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ABSTRACT. In this paper we define min-weighted and max-weighted
power automata for every fuzzy automaton and prove some properties re-
lated to it.We prove that transition monoids of a fuzzy automaton and its
fuzzy power automaton are same.
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1. INTRODUCTION

Corresponding to every fuzzy automaton M, we define min-weighted and max-
weighted power automata P(M)" and P(M)V such that the state set is the power
set P(Q) of the state set @ of M and study some algebraic properties of it. The
membership value of the transition function between two states of P(Q) is the min-
imum(maximum) of the membership values of the transition function between the
elements of the state set if the image is the set of all elements with non zero mem-
bership value of the transition function from the domain and zero otherwise. If M
is a deterministic connected inverse fuzzy automaton then the transition monoid is
isomorphic to a subinverse monoid of the inverse monoid of all fuzzy matrices with
each row and column containing excatly one non zero entry. A fuzzy automaton is
commutative if its transition monoid is commutative. In this paper we prove that
a fuzzy automaton and its min-weighted and max-weighted power automata have
the same transition monoids as in the case of power automaton [3] and so if the
fuzzy automaton is inverse and commutative, then the corresponding fuzzy power
automaton has a transition monoid which is inverse and commutative.
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2. PRELIMINARIES

Definition 2.1 ([1]). A fuzzy recognizer on an alphabet X is a 5-tuple M =
(Q, X, u,i,7) where Q is a finite set of states , X is a finite set of input symbols
and p is a fuzzy subset of @Q x X X @ representing the transition mapping, i is a
fuzzy subset of Q called initial state, 7 is a fuzzy subset of @ called final state.
(Q, X, ) is called a fuzzy finite state machine. A fuzzy automaton can also be
represented as a five tuple (Q, X, {T,|u € X},¢,7) where {T},|Ju € X} is the set of
fuzzy transition matrices, i = [iy 42 ....in], ik € [0,1],7 = [j1 J2 ---dn)?, 5k € [0,1],

1 can be extended to the set Q x X* x Q by
Lg=p

aAv = ’

n(q, A, p) {O’q;ép

. q;%1,q1) N (g1, T2, q2) N ... A plQr—1, Tk, D
u(q’uyp):{ Vet ) A u( _) ( )
|x1x2....a:k = u}

Definition 2.2. For a fuzzy automaton A = (Q, X, u, 4, 7) define a congruence 64
on X* by ufav if and only if u(q,u,p) = u(g,v,p), for all p,g € Q. Then the
transition monoid T'(A) of A is equal to X*/04.

Definition 2.3 ([1]). Let M; = (Q1, X1, 1) and My = (Q2, Xo, p2) be fuzzy finite

state machines. A pair (o, ) of mappings o : Q1 — Q2 and 3 : X1 — X> is called

a homomorphism, written (o, 8) : M1 — Ms if pi(q,z,p) < pa(al(q), B(z), a(p))

Vg,p € Qand Vx € X; . («, ) is called a strong homomorphism if pa(a(q), 8(x), a(p))
VA{wi(g, z, )|t € Q1,a(t) = a(p)}Vp,q € @1 and Vo € X;. A homomorphism is said

to be an isomorphism if o and § are both one one and onto.

Definition 2.4. A fuzzy automaton M = (Q, X, ) is said to be commutative if
w(p,ab,q) = p(p,ba,q) ¥ a,b € X*,p,q € Q. If the fuzzy automaton is commutative
then the transition monoid will also be commutative.[1]

Definition 2.5 ([2]). M is said to be an inverse fuzzy automaton if V z € X*,

(g, zz x,p) = p(q, z,p) and p(g,z tzz™t, p) = plq, =1, p) V p,q € Q.

Definition 2.6 ([1]). Let My = (Q1, X1, 1), M2 = (Q2, X2, u2) be fuzzy finite state
machines such that Q1 NQ2 = ¢ and X; N X5 = ¢ . Then the direct sum is defined
as M1 & My = (Ql UQ2, X1 U X, p1 EB,LLQ) where

Hl(pva’a(I) ifpaq€Q17a€X1

MQ(paa/aq) ifp7q€Q27a€X2

w1 @ pe(p,a,q) = if either (p,a) € Q1 X X1,q € Q2
! or (p,a) € Q2 x X2,q € Q1
0 otherwise

and

the cartesian composition is defined as M;.My = (Q1 X Q2, X1 U Xs, q.u2) where
662
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wi(p1,a,q1) ifa€ Xy and po = go

(p1-p2)((p1,12), a5 (q1,q2)) = § H2(P2,a,q2)  ifa € Xy and pr =@
0 otherwise.

3. MIN-WEIGHTED POWER AUTOMATA

Definition 3.1. Let M = (Q, X, u) be a fuzzy automaton. Let P(Q) be the power
set of Q. Define p : P(Q) x X x P(Q) — [0,1] as

A A wlg,a,p) if B={p:pu(qga,p) >0}
u (A,a,B) =< qcApeB
0 otherwise

for allA # ¢, B # ¢, A, B € P(Q),

pN(p,a,9) = 1 and p(A,a,B) = 0if A = por B = ¢, foralla € X. Then
PANM) = (P(Q), X, p”) is called the min-weighted power automaton. We can
extend p” to P(Q) x X* x P(Q) as

(A, za, B) = \/ w (A, z,C) A" (C,a, B) where A, B,C € P(Q).
CeP(Q)

M can be embedded in P (M) with the isomorphism p — {p}.

Theorem 3.2. Every mapping (o, B) of a fuzzy automaton My = (Q1, X1, p1) into
a fuzzy automaton My = (Q2, Xa, ua) can be extended to a mapping from P™(M;)
into PN(Ms) such that (o, B) is an isomorphism if and only if the extended map is
an isomorphism.

Proof. Consider the extension & of a : Q1 — Q2 to P(Q1) — P(Q2) such that
for A € P(Q) define &(A) = {a(q),q € A)}.
Suppose (a, ) is a homomorphism and let a € X7,. Then

/\ /\ ,ul(Qaayp) lfB:{p,ul(Q7a7p) >0}
w1 (A,a,B) =< qeApeB
0 otherwise

{ A A p2(a(q),B(a),a(p)) if B={p: (g, ,a,p) >0}
< q€EA peB
0 otherwise

— 112 (6(A), B(a), &(B).
Thus (&, 8) is a homomorphism.

Suppose (a, B) is one-one and let &(A) = &(B) for A, B € P(Q). Then {a(q) :
g€ A} ={alq) : g € B}. For g € A, a(q) € &(A) = &(B). Thus a(q) = a(q¢’) for
some ¢’ € B. Since « is one-one, q=q’. So ¢ € B and thus A C B.

Similarly, we can prove that B C A. Hence A = B. Therefore & is one-one and
so (&, B) is one-one. Similarly & is onto since « is onto. Converse is clear since « is
the restriction of & to Q. O

4. MAX-WEIGHTED POWER AUTOMATON

As in the case of min-weighted power automaton, we can define max-weighted
power automaton for a fuzzy automaton M = (Q, X, ).
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For A, B € P(Q), define " (A, a, B) as follows.

V V ulg.a,p) if B={p:pulq,a,p) >0}
uY(A,a,B) =4 q€ApeB
0 otherwise.

for all A +# ¢, B # ¢ in P(Q),

pY(d,a,9) = 1 and pV(A,a,B) = 0if A = por B = ¢, foralla € X. Then
PY(M) = (P(Q), X, u") is called the max-weighted power automaton. We can ex-
tend p¥ to P(Q) x X* x P(Q) as

p(A,za,B)= \ uY(A4,z,C)ApY(C,a,B),
CeP(Q)
where A, B,C € P(Q).
M can be embedded in PY (M) with the isomorphism p — {p}.

5. SOME ALGEBRAIC PROPERTIES OF FUZZY POWER AUTOMATA

Theorem 5.1. If My and Ms are fuzzy automata, then
PN My @ My) = P(My).P(Ms)".

Proof. PNMy @ M) = (P(Q1UQ2), X1 U Xo, (111 @ p2)")
and

P(My).P(M2)" = (P(Q1) x P(Q2), X1 U Xo, p1.143).

Define a mapping « : P(Q1) X P(Q2) — P(Q1UQ2) as (A, B) = AU B where
A€ P(Q1) and B € P(Q2) and § is the identity map on X; U X5.

We claim that («, 8) is an isomorphism from P(M;).P(M2)" — PN(My & Ma).
We have («, 8) is a isomorphism iff @ and 8 are one-one onto and

p1-p2” (A1, Br), a, (A2, Ba)) < (u1 @ p2)"((A1, Br), a, a(Az, Bs))

v (Al,Bl), (AQ,BQ) S P(Ql) X P(QQ)

Clearly a and 8 are one-one onto.

Let (AhBl), (AQ,BQ) S P(Ql) X P(Qz) and a € X7 U Xs.

Then Oz(Al, Bl) = Al U Bl7 Oz(AQ, Bg) = A2 U BQ and

1 @ po (a(Ar, Bi), a, Az, Ba)) = pn & p2" (A1 U By, a, A2 U By)

A N P pe(g,a,p) if AbUBy={p:u1 & pa(g,a,p) >0}
= { q€AUB; peAsUBs
0 otherwise
A A ml(ga,p) ifaec Xy, Ay ={p:u(qa,p) >0}
qEA1 pEA2
A A palq,a,p) ifae Xy, Bo={p: pz(q a,p) >0}
(5.1) — ! qg€BipEB;
1 if either g € A1,a € X1,p € By
orq € By,a € Xg,p € Ay
0 otherwise.

Now,
MI-MQA(AI; Bl)a a, (A27 BQ)
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/\ /\ ,Ul-,UQ(p1,(]1),CL, (p27q2)
(P1,91)€(A1,B1) (p2,92)€(A2,B2)

= if(Az, Ba) = {(p2, q2) : pap2((p1,q1), a, (p2, q2)) > 0}
0 otherwise

/\ /\ /Jfl(plvaap2) ifanlyAQZ{pQ :Ml(p17a7p2) >0}
P1EA1L p2EA>

(5.2) = AN A pelq,a,q) ifae X, By ={q: p2(q1,a,q) > 0}
q1€B1 q2€B2

0 otherwise

From equations (5.1) and (5.2), we get
p1-p2"((A1, Br), a, (A2, B2)) < p1 @ po”(a(Ar, Br), B(a), a(Az2, B2))

V(Al,Bl), (AQ,BQ) S P(Ql) X P(QQ),CE e X;.
Thus («, 8) is an isomorphism from P (M & Ma)—P(M;).P(M2)". O

Theorem 5.2. A fuzzy automaton M and its min-weighed power automaton P (M)
have the same transition monoids.

Proof. The transition monoid of the fuzzy automaton is X*/ups where ups is the
congruence defined on X* by appb if and only if u(q,a,p) = u(q,b,p) V q,p € Q.
ppacary is defined on X* by appnanb if and only if p(A,a,B) = p"(A,b,B)
¥V A, B € P(Q) and the transition monoid of P"(M) is X*/pupn (-

Let [G’Ll«M € X*//iM and [a]#pA<M) € X*/:U"P/\(M)-

First suppose a € X and let b € [a],,,,. Then u(g,a,p) = p(g,b,p) V ¢,p € Q.

Let A, B # ¢ € P(Q). Then

A A wlg,a,p) if B={p:plq,a,p) >0}
u(A,a,B) =4 qcApeB
0 otherwise

qeApeB
0 otherwise

{ A A wg,b,p) if B={p:pu(qgb,p) >0}

=u" (A, b, B).
Thus b € [a]u?,w”'
If A or B or both equal to ¢, then clearly p” (A, a, B) = u”(A,b, B)).
Thus [a],,, C [a]#g(M).

Now let a = ajas where aq,a2 € X. Then

pNA,a,B) =\ p"A a1,C)ApN(Caz, B).
CeP(Q)
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If b € [a]u,,,b € [a1a2]u,, = [@1]uy [@2]u,, - Then there exist by,by € X such that
b = biby and [b1] € [a1]u,,, [b2] € [a2)u,,. This implies u(p,a1,q) = p(p, b1, q) and
w(p; az,q) = pu(p, b, q) for all p,q € Q. Thus

pNAa,B) = \/ w(A,a1,C)Ap(C,az,B)
CeP(Q)

= \/ #'(A4,b1,C) Ap(C,by, B)
CeP(Q)

= ;U'/\(A»blb%B) = /L/\(Avb’ B).

Thus b € [a]y,n ,,, and so [a]u,, C [a]uyn ,,, for every a € X
Conversely, suppose b € [a] (). Then p(A,a,B) = p(A,b,B) ¥ A, B €

P(Q). Take A = {p} and B = {q}.
Then u({p},a,{q}) = p({pr},b,{a}) ¥ p,q € Q. Thus b € [al,,,. So [alupn,,, C
[a]ﬂM' Hence [a]#p/\(M) = [a]#M' O

Example 5.3. Consider the example of a fuzzy automaton M=(Q, X, 1), where
Q =19, q1,9}, X = {a,b} and p: @ x X xQ— [0, 1] as defined below

1i(qo, @, q1) = 0.7, u(qr, a, g2) = 0.4, p(qz, a,q0) = 0.3, p(q, b, q0) = 0.7, 11(q0, b, ¢2) =
0.3, u(g2,b,q1) = 0.4 and = 0 for all other elements of @ x X x Q. The transition
semigroup of this fuzzy automaton is the semigroup generated by T, and T} where
Ty = Tapa and Ty, = Thqp.

P(Q) has elements, say ¢, A1 = {qo}, A2 ={q1}, A3 ={q2}, A4 ={q0, 1}, A5 =
{a1,62}, As = {q0, a2}, A7 = {q0,q1, 62}

Now, MA(¢7a7¢) = ﬂA(¢vbv (b) =1, ;U'A((baavAi) = :U‘A(Ai’av(b) = :U‘A((ba vaZ) =
p"(A;,b,¢) =0fori =1,2,...,7. The other values of u"(A4;, a, A;) and p”(A;, b, A;)
can be calculated by the formula

A A wgap) if Aj={p:p(ga,p)>0}
qEA; pEAj
0 otherwise.
The transition monoid of the min-weighted power automaton
PANM) = (P(Q), X, u™) is the semigroup generated by

1 0 0 0 0 0 0 0
0 0 07 0 0 0 0 0
00 0 04 0 0 0 0
003 0 0 0 0 0 0
““lo 0 0 0 0 04 0 0
00 0 0 0 0 03 0
00 0 0 03 0 0 0
00 0 0 0 0 0 03]

and
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1 0 0 0 0 0 0 0
0 O 0 03 O 0 0 0
0 07 O 0 0 0 0 0
T, = 0 0 04 O 0 0 0 0
0 0 0 0 0 0 03 0
0 O 0 0 04 O 0 0
0 O 0 0 0 03 O 0
1 0 0 0 0 0 0 0 0.3 ]
We can verify that Typ, = T, and Tpep = Tp-

Also,
T(PA (M)) is {Ta7 Ta27 Ta37 Ta47 Ta57 Tba /Tb2 ) Taba Tbav Tab2a Tb2av Tazbv Tba27 Ta2b27
Ty242, Tap2q } which is same as T(M)

Theorem 5.4. A fuzzy automaton M and its maz-weighed power automaton PV (M)
have same transition monoids.

Proof similar as in the case of min-weighted power automaton

Theorem 5.5. If M is a commutative fuzzy automaton then the min-weighted (max-
weighted) power automaton is commutative.

Proof. Let M = (Q, X, u,4,7) be a commutative fuzzy automaton.
Then p(p, zy,q) = u(p,yx,q) for all x,y € X*,p,q € Q. Thus [zy],,, = [yz].,, for
all z,y € X*. By Theorem 5.2, we get [zy].n ) = [y2]upar)- So p (A 2y, B) =
1" (A, yz, B).

Similarly, we get p¥ (A, zy, B) = nV (A4, yz, B). O

Theorem 5.6. If M = (Q, X, ) is a commutative and inverse fuzzy automaton
then the min-weighted (maz-weighted) power automaton is also commutative and
1nverse.

Proof. From theorems 5.4 and 5.5, P"(M)(PY(M)) is a commutative and inverse
fuzzy automaton. O

6. CONCLUSIONS

In this paper we defined min-weigted and max-weighted power automaton and
studied some of its properties. We also proved that a fuzzy automaton and its min-
weighted and max-weighted power automata have the same transition monoids and
so if the fuzzy automaton is inverse and commutative, then the corresponding fuzzy
power automaton has a transition monoid which is inverse and commutative.
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