proof. For 0 < o <1, we have
(ZZ + z%) + 19 (Z?; + zf{l)
= (z;)‘l +i2z?3) + (z?; +i22}2)

(3.44) - {(21 t+izz) + (22 Hinza) |z €27, i = 1,2,374} :

(wy, +wp,)”

and

[(2), £irzpa) + (2, £ir2p,)]"
(zfl iz’lzf2)a + (zf3 iilzf4)a
(z}?‘l :l:ilz%) + (zz :I:ilzj’{k)

(3.45) = {(zl tirz) 4 (23 £irz) | 2 € 2%, i = 1,2,3,4}

£i?
Hence the theorem follows from (3.44) and (3.45) because
. ) . . 147412
(21 +i223) + (22 +i224) = [(21 — 1122) + (23 — i124)] (212)

+[(21 +d122) + (23 +i124))] (12“22)
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