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1. Introduction, definitions and notations

The space of bicomplex numbers C2 is the first in an infinite sequence of mul-
ticomplex spaces which are the generalizations of the space of complex numbers C.
We write regular complex number as z = x+ iy where x and y are real numbers and
i2 = −1.

To start our paper we just recall the following definitions:

Definition 1.1. The set of bicomplex numbers is defined as :

C2 = {w : w = p0 + i1p1 + i2p2 + i1i2p3, pk ∈ R, 0 ≤ k ≤ 3} .
Since each elements in C2 can be written as

w = p0 + i1p1 + i2 (p2 + i1p3)

or
w = z1 + i2z2,

we can express C2 as

C2 = {w = z1 + i2z2 | z1, z2 ∈ C} ,
where z1 = p0 + i1p1, z2 = p2 + i1p3 and i1, i2 are independent imaginary units such
that i21 = −1 = i22. the product of i1 and i2 defines a hyperbolic unit j such that
j2 = 1. The products of all units is commutative and satisfies

i1i2 = j, i1j = −i2, i2j = −i1.
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Definition 1.2. Three kinds of conjugate can be defined on bicomplex numbers.
The bicomplex conjugates wt of w are defined as

(i) wt1 = z1 + i2z2, (ii) wt2 = z1 − i2z2, and (iii) wt3 = z1 − i2z2,
where the bar

(−) denotes the complex conjugate in C.

Definition 1.3. With each kind of conjugate, one can define a specific bicomplex
modulus in the following manner:

(i) |w|2t1 = w.wt1 =
(
|z1|2 − |z2|2

)
+ 2i2< (z1z2) ,

(ii) |w|2t2 = w.wt2 = z21 + z22 and

(iii) |w|2t3 = w.wt3 =
(
|z1|2 + |z2|2

)
+ 2j= (z1z2) .

Definition 1.4. For a bicomplex number w = z1 + i2z2, the norm denoted as
||w = z1 + i2z2|| is defined in the following manner:

‖z1 + i2z2‖ =
(
|z1|2 + |z2|2

) 1
2

=

(
|z1 − i1z2|2 + |z1 + i1z2|2

2

) 1
2

.

When w = p0 + i1p1 + i2p2 + i1i2p3, for pk ∈ R, 0 ≤ k ≤ 3 then

‖w‖ =
(
p20 + p21 + p22 + p23

) 1
2 .

Remark 1.5. We observe that the bicomplex conjugates wtk | k = 1, 2, 3 of w
satisfy the following properties :

(1) wt
tk
k = w , (2) (w1 ± w2)

tk = wtk1 ± w
tk
2 ,

(3) (w1 · w2)
tk = wtk1 · w

tk
2 , (4)

(
w1

w2

)tk
=
wtk1
wtk2

,

(5) |w|tk =
∣∣wtk ∣∣

tk
and (6) ‖w‖ =

∥∥wtk∥∥ .
The idea of fuzzy subset µ of a set X was primarily introduced by L.A. Zadeh [9]

as a function µ : X → [0, 1] . Fuzzy set theory is a useful tool to describe situations
in which the data are imprecise or vague. Fuzzy sets handle such situation by
attributing a degree to which a certain object belongs to a set. Among the various
types of fuzzy sets, those which are defined on the universal set of real numbers or
complex numbers under certain conditions, be viewed as fuzzy real numbers or fuzzy
complex numbers respectively. Several researchers have done extensive works in the
field of fuzzy complex numbers. For references one can see [2, 3, 4, 8, 9]. Now we
wish to give a suitable definition of fuzzy bicomplex number in the following manner:

Definition 1.6. A fuzzy set wf may be defined by its membership function µ (w | wf )
which is a mapping from the bicomplex numbers C2 into [0, 1] where w is a regular
bicomplex number as w = z1 + i2z2, is called a fuzzy bicomplex number if it satisfies
the following conditions:

1. µ (w | wf ) is continuous,
682
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2. An α-cut of wf which is defined as wαf = {w | µ (w | wf ) > α} , where 0 ≤ α <
1, is open, bounded, connected and simply connected and

3. w1
f = {w | µ (w | wf ) = 1} is non-empty, compact, arc wise connected and

simply connected.

If wαf where 0 ≤ α < 1 is open and connected then it is automatically arc wise
connected. The simply connected assumption is to assure that wαf , 0 ≤ α ≤ 1, will

not contain any holes. w1
f being non-empty means that all fuzzy bicomplex numbers

are normalized i.e., µ (w | wf ) = 1 for some w.
In the sequel we now present some definitions that are also used in this paper.

Definition 1.7. The bicomplex conjugates wtkf | k = 1, 2, 3 of wf may be defined
as

(i) µ
(
w | wt1f

)
= µ

(
wt1 | wf

)
,

(ii) µ
(
w | wt2f

)
= µ

(
wt2 | wf

)
and

(iii) µ
(
w | wt3f

)
= µ

(
wt3 | wf

)
.

where wtk | k = 1, 2, 3 are the bicomplex conjugates of w stated in Definition 1.2.

The bicomplex conjugates wtkf | k = 1, 2, 3 of a fuzzy bicomplex number wf is also

a fuzzy bicomplex number because the mappings w = z1 + i2z2 → wt1 = z1 + i2z2,
w = z1 + i2z2 → wt2 = z1− i2z2 and w = z1 + i2z2 → wt3 = z1− i2z2 are continuous.

Definition 1.8. The modulus |wf |tk | k = 1, 2, 3 of a fuzzy bicomplex number wf
may be defined by

(i) µ (|w|t1 | |wf |) = sup

{
µ (w | wf ) | |w|t1 =

[ (
|z1|2 − |z2|2

)
} + 2i2< (z1z2)

] 1
2

}
,

(ii) µ (|w|t2 | |wf |) = sup
{
µ (w | wf ) | |w|t2 =

[
z21 + z22

] 1
2

}
and

(iii) µ (|w|t3 | |wf |) = sup

{
µ (w | wf ) | |w|t3 =

[ (
|z1|2 + |z2|2

)
+ 2j= (z1z2)

] 1
2

}
.

Definition 1.9. The norm ‖wf‖ of a fuzzy bicomplex number wf may be defined
in the following manner:

µ (r | ‖wf‖) = sup {µ (w | wf ) | ‖w‖ = r} ,

where r is the norm of w.

If we consider f (w1, w2) = y be any mapping from C2 × C2 into C2, then we

may extend f to C2 × C2 into C2 using the extension principle where C2 denotes
the space of fuzzy bicomplex numbers. So we may write f

(
w
f1
, wf2

)
= yf if

µ(y | yf ) = sup {Λ (w1, w2) | f (w1, w2) = y} ,

where

Λ (w1, w2) = min
{
µ(w1 | wf1 ), µ(w2 | wf2)

}
.
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One obtains yf = w
f1

+ wf2 or yf = w
f1
· wf2 by using f (w1, w2) = w1 + w2

or f (w1, w2) = w1 · w2 respectively. For subtraction, we first define −w
f

in the
following manner:

µ(w | −w
f
) = µ(−w | w

f
) ,

and then set

w
f1
− wf2 = w

f1
+ (−wf2) .

We also define the reciprocal w−1
f

of w
f

as

µ(w | w−1
f

) = µ(w−1 | w
f
) .

Now we consider some open surface centered at 0 (0 + i10 + i20 + i1i20) disjoint
from w0

f . If w0
f is not bounded away from zero, then w−1

f
remains undefined. When

0 belongs to supp
(
w
f

)
, then supp

(
w−1
f

)
will not be bounded and by our definition

of fuzzy bicomplex numbers, w−1
f

will not be fuzzy bicomplex number.
For the division of two fuzzy bicomplex numbers w

f1
and wf2 , we may write

w
f1

wf2
= w

f1
· w−1

f2
.

Next we wish to give an alternative definition of fuzzy bicomplex number in terms
of fuzzy complex numbers in the following way:

Definition 1.10. If z
f1

and zf2 are any two fuzzy complex numbers with member-

ship functions µ(z1 | zf1 ) and µ(z2 | zf2 ) respectively, then

wf = z
f1

+ i2zf2

is a fuzzy bicomplex number with membership function

µ(w | wf ) = min
(
µ(z1 | zf1 ) , µ(z2 | zf2 )

)
where w = z1 + i2z2.

In this paper we wish to establish some few results related to fuzzy bicomplex
numbers on the basis of its definitions stated above.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([1]). If zf be any fuzzy complex number then |zf |α =
∣∣∣zαf ∣∣∣ where

0 ≤ α ≤ 1 and |zf | is a truncated real fuzzy number.

Lemma 2.2 ([5]). If M and N be any two real fuzzy numbers then (M +N)
α

=
Mα +Nα and if M ≥ 0, N ≥ 0 then (M.N)

α
= Mα.Nα .
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3. Main results

In this section we present the main results of the paper.

Theorem 3.1. Let wf1 , wf2 , .....wfn be any n number of fuzzy bicomplex numbers.
Also let B = wf1 + wf2 + ....+ wfn . Then for any α, 0 ≤ α ≤ 1,

Aα = Bα .

holds where

Aα =
{
w1 + w2 + ....+ w3 | (w1, w2,...wn) ∈ wαf1 × w

α
f2 × ....× w

α
fn

}
.

Proof. Case I. Let us suppose 0 ≤ α < 1 .
Now let

(3.1) w1 + w2 + ....+ wn = w ∈ Bα .
Then it follows from (3.1) that

Λ (w1, w2,...wn) > α as µ (w | B) > α .

This implies that

µ
(
w1 | wf1

)
> α, µ (w2 | wf2) > α, · · · and µ (wn | wfn) > α

which implies that

(w1, w2,...wn) ∈ wαf1 × w
α
f2 × ....× w

α
fn

(3.2) i.e., w ∈ Bα ⇒ w ∈ Aα .
Again let us suppose that

(3.3) w1 + w2 + ....+ wn = w ∈ Aα .
Therefore from (3.3) we obtain that

µ
(
w1 | wf1

)
> α, µ (w2 | wf2) > α, · · · and µ (wn | wfn) > α

which implies that
Λ (w1, w2,...wn) > α .

Therefore from above it follows that µ (w | B) also exceeds α and so

(3.4) w ∈ Aα ⇒ w ∈ Bα .
Thus from (3.2) and (3.4) we get that

(3.5) Aα = Bα for 0 ≤ α < 1 .

Case II. Let α = 1 .
We may find n number of fuzzy bicomplex numbers w1, w2,... and wn so that

w1 + w2 + ...+ wn = w and w ∈ B1 .
We can also find w1m in supp

(
w
f1

)
, w2m in supp (wf2) · · · and wnm in supp

(
w
fn

)
so that wf1m + wf2m + ....+ wfnm = w where m = 2, 3, 4, · · · · · and

Λ (w1, w2, ..., wn) > 1− 1

m
.

Since the supports are compact we may choose a subsequence w1mk → w1, w2mk →
w2 · · · and w1nk → wn with w1+w2+ ...+wn = w and Λ (w1, w2, ..., wn) ≥ 1 because
Λ is continuous.
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This implies that

w1 ∈ w1
f1 , w2 ∈ w1

f2 · · · wn ∈ w
1
fn .

So

(3.6) w ∈ B1 ⇒ w ∈ A1 .

Also let

w1 + w2 + ...+ wn = w ∈ A1 ,

which implies that

Λ (w1, w2, ..., wn) = 1 .

Therefore from above it follows that

µ (w | B) = 1

(3.7) i.e., w ∈ A1 ⇒ w ∈ B1 .

Now from (3.6) and (3.7) we obtain that

(3.8) Aα = Bα for α = 1 .

Thus the theorem follows from (3.5) and (3.8) . �

Theorem 3.2. Let wf1 , wf2 , .....wfn be any n number of fuzzy bicomplex numbers.

Also let us supposeMα =
{
w1 · w2 · .... · wn | (w1, w2,...wn) ∈ wαf1 × w

α
f2
× ....× wαfn

}
and D = wf1 · wf2 · .... · wfn , then for 0 ≤ α ≤ 1

Mα = Dα .

Proof. Case I. First of all we assume that 0 ≤ α < 1 .
Also let w ∈Mα.
Therefore we may find n number of fuzzy bicomplex numbers w1, w2 ... wn so

that w1 · w2... · wn = w.
Now we obtain from above that

µ
(
wk | wfk

)
> α for k = 1, 2 ...n

which implies that

Λ (w1, w2,...wn) > α .

Thus it follows from above that µ (w | D) exceeds α and so

(3.9) w ∈Mα ⇒ w ∈ Dα .

Again suppose that w ∈ Dα where w = w1 · w2... · wn .
Then from above we get that

Λ (w1, w2,...wn) > α since µ (w | D) > α

i.e., µ
(
wk | wfk

)
> α for k = 1, 2 ...n ,

which implies that

(w1, w2,...wn) ∈ wαf1 × w
α
f2 × ....× w

α
fn

(3.10) i.e., w ∈ Dα ⇒ w ∈Mα .
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Thus from (3.9) and (3.10) we get that

(3.11) Mα = Dα for 0 ≤ α < 1 .

Case II. Let α = 1 .
Now let w1 · w2... · wn = w ∈M1 where w1, w2 ...and wn are n number of fuzzy

bicomplex numbers.
Hence

Λ (w1, w2,...wn) = 1 .

So we get from above that

µ (w | D) = 1

(3.12) i.e., w ∈M1 ⇒ w ∈ D1 .

Also suppose that

w1 · w2 · ... · wn = w ∈ D1 .

Therefore we can find w1m in supp
(
w
f1

)
, w2m in supp (wf2) · · · and wnm in

supp (wfn) so that w1m · w2m · ...w2m = w where m = 2, 3, 4, · · · · · and

Λ (w1m, w2m, ..., wnm) > 1− 1

m
.

As the supports are compact, we may choose a subsequence w1mk → w1, w2mk → w2

... and wnmk → wn with w1 · w2 · ... · wn = w and Λ (w1, w2, ..., wn) ≥ 1 because Λ
is continuous.

Thus

wk ∈ w1
fk

for k = 1, 2, ..., n ·
So

(3.13) w ∈ D1 ⇒ w ∈M1 .

Now from (3.12) and (3.13) we get that

(3.14) Mα = Dα for α = 1 .

Therefore the theorem follows from (3.11) and (3.14) . �

Remark 3.3. In view of Theorem 3.1 and Theorem 3.2 it can also be said that(
w
f1

+ wf2 + ...+ wfn
)α

= wα
f1

+ wαf2 ...+ wαfn and(
w
f1
· wf2 · ... · wfn

)α
= wα

f1
· wαf2 · ... · w

α
fn for 0 ≤ α ≤ 1 .

Also for bicomplex conjugates wtkf | k = 1, 2, 3 of a fuzzy bicomplex number wf ,(
wtkf

)α
=
(
wαf
)tk holds for any α with 0 ≤ α ≤ 1 .

Theorem 3.4. let us suppose B = wf1 +wf2 + ....+wfn or B = wf1 ·wf2 · .... ·wfn
where wf1 , wf2 , .... and wfn are any n number of fuzzy bicomplex numbers. Also
suppose bm

(
bm ∈ B0

)
converges to b and µ (bm | B) converges to ρ in [0, 1] . Then

µ (b | B) ≥ ρ ·
687
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Proof. Suppose B = wf1 + wf2 + ....+ wfn .
Now for every ε (> 0) there exists w1m in w0

f1
, w2m in w0

f2
... and wnm in w0

fn

so that w1m + w2m + ...+ wnm = bm and

µ (bm | B) ≥ Λ (w1m, w2m, ..., wnm) > µ (bm | B)− ε .

Now all the w1m, w2m, ..., wnm and bm belong to compact sets.
So we may choose a subsequence so that w1mk → w1, w2mk → w2, ... wnmk → wn
and bmk → b where w1 + w2 + ...+ wn = b and obviously

ρ ≥ Λ (w1, w2, ..., wn) > ρ− ε ,

because Λ is continuous.
As ε is arbitrary, we have from above that

ρ = Λ (w1, w2, ..., wn) ,

which implies that

µ (b | B) ≥ ρ .
This proves the first part of the theorem.

Analogously one may easily prove the second part of the theorem for B =
wf1 · wf2 · .... · wfn and hence the proof is omitted. �

Theorem 3.5. Let wf1 , wf2 , .....wfn be any n number of fuzzy bicomplex numbers
. Also let B = wf1 + wf2 + .... + wfn or B = wf1 · wf2 · .... · wfn . Then for any
α (0 ≤ α < 1) , Bα is open.

Proof. Let B = wf1 + wf2 + ....+ wfn .
Also let b ∈ Bα for any α, 0 ≤ α < 1 .
Now in view of Theorem 3.1, we get that (w1, w2,...wn) ∈ wαf1 × w

α
f2
× .... × wαfn

where b = w1 + w2 + ...+ wn .
Now in view of Definition 1.4, wαf2 , w

α
f3
, ...., wαfn are all open.

So we can choose an open interval O (w2,, ε), O (w3,, ε), ... and O (wn,, ε) centered
at w2,, w3,.. and wn respectively with radius ε > 0.

Therefore it is natural that O (w2,, ε), O (w3,, ε), ... and O (wn,, ε) contained in
wαf2 , w

α
f3
, .... and wαfn respectively.

So the set w1 +O (w2,, ε) +O (w3,, ε) ...+O (wn,, ε) is an open set containing b.
Also in view of Theorem 3.1, the set w1 + O (w2,, ε) + O (w3,, ε) ... + O (wn,, ε)

wholely1. Wholly inside Bα .
Therefore Bα is open.
Hence the first part of the theorem follows.
Similarly one may easily prove the second part of the theorem for B = wf1 ·wf2 ·

.... · wfn and hence the proof is omitted. �

Theorem 3.6. If wf1 , wf2 , .....wfn be any n number of fuzzy bicomplex numbers,
then

(i) w
f1

+ wf2 + ...+ wfn and

(ii) w
f1
· wf2 · ... · wfn

are also fuzzy bicomplex numbers.
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Proof. Let us suppose that P = w
f1

+ wf2 + ...+ wfn .

We have to show that µ (p | P ) is continuous by arguing that pn → p implies
µ (pn | P )→ µ (p | P ) .

It suffices to choose that pn in P 0 .
Since µ (pn | P ) belongs to [0, 1] there is a subsequence µ (pnk | P ) converging to

some ρ in [0, 1] .
We know that {cf. p. 31, [6]}

lim inf µ (pn | P ) ≤ ρ ≤ lim supµ (pn | P ) .

Also Theorem 3.5 implies that

b | µ (p | P ) ≤ t
is closed for all t.

Therefore µ (p | P ) is lower semicontinuous and it follows that {cf. p. 74, [7]}
lim inf µ (pn | P ) ≥ lim supµ (p | P ) .

However from Theorem 3.4 we obtain that

µ (p | P ) ≥ ρ .
Hence

lim inf µ (pn | P ) = ρ = µ (p | P ) .

Therefore there is a subsequence µ
(
pnj | P

)
converging to lim supµ (pn | P ) ( [6], p.

32).
Also Theorem 3.4 implies that

lim inf µ (p | P ) ≥ µ (pn | P ) .

Therefore

lim inf µ (pn | P ) = µ (p | P ) = lim supµ (pn | P ) .

So in view of ( [6], p. 31) we have

lim inf µ (pn | P ) = µ (p | P )

and µ (p | P ) is continuous.
In view of Theorem 3.1, it can be easily shown that Pα, 0 ≤ α ≤ 1 is bounded

because it is the sum of n numbers of bounded sets.
Also from Theorem 3.5 we get Pα is open for all 0 ≤ α ≤ 1 and P 1 is closed

because µ (p | P ) is continuous.
Finally we argue that Pα is connected, arc wise connected and simply connected

for 0 ≤ α ≤ 1.
Now wαfi , i = 1, 2, 3...n are connected, arc wise connected and simply connected

and therefore wαf1 ×w
α
f2
× ....×wαfn is also connected, arc wise connected and simply

connects for 0 ≤ α ≤ 1 .
Also from Theorem 3.1 we get that Bα is the continuous image of wαf1 × w

α
f2
×

....×wαfn , it follows that Pα = Bα is also connected, simply connected and arc wise
connected for all 0 ≤ α ≤ 1.

Thus we have shown that P satisfies all the conditions to be a fuzzy bicomplex
number.

Hence the first part of the theorem follows.
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The proof of the second part of the theorem is similar to the first part and so it
is omitted. �

Corollary 3.7. Suppose w
f1

and wf2 be any two fuzzy bicomplex numbers . Then

(i) w
f1
− wf2 and (ii)

w
f1

wf2
are also fuzzy bicomplex numbers.

Proof. As wf2 is a fuzzy bicomplex number,
then −wf2 is also a fuzzy bicomplex number.
Therefore w

f1
− wf2 = w

f1
+ (−wf2) is also a fuzzy bicomplex number.

This proves the first part of the corollary.

Since the mapping w2 → w−1
2 ,w2 6= 0 is continuous and

(
w−1
f2

)α
=
(
wα
f2

)−1

for

any α, 0 ≤ α ≤ 1, we see that w−1
f2

is a fuzzy bicomplex number as wf2 is a fuzy

bicomplex number.

Thus
w
f1

wf2
is a fuzzy bicomplex number.

Hence the second part of the corollary follows. �

Remark 3.8. In view of Theorem 3.1 and Corollary 3.7, it can also be said that

(i)
(
w
f1
− wf2

)α
= wα

f1
− wαf2 and

(ii)

(
w
f1

wf2

)α
=

wα
f1

wαf2
= wα

f1
·
(
wα
f2

)−1

for 0 ≤ α ≤ 1,

where w
f1

and wf2 are any two fuzzy bicomplex numbers .

Remark 3.9. In view of Remark 3.3 and Theorem 3.6, one can easily prove that
addition and multiplication of fuzzy bicomplex numbers are associative and commu-
tative. The bicomplex numbers zero and 1+i10+i20+i1i20 are the additive identity
and multiplicative identity respectively and there is no additive inverse or multiplica-
tive inverse. Also the addition and multiplication of fuzzy bicomplex numbers are
defined from the extension principle, the operations of addition and multiplication
will enjoy the same basic properties which have applied for real fuzzy numbers or
fuzzy complex numbers.

Theorem 3.10. The modulus |wf |tk | k = 1, 2, 3 of a fuzzy bicomplex number wf is
a fuzzy complex number .

Proof. A fuzzy complex number zf with membership function µ (z | zf ) is specified
by (z1/z2 , z3/z4) where (1) z1 < z2 ≤ z3 < z4, (2) µ (z | zf ) is continuous and
increasing from zero to one on [z1, z2] , (3) µ (z | zf ) is one on [z2, z3] , (4) µ (z | zf )
is continuous and decreasing from one to zero on [z3, z4] and (5) µ (z | zf ) = 0 outside
(z1, z4) . In the degenerate case when z1 = z2 = z3 = z4 = z, zf is a complex number
z.

Now we notice the following cases for the modulus |wf | of a fuzzy bicomplex
number wf :

(1) If 0 + i10 + i20 + i1i20 ∈ w0
f and 0 + i10 + i20 + i1i20 /∈ w1

f , then z1 = 0 and

µ
(

0 | |wf |tk , k = 1, 2, 3
)
∈ (0, 1) .
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(2) If 0+i10+i20+i1i20 ∈ w1
f but w1

f 6= {0 + i10 + i20 + i1i20} , then z1 = z2 = 0

and µ
(

0 | |wf |tk , k = 1, 2, 3
)

= 0.

(3) If w1
f = {0 + i10 + i20 + i1i20} , then z1 = z2 = z3 = 0.

(4) If 0 + i10 + i20 + i1i20 is not in w0
f , then |wf |tk , k = 1, 2, 3 is a fuzzy complex

number with z1 ≥ 0 .
Thus |wf |tk , k = 1, 2, 3 is a fuzzy complex number. �

Theorem 3.11. The norm ‖wf‖ of a fuzzy bicomplex number wf is a truncated real
fuzzy number.

Proof. Let

n1 = inf
{
‖wf‖ | w ∈ w0

f

}
,

n2 = inf
{
‖wf‖ | w ∈ w1

f

}
,

n3 = sup
{
‖wf‖ | w ∈ w1

f

}
and

n4 = sup
{
‖wf‖ | w ∈ w0

f

}
.

Clearly µ (r | ‖wf‖) = 1 on [n2, n3] .
We now argue that µ (r | ‖wf‖) is continuous.

Let rn → r with rn ∈ ‖wf‖0 . There is a subsequence µ (rnk | ‖wf‖)→ ρ in [0, 1] .

Now
∥∥∥wαf ∥∥∥ is open for 0 ≤ α ≤ 1, so ‖wf‖α is open and {r | µ (r | ‖wf‖) ≤ t} is

closed for all t.
Hence µ (r | ‖wf‖) is lower semicontinuous and

lim inf µ (rn | ‖wf‖) ≥ µ (r | ‖wf‖) .

As rn in ‖wf‖0 converging to r and µ (rn | ‖wf‖) converging to ρ in [0, 1] implies
µ (r | ‖wf‖) ≥ ρ.

This implies lim inf µ (rn | ‖wf‖) ≥ ρ and therefore we obtain that

lim inf µ (rn | ‖wf‖) = ρ = µ (r | ‖wf‖) .

We also have a subsequence converging to lim sup and from above we get that

µ (r | ‖wf‖) ≥ lim supµ (rn | ‖wf‖) .

Therefore lim inf is equal to lim sup which equals µ (r | ‖wf‖) and this function is
continuous.

Finally, we show that µ (r | ‖wf‖) is increasing on [n1, n2] or [0, n2] and decreasing
on [n3, n4] .

We first argue that

(3.15) µ (r | ‖wf‖) = sup {(w | wf ) | ‖wf‖ ≤ r}

for n1 ≤ r ≤ n2 or 0 ≤ r ≤ n2 and

(3.16) µ (r | ‖wf‖) = sup {(w | wf ) | ‖wf‖ ≥ r}

for n3 ≤ r ≤ n4.
The proof of equations (3.15) and (3.16) are similar, so we will only prove equation

(3.15).
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Suppose for some fixed value of r, there is a w0 so that ‖w0‖ < r and µ (w0 | wf )
exceeds µ (w | ‖wf‖) .

Now we know that

{w | ‖w‖ = r} ∩ wαf = φ for α > µ (r | ‖wf‖) .

Also z0 ∈ wα0f for some α0 > µ (r | ‖wf‖) . So wαf is a subset of {w | ‖w‖ < r} , for
α ≥ α0, since the wαf are connected.

This implies that n2 < n1, a contradiction.
Now let n1 ≤ x1 < x2 ≤ n2 or 0 ≤ x1 < x2 ≤ n2.
We see

µ (x1 | ‖wf‖) ≤ µ (x2 | ‖wf‖) ,
since

{w | ‖w‖ ≤ x1} ⊂ {w | ‖w‖ ≤ x2} .
If n3 ≤ x1 < x2 ≤ n4 then

µ (x1 | ‖wf‖) ≥ µ (x2 | ‖wf‖) ,
because

{w | ‖w‖ ≤ x1} ⊃ {w | ‖w‖ ≤ x2} .
This completes the proof that ‖wf‖ is a truncated real fuzzy number. �

Theorem 3.12. Let wf be a fuzzy bicomplex number. Then for any α, 0 ≤ α ≤ 1

‖wf‖α =
∥∥wαf ∥∥ ,

where ‖wf‖ is a truncated real fuzzy number.

Proof. Case I. Suppose 0 ≤ α < 1 .
Also let r ∈ ‖wf‖α , then there exist a bicomplex number w such that ‖w‖ = r

and µ (w | wf ) > α.
Hence

(3.17) r ∈ ‖wf‖α ⇒ r ∈
∥∥wαf ∥∥ .

Further let r ∈
∥∥∥wαf ∥∥∥ , then there exist a bicomplex number w such that r = ‖w‖

and µ (w | wf ) > α.
This implies

sup {µ (w | wf ) | ‖w‖ = r} > α.

So

(3.18) r ∈
∥∥wαf ∥∥⇒ r ∈ ‖wf‖α .

Thus from (3.17) and (3.18) we get that

(3.19) ‖wf‖α =
∥∥wαf ∥∥ for 0 ≤ α < 1 .

Case II. Let α = 1 .

Suppose r ∈
∥∥∥w1

f

∥∥∥, then there is a bicomplex number w so that r = ‖w‖ and

µ (w | wf ) = 1.
Therefore the supremum of all µ (w | wf ) over all w such that ‖w‖ = r is also one

and r ∈ ‖wf‖1 .
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Hence

(3.20) r ∈
∥∥w1

f

∥∥⇒ r ∈ ‖wf‖1 .

Also let r ∈ ‖wf‖1 .
For each m = 2, 3, ... there is a wm in w0

f so that ‖wm‖ = r and

µ (wm | wf ) > 1− 1

m
,

where wm belong to compact supp(wf ) so there is a subsequence wmk → w with

‖w‖ = r and µ (w | wf ) ≥ 1 and thus r ∈
∥∥∥w1

f

∥∥∥
Hence

(3.21) r ∈ ‖wf‖1 ⇒ r ∈
∥∥w1

f

∥∥ .

Therefore from (3.20) and (3.21) we get that

(3.22) ‖wf‖1 =
∥∥w1

f

∥∥ .

Thus the theorem follows from (3.19) and (3.22) . �

Theorem 3.13. Let wf be any fuzzy bicomplex numbers, then

(i) ‖−wf‖ = ‖wf‖ and

(ii) ‖a.wf‖ = |a| . ‖wf‖ where a ∈ R.

Proof. The meaning of the equality is that the interval ‖−wf‖α is equal to the
interval ‖wf‖α for 0 ≤ α ≤ 1.

From Theorem 3.12 we get that

(3.23) ‖−wf‖α =
∥∥−wαf ∥∥ =

{
‖−w‖ | w ∈ wαf

}
.

Again in view of Theorem 3.12 we have

(3.24) ‖wf‖α =
∥∥wαf ∥∥ =

{
‖w‖ | w ∈ wαf

}
.

Hence the result follows from (3.23) and (3.24) as

‖−w‖ = ‖w‖ .

This proves the first part of the theorem.
For the second part of the theorem we have to prove the α-cuts of ‖a.wf‖ equal

the corresponding α-cuts of |a| . ‖wf‖.
Now in view of Lemma 2.1 it follows from Theorem 3.12 that

‖a.wf‖α = ‖(a.wf )
α‖ =

∥∥a.wαf ∥∥
=

{
‖a.w‖ | w ∈ wαf

}
.(3.25)

and

(|a| . ‖wf‖)α = |a| . ‖wf‖α = |a| .
∥∥wαf ∥∥

=
{
|a| . ‖wf‖ | w ∈ wαf

}
.(3.26)

Thus the second part of the theorem follows from (3.25) and (3.26) . �
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Theorem 3.14. Let wf1 and wf2 be two fuzzy bicomplex numbers, then

(i) |‖wf1‖ − ‖wf2‖| ≤ ‖wf1 + wf2‖ ≤ ‖wf1‖+ ‖wf2‖ and

(ii) |‖wf1‖ − ‖wf2‖| ≤ ‖wf1 − wf2‖ ≤ ‖wf1‖+ ‖wf2‖ .

Proof. For 0 ≤ α ≤ 1, we have

|‖wf1‖ − ‖wf2‖|
α

= |(‖wf1‖ − ‖wf2‖)
α|

= |‖wf1‖
α − ‖wf2‖

α|
=

∣∣∥∥wαf1∥∥− ∥∥wαf2∥∥∣∣
=

{
‖w1‖ − ‖w2‖ | wi ∈ wαfi , i = 1, 2

}
,(3.27)

and

‖wf1 + wf2‖
α

= ‖(wf1 + wf2)
α‖

=
∥∥wαf1 + wαf2

∥∥
=

{
‖w1 + w2‖ | wi ∈ wαfi , i = 1, 2

}
.(3.28)

We also deduce that

(‖wf1‖+ ‖wf2‖)
α

= ‖wf1‖
α

+ ‖wf2‖
α

=
∥∥wαf1∥∥+

∥∥wαf2∥∥
=

{
‖w1‖+ ‖w2‖ | wi ∈ wαfi , i = 1, 2

}
.(3.29)

Hence the result follows from (3.27) , (3.28) and (3.29) because

|‖w1‖ − ‖w2‖| ≤ ‖w1 + w2‖ ≤ ‖w1‖+ ‖w2‖ .
Similarly with the help of Theorem 3.12 one can easily established the second part
of the theorem. �

Theorem 3.15. Let wf1 and wf2 be two fuzzy bicomplex numbers, then

‖wf1 · wf2‖ ≤ 2
1
2 ‖wf1‖ · ‖wf2‖ .

Proof. In order to prove this theorem, we wish to show that the interval ‖wf1 · wf2‖
α

is less than or equal to the interval
(

2
1
2 ‖wf1‖ · ‖wf2‖

)α
for 0 ≤ α ≤ 1.

From Theorem 3.12 and in view of Lemma 2.2 we get that

‖wf1 · wf2‖
α

= ‖(wf1 · wf2)
α‖

=
∥∥wαf1 · wαf2∥∥

=
{
‖w1 · w2‖ | wi ∈ wαfi , i = 1, 2

}
.(3.30)

Also in view of Theorem 3.12 Lemma 2.2 we have

(‖wf1‖ · ‖wf2‖)
α

= ‖wf1‖
α · ‖wf2‖

α

=
∥∥wαf1∥∥ · ∥∥wαf2∥∥

=
{
‖w1‖ · ‖w2‖ | wi ∈ wαfi , i = 1, 2

}
.(3.31)

Since
‖w1 · w2‖ ≤ 2

1
2 ‖w1‖ · ‖w2‖ ,

the theorem follows from (3.30) and (3.31) . �
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In the next theorem we have established a few properties of fuzzy bicomplex
conjugate number depending on the concept of it.

Theorem 3.16. Suppose wtkf | k = 1, 2, 3 be a fuzzy bicomplex conjugate number of
a fuzzy bicomplex number wf then

(1) w
t
tk
k

f = wf , (2) (wf1 ± wf2)
tk = wtkf1 ± w

tk
f2
,

(3) (wf1 · wf2)
tk = wtkf1 · w

tk
f2
, (4)

(
wf1
wf2

)tk
=
wtkf1
wtkf2

,

(5) |wf |tk =
∣∣∣wtkf ∣∣∣

tk
and (6) ‖wf‖ =

∥∥∥wtkf ∥∥∥ .
Proof. In view of Remark 3.3 we obtain for 0 ≤ α ≤ 1.(

w
t
tk
k

f

)α
=

(
w
tαk
f

)tk
=
((
wαf
)tk)tk

=
{
wt

tk
k | for all w ∈ wαf

}
.

Again

wαf = {w | µ (w | wf ) > α}
=

{
w | for all w ∈ wαf

}
.

As wt
tk
k = w. Hence the first part of the theorem follows from the above.

For the second part of the theorem we have to prove the α-cuts of (wf1 ± wf2)
tk

equal the corresponding α-cuts of wtkf1 ± w
tk
f2

.
Now it follows from Theorem 3.1 and Remark 3.3 that(

(wf1 ± wf2)
tk
)α

= ((wf1 ± wf2)
α

)
tk =

(
wαf1 ± w

α
f2

)tk
=

{
(w1 ± w2)

tk | wi ∈ wαfi , i = 1, 2
}
.

and (
wtkf1 ± w

tk
f2

)α
=

(
wtkf1

)α
±
(
wtkf2

)α
=
(
wαf1
)tk ± (wαf2)tk

=
{
wtk1 ± w

tk
2 | wi ∈ wαfi , i = 1, 2

}
.

Thus the second part of the theorem established as (w1 ± w2)
tk = wtk1 ± w

tk
2 .

We also observe that(
(wf1 · wf2)

tk
)α

= ((wf1 · wf2)
α

)
tk =

(
wαf1 · w

α
f2

)tk
=

{
(w1 · w2)

tk | wi ∈ wαfi , i = 1, 2
}
.(3.32)

We can also see(
wtkf1 · w

tk
f2

)α
=

(
wtkf1

)α
.
(
wtkf2

)α
=
(
wαf1
)tk . (wαf2)tk

=
{
wtk1 · w

tk
2 | wi ∈ wαfi , i = 1, 2

}
.(3.33)

From (3.32)and (3.33) we obtain that the corresponding α-cuts are equal. Hence
the third part of the theorem established
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For the fourth part of the theorem we deduce that((
wf1
wf2

)tk)α
=

((
wf1
wf2

)α)tk
=
((
wf1 .w

−1
f2

)α)tk
=

(
wαf1 .

(
w−1
f2

)α)tk
=
(
wαf1 .

(
wαf2
)−1
)tk

=

{(
w1

w2

)tk
| wi ∈ wαfi , i = 1, 2

}
.

and(
wtkf1
wtkf2

)α
=

(
wtkf1 .w

tk−1
f2

)α
=
(
wtkf1

)α
.
(
wtk−1
f2

)α
=
(
wαf1
)tk .((wtkf2)α)−1

=
(
wαf1
)tk .((wαf2)tk)−1

=

{
wtk1
wtk2
| wi ∈ wαfi , i = 1, 2

}
.

Hence the α-cuts of
(
wf1
wf2

)tk
equal the corresponding α-cuts of

w
tk
f1

w
tk
f2

implying two

fuzzy bicomplex numbers are equal. Thus the fourth part of the theorem follows.
Again we have from the Remark 3.3 that

|wf |αtk =
∣∣wαf ∣∣tk =

{
|w|tk | for all w ∈ wf

}
.

and (∣∣∣wtkf ∣∣∣
tk

)α
=
∣∣∣(wtkf )α∣∣∣

tk
=
∣∣∣(wαf )tk ∣∣∣

tk
=
{∣∣wtk ∣∣

tk
| for all w ∈ wf

}
.

Hence the forth part of the theorem follows as |w|tk = |wtk |tk .
Again we have in view of Theorem 3.12 that

‖wf‖α =
∥∥wαf ∥∥ = {‖w‖ | for all w ∈ wf} .

We can also see∥∥∥wtkf ∥∥∥α =
∥∥∥(wtkf )α∥∥∥ =

∥∥∥(wαf )tk∥∥∥ =
{∥∥wtk∥∥ | for all w ∈ wf

}
.

Hence the last part of the theorem follows as ‖w‖ = ‖wtk‖ . �

Theorem 3.17. Let z
f1

and zf2 are any two fuzzy complex numbers with membership

functions µ(z1 | zf1 ) and µ(z2 | zf2 ) respectively. Also let wf be fuzzy bicomplex
number such that wf = z

f1
+ i2zf2 . Then for any α, 0 ≤ α ≤ 1,

wαf = zα
f1
× zαf2 .

Proof. Case I. Suppose 0 ≤ α < 1 .
Also let w ∈ wαf , then

min
(
µ(z1 | zf1 ) , µ(z2 | zf2 )

)
> α

where w = z1 + i2z2 implying that both the membership functions µ(z1 | zf1 ) and

µ(z2 | zf2 ) exceed α and therefore (z1 , z2) ∈ zα
f1
× zαf2 .
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Thus

(3.34) w ∈ wαf ⇒ (z1 , z2) ∈ zα
f1
× zαf2 where w = z1 + i2z2 .

Again suppose (z1 , z2) ∈ zα
f1
× zαf2 .

Then the minimum of the membership functions at z1 and z2 respectively exceeds
α so that µ(w | wf ) > α .

So w ∈ wαf where w = z1 + i2z2 .
Therefore

(3.35) (z1 , z2) ∈ zα
f1
× zαf2 ⇒ w ∈ wαf where w = z1 + i2z2 .

Thus from (3.34) and (3.35) we get that

(3.36) wαf = zα
f1
× zαf2 for 0 ≤ α < 1 .

Case II. Let α = 1 .
If (z1 , z2) ∈ z1

f1
× z1f2 then we easily see that µ (w | wf ) = 1 where w = z1 + i2z2

.
Therefore w ∈ w1

f .
Hence

(3.37) (z1 , z2) ∈ z1
f1
× z1f2 ⇒ w ∈ w1

f .

Next let w ∈ w1
f .

Then for any z1 and z2 we have w = z1 + i2z2 and µ(z1 | zf1 ) = µ(z2 | zf2 ) = 1.

Hence (z1 , z2) ∈ z1
f1
× z1f2 .

Thus

(3.38) w ∈ w1
f ⇒ (z1 , z2) ∈ z1

f1
× z1f2 .

Therefore from (3.37) and (3.38) we get that

(3.39) w1
f = z1

f1
× z1f2 .

Thus the theorem follows from (3.36) and (3.39) . �

Theorem 3.18. Let wf1 and wf2 are any two fuzzy bicomplex numbers such that
wf1 = z

f1
+ i2zf2 and wf2 = z

f3
+ i2zf4 where z

f1
, zf2 , zf3 and zf4are any four fuzzy

complex numbers Then

wf1 ± wf2 =
(
z
f1
± zf3

)
+ i2

(
z
f2
± zf4

)
.

Proof. We show that the addition formula is true.
Let W = wf1 + wf2 , then

µ (w |W ) = sup {Λ (w1, w2) | w1 + w2 = w} ,
where

Λ (w1, w2) = min
{
µ(w1 | wf1 ), µ(w2 | wf2)

}
.

Now we define Γ (z1, z2, z3, z4) to be the minimum of

µ
(
zi | zfi

)
| i = 1, 2, 3, 4.

So we can write that
Γ (z1, z2, z3, z4) = Λ (w1, w2) ,
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where
wi = zi + i2zi | i = 1, 2 .

Also let
P = z

f1
+ zf3 and Q = z

f2
+ zf4 so that

µ (p | P ) = sup {Λ (z1, z3) | z1 + z3 = p}
and

µ (q | Q) = sup {Λ (z2, z4) | z2 + z4 = q} ,

where Λ (z1, z3) and Λ (z2, z4) are the minimum of µ
(
zi | zfi

)
| i = 1, 3 and µ

(
zj | zfj

)
|

j = 2, 4 .
If G = P + i2Q, then µ (g | G) is the minimum of µ (p | P ) , µ (q | Q) where

g = p+ i2q .
We first argue that

µ (w |W ) ≤ µ (w | G) ,

where w = p+ i2q , z1 + z3 = p and z2 + z4 = q .
Now Γ (z1, z2, z3, z4) is less than or equal to Λ (z1, z3) and Λ (z2, z4) implying it

is also less than or equal to µ (p | P ) and µ (q | Q) .
Hence

Γ (z1, z2, z3, z4) ≤ µ (w | G) ,

which implies that

(3.40) µ (w |W ) ≤ µ (w | G) .

Next we show that
µ (w | G) ≤ µ (w |W ) ,

where w = p+ i2q .
For any ε > 0 there exists z∗i (i = 1, 2, 3, 4) so that p = z∗1 + z∗3 and q = z∗2 + z∗4

for which
Λ (z∗1 , z

∗
3) > µ (p | P )− ε

and
Λ (z∗2 + z∗4) > µ (q | Q)− ε

holds.
Therefore it follows from above that

Γ (z∗1 , z
∗
2 , z

∗
3 , z

∗
4) > µ (w | G) ,

which implies that
µ (w |W ) > µ (w | G) .

Since ε > 0 is arbitrary, we get from above that

(3.41) µ (w |W ) ≥ µ (w | G) .

Therefore from (3.40) and (3.41) we get that

µ (w |W ) = µ (w | G) .

Thus the result follows from above.
Similarly one can easily verify that

wf1 − wf2 =
(
z
f1
− zf3

)
+ i2

(
z
f2
− zf4

)
.
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�

In view of Theorem 3.1 , Theorem 3.17 and Theorem 3.18 one can easily
verified the following corollary:

Corollary 3.19. Suppose wf1 and wf2 are any two fuzzy bicomplex numbers such
that wf1 = z

f1
+ i2zf2 and wf2 = z

f3
+ i2zf4 where z

f1
, zf2 , zf3 and zf4are any four

fuzzy complex numbers Then for any α, 0 ≤ α ≤ 1,

(wf1 ± wf2)
α

=
(
zα
f1
± zαf3

)
+ i2

(
zα
f2
± zαf4

)
.

The proof is omitted.

Theorem 3.20. Let z
f1

and zf2 are any two fuzzy complex numbers . Also let wf
be fuzzy bicomplex number such that wf = z

f1
+ i2zf2 . Then for any α, 0 ≤ α ≤ 1,

‖wf‖α =

(∣∣∣zα
f1

∣∣∣2 +
∣∣∣zα
f2

∣∣∣2) 1
2

.

Proof. In view of Theorem 3.12 we have

‖wf‖α =
∥∥wαf ∥∥ =

{(
z21 + z22

) 1
2 | z1 ∈ zαf1 , z2 ∈ z

α
f2

}
=

(∣∣∣zα
f1

∣∣∣2 +
∣∣∣zα
f2

∣∣∣2) 1
2

.

Hence the result follows. �

Theorem 3.21. Let wf be fuzzy bicomplex number such that wf = z
f1

+ i2zf2 where
z
f1

and zf2 are any two fuzzy complex numbers. Then

wf =
(
z
f1
− i1zf2

)(1 + i1.i2
2

)
+
(
z
f1

+ i1zf2
)(1− i1.i2

2

)
.

Proof. The meaning of the equality is that the interval
(
z
f1

+ i2zf2
)α

is equal to the

interval
[(
z
f1
− i1zf2

) (
1+i1.i2

2

)
+
(
z
f1

+ i1zf2
) (

1−i1.i2
2

)]α
for 0 ≤ α ≤ 1.

From Corollary 3.19 we get that

(3.42) wαf =
(
z
f1

+ i2zf2
)α

= zα
f1

+ i2z
α
f2 =

{
z1 + z2 | zi ∈ zαfi , i = 1, 2

}
.

Also in view of Corollary 3.19 we have

(3.43)
(
z
f1
± i1zf2

)α
= zα

f1
± i1zαf2 =

{
z1 ± i1z2 | zi ∈ zαfi , i = 1, 2

}
.

Since

z1 + i2z2 = (z
1
− i1z2)

(
1 + i1.i2

2

)
+ (z1 + i1z2)

(
1− i1.i2

2

)
,

the theorem follows from (3.42) and (3.43) . �

Theorem 3.22. Suppose wf1 and wf2 are any two fuzzy bicomplex numbers such
that wf1 = z

f1
+ i2zf2 and wf2 = z

f3
+ i2zf4 where z

f1
, zf2 , zf3 and zf4are any four

fuzzy complex numbers Then

wf1 + wf2 =
[(
z
f1
− i1zf2

)
+
(
z
f3
− i1zf4

)](1 + i1.i2
2

)
+
[(
z
f1

+ i1zf2
)

+
(
z
f3

+ i1zf4
)](1− i1.i2

2

)
.
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Proof. For 0 ≤ α ≤ 1, we have

(wf1 + wf2)
α

=
(
zα
f1

+ zαf3

)
+ i2

(
zα
f2

+ zαf4

)
=

(
zα
f1

+ i2z
α
f3

)
+
(
zα
f2

+ i2z
α
f4

)
=

{
(z1 + i2z3) + (z2 + i2z4) | zi ∈ zαfi , i = 1, 2, 3, 4

}
,(3.44)

and [(
z
f1
± i1zf2

)
+
(
z
f3
± i1zf4

)]α
=

(
z
f1
± i1zf2

)α
+
(
z
f3
± i1zf4

)α
=

(
zα
f1
± i1zαf2

)
+
(
zα
f3
± i1zαf4

)
=

{
(z1 ± i1z2) + (z3 ± i1z4) | zi ∈ zαfi , i = 1, 2, 3, 4

}
.(3.45)

Hence the theorem follows from (3.44) and (3.45) because

(z1 + i2z3) + (z2 + i2z4) = [(z1 − i1z2) + (z3 − i1z4)]

(
1 + i1.i2

2

)
+ [(z1 + i1z2) + (z3 + i1z4)]

(
1− i1.i2

2

)
.

�
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