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1. Introduction

In [2], Balasubramanian and Sundaram have introduced fuzzy generalized closed
set in 1997. Also in [8], Murugesan and Thangavelu have investigated the rela-
tionships between some types of fuzzy generalized closed sets. Afterwards, in 2014,
Bhattacharyya [4] has introduced and studied some different types of fuzzy gener-
alized closed sets and found the mutual relationships between them. In this paper
another kinds of fuzzy generalized closed sets are introduced and studied. Also
some different types of fuzzy generalized continuity are introduced and studied un-
der which fuzzy normality remains invariant.

2. Preliminaries

In 1965, L.A. Zadeh introduced fuzzy set [12] A which is a mapping from a non-
empty set X into the closed interval I = [0, 1], i.e., A ∈ IX . The support [12] of
a fuzzy set A, denoted by suppA and is defined by suppA = {x ∈ X : A(x) 6= 0}.
The fuzzy set with the singleton support {x} ⊆ X and the value t (0 < t ≤ 1)
will be denoted by xt. 0X and 1X are the constant fuzzy sets taking values 0 and
1 respectively in X. The complement [12] of a fuzzy set A in a fuzzy topological
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space (fts, for short) X in the sense of Chang [6] is denoted by 1X \A and is defined
by (1X \ A)(x) = 1 − A(x), for each x ∈ X. For any two fuzzy sets A,B in X,
A ≤ B means A(x) ≤ B(x), for all x ∈ X [12] while AqB means A is quasi-
coincident (q-coincident, for short) [10] with B, i.e., there exists x ∈ X such that
A(x) + B(x) > 1. The negation of these two statements will be denoted by A 6 ≤B
and A 6 qB respectively. For a fuzzy set A, clA and intA will stand for fuzzy closure
[6] and fuzzy interior [6] respectively.

A fuzzy set A in an fts (X, τ) is called fuzzy semiopen [1] (resp., fuzzy α-open
[5], fuzzy preopen [9]) if A ≤ clintA (resp., A ≤ intclintA, A ≤ intclA). The
complement of these three fuzzy sets in an fts (X, τ) are respectively called fuzzy
semiclosed [1], fuzzy α-closed [5], fuzzy preclosed [9], i.e., a fuzzy set A in X is
called fuzzy semiclosed (resp., fuzzy α-closed, fuzzy preclosed) if intclA ≤ A (resp.,
clintclA ≤ A, clintA ≤ A). For a fuzzy set A, sclA [1] (resp., αclA [5], pclA [9]) is
the smallest fuzzy semiclosed (resp., fuzzy α-closed, fuzzy preclosed) set containing
A. The collection of all fuzzy semiopen (resp., fuzzy α-open) sets in X is denoted
by FSO(X) (resp., FαO(X)).

3. Fuzzy generalized closed sets and fuzzy generalized continuity

In [8] the relationships between different types of fuzzy generalized closed sets are
studied. In this section some different types of fuzzy generalized closed sets and fuzzy
generalized continuities have been introduced and found some mutual relationships
among themselves.

Definition 3.1. A fuzzy set A in an fts (X, τ) is said to be fuzzy
(i) generalized closed (fg-closed, for short) [4, 2] if clA ≤ U whenever A ≤ U and

U ∈ τ ,
(ii) generalized semiclosed (fgs-closed, for short) [3] if sclA ≤ U whenever A ≤ U

and U ∈ τ ,
(iii) semi-generalized closed (fsg-closed, for short) [3] if sclA ≤ U whenever

A ≤ U and U ∈ FSO(X),
(iv) weakly closed (fw-closed, for short) if clA ≤ U whenever A ≤ U and U ∈

FSO(X),
(v) weakly generalized closed (fwg-closed, for short) if clintA ≤ U whenever

A ≤ U and U ∈ τ ,
(vi) generalized α-closed (fgα-closed, for short) [3] if αclA ≤ U whenever A ≤ U

and U ∈ FαO(X),
(vii) α-generalized closed (fαg-closed, for short) [3] if αclA ≤ U whenever A ≤ U

and U ∈ τ ,
(viii) strongly g-closed (fs∗g-closed, for short) if clA ≤ U whenever A ≤ U and

U is fg-open in X.
The complements of the above mentioned sets are called their respective open sets.

Definition 3.2. A function f : (X, τX)→ (Y, τY ) is called fuzzy
(i) generalized continuous (fg-continuous, for short) [3] if f−1(V ) is fg open in

X for each V ∈ τY ,
(ii) strongly g-continuous (fs∗g-continuous, for short) if f−1(V ) ∈ τX for each

fg-open set V in Y ,
646
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(iii) semi-generalized continuous (fsg-continuous, for short) [3] if f−1(V ) is fsg-
open in X for each V ∈ τY ,

(iv) generalized semi-continuous (fgs-continuous, for short) [3] if f−1(V ) is fgs-
open in X for each V ∈ τY .

Remark 3.3. It is clear from Definition 3.1 that every fuzzy closed set is fg-closed.
But the converse need not be true as seen form the following example.

Example 3.4. fg-closed 6⇒ fuzzy closed.
Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.4, A(b) = 0.55, B(a) =
0.5, B(b) = 0.6. Then (X, τ) is an fts. Consider the fuzzy set D in (X, τ) de-
fined by D(a) = 0.5, D(b) = 0.8. Clearly D is not fuzzy closed in (X, τ). But 1X is
the only fuzzy open set in X containing D and so clD = 1X ≤ 1X ⇒ D is fg-closed
in (X, τ).

Remark 3.5. From Definition 3.1(i) and (ii), we can conclude that fg-closed set is
fgs-closed, but not conversely as it seen from the following example.

Example 3.6. fgs-closed 6⇒ fg-closed.
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.4, A(b) = 0.5. Then (X, τ) is an fts.
The collection of fuzzy semiopen sets in X is {0X , 1X , A, U} where A ≤ U ≤ 1X \A
and that of fuzzy semiclosed sets is {0X , 1X , 1X \ A, 1X \ U} where A ≤ 1X \ U ≤
1X \A. Let B be a fuzzy set in X defined by B(a) = B(b) = 0.4. It is clear that B
is not fg-closed. Indeed, B ≤ A ∈ τ , but clB = 1X \ A 6 ≤A. But B ≤ A ∈ τ and
sclB = A ≤ A⇒ B is fgs-closed in X.

Remark 3.7. It is clear from Definition 3.1(ii) and (iii) that fsg-closed set is fgs-
closed. But the converse need not be true as seen from the following example.

Example 3.8. fgs-closed 6⇒ fsg-closed.
Consider Example 3.4. We first prove that D is fgs-closed in (X, τ). Now the
collection of all fuzzy semiopen sets in (X, τ) is {0X , 1X , A,B, U} where U > A so
that that of fuzzy semiclosed sets in (X, τ) is {0X , 1X , 1X \A, 1X \B, 1X \U} where
1X \ U < 1X \ A. Now 1X is the only fuzzy open set in X containing D and so
sclD ≤ 1X ⇒ D is fgs-closed in X. Now as D > A, D ∈ FSO(X) containing D,
but sclD = 1X 6≤ D ⇒ D is not fsg-closed in X.

Remark 3.9. fg-closedness and fsg-closedness are independent notions follow from
the next two examples.

Example 3.10. fg-closed 6⇒ fsg-closed.
Consider Example 3.4. Here D is not fsg-closed as shown in Example 3.8, but D is
fg-closed as shown in Example 3.4.

Example 3.11. fsg-closed 6⇒ fg-closed.
Consider Example 3.6. Here B is not fg-closed. But B ≤ A(∈ FSO(X)) and so
sclB = A ≤ A⇒ B is fsg-closed.

Remark 3.12. From Definition 3.1(i) and (iv), it is clear that fw-closed set is
fg-closed. But the converse need not be true as shown in the following example.
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Example 3.13. fg-closed 6⇒ fw-closed.
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.4, A(b) = 0.5. Then (X, τ) is an fts.
The collection of fuzzy semiopen sets in X is {0X , 1X , A, U} where A ≤ U ≤ 1X \A
and that of fuzzy semiclosed sets is {0X , 1X , 1X \ A, 1X \ U} where A ≤ 1X \ U ≤
1X \ A. Consider the fuzzy set B defined by B(a) = B(b) = 0.5. Then 1X is the
only fuzzy open set in X containing B and so B is fg-closed. Now B ∈ FSO(X).
Therefore, B ≤ B and clB = 1X \A 6≤ B ⇒ B is not fw-closed.

Remark 3.14. It is clear from Definition 3.1(i) and (v) that fg-closed set is fwg-
closed, but the converse may not be true as it seen from the following example.

Example 3.15. fwg-closed 6⇒ fg-closed.
Consider Example 3.6. Here B is not fg-closed. Now B ≤ A ∈ τ ⇒ clintB =
cl0X = 0X ≤ A⇒ B is fwg-closed.

Remark 3.16. fg-closedness and fgα-closedness are independent notions as it seen
from the following examples.

Example 3.17. fg-closed 6⇒ fgα-closed.
Consider Example 3.4 and the fuzzy set C defined by C(a) = 0.5, C(b) = 0.7. We
claim that C is fg-closed. Infact, 1X is the only fuzzy open set in X containing
C and so clC = 1X ≤ 1X ⇒ C is fg-closed. Again C ∈ FαO(X) as intclintC =
intclB = int1X = 1X > C. Then C ≤ C ∈ FαO(X) and αclC = 1X 6≤ C ⇒ C is
not fgα-closed.

Example 3.18. fgα-closed 6⇒ fg-closed.
Consider Example 3.4 and the fuzzy set E defined by E(a) = E(b) = 0.4. Then
E ≤ A ∈ τ , but clE = 1X \B 6≤ A⇒ E is not fg-closed. Again A ∈ FαO(X) such
that E ≤ A,αclE = E ≤ A⇒ E is fgα-closed.

Remark 3.19. From Definition 3.1(i) and (vii), we can conclude that fg-closed
⇒ fαg-closed, but not conversely follows from the next example.

Example 3.20. fαg-closed 6⇒ fg-closed.
Consider Example 3.18. Here E is not fg-closed. Again E ≤ A ∈ τ and αclE =
E ≤ A⇒ E is fαg-closed.

Remark 3.21. Since fuzzy open set is fg-open, fs∗g-closed set is fg-closed, but
not conversely as it seen from the following example.

Example 3.22. fg-closed 6⇒ fs∗g-closed.
Consider Example 3.6 and the fuzzy set B defined by B(a) = B(b) = 0.5. Here B
is fg-closed. Indeed, 1X is the only fuzzy open set in X containing B and so clB ≤
1X ⇒ B is fg-closed. Also B is fg-open and B ≤ B and clB = 1X \A 6≤ B ⇒ B is
not fs∗g-closed.

Remark 3.23. It is clear from Definition 3.1(vi) and (vii) that fgα-closed ⇒ fαg-
closed, but not conversely as it seen from the following example.

Example 3.24. fαg-closed 6⇒ fgα-closed.
Consider Example 3.17. Here C is not fgα-closed. Now 1X is the only fuzzy open
set in X containing C and so C is fαg-closed.

648



A. Bhattacharyya /Ann. Fuzzy Math. Inform. 11 (2016), No. 4, 645–659

Remark 3.25. It is clear from Definition 3.1(v) and (viii) that fs∗g-closed⇒ fwg-
closed, but not conversely as it seen from the following example.

Example 3.26. fwg-closed 6⇒ fs∗g-closed.
Consider Example 3.22. Here B is not fs∗g-closed. Now 1X is the only fuzzy open
set in X containing B and so B is fwg-closed.

Remark 3.27. From Definition 3.1(vii) and (viii) that fs∗g-closed ⇒ fαg-closed,
but the converse need not be true as it seen from the following example.

Example 3.28. fαg-closed 6⇒ fs∗g-closed.
Consider Example 3.22. Here B is not fs∗g-closed. But 1X is the only fuzzy open
set in X containing B and so B is fαg-closed.

Remark 3.29. From Definition 3.1(ii) and (viii), it is clear that fs∗g-closed set is
fgs-closed, but not conversely as it seen from the following example.

Example 3.30. fgs-closed 6⇒ fs∗g-closed.
Consider Example 3.22. Here B is not fs∗g-closed. But 1X is the only fuzzy open
set in X containing B and so B is fgs-closed.

Remark 3.31. Definition 3.1 (iv) and (v) together imply that fw-closed ⇒ fwg-
closed, but the converse may not be true as seen from the following example.

Example 3.32. fwg-closed 6⇒ fw-closed.
Consider Example 3.22. Here B ∈ FSO(X) so that B ≤ B, but clB = 1X \ A 6≤
B ⇒ B is not fw-closed. But 1X is the only fuzzy open set in X containing B and
so B is fwg-closed.

Remark 3.33. Definition 3.1 (v) and (viii) together imply that fs∗g-closed⇒ fwg-
closed, but the converse may not be true as it seen from the following example.

Example 3.34. fwg-closed 6⇒ fs∗g-closed.
Consider Example 3.32. Here B is fwg-closed. Now B is fg-open in X so that
B ≤ B, but clB = 1X \A 6≤ B ⇒ B is not fs∗g-closed.

Remark 3.35. It is clear from Definition 3.1( ii) that fuzzy closed set is fgs-closed,
but not conversely as it seen from the following example.

Example 3.36. fgs-closed 6⇒ fuzzy closed.
Consider Example 3.6. Here B is fgs-closed. But B is not fuzzy closed in (X, τ).

Example 3.37. fgα-closed 6⇒ fs∗g-closed
Consider Example 3.22. Here B is not fs∗g-closed. Now 1X is the only fuzzy α-open
set in X containing B and so αclB ≤ 1X ⇒ B is fgα-closed.

Example 3.38. fsg-closed 6⇒ fs∗g-closed.
Consider Example 3.11. Here B is fsg-closed. Now 1X is the only fuzzy open set in
X containing 1X \ B and so cl(1X \ B) = 1X ≤ 1X ⇒ 1X \ B is fg-closed ⇒ B is
fg-open in X. Now B ≤ B, clB = 1X \A 6≤ B ⇒ B is not fs∗g-closed.

Remark 3.39. It is clear from Definition 3.1(iii) and (iv) that fw-closed set is
fsg-closed, but the converse may not be true as seen from the following example.
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Example 3.40. fsg-closed 6⇒ fw-closed.
Consider Example 3.6. Here B ≤ A ∈ FSO(X) and sclB = A ≤ A ⇒ B is
fsg-closed. Now B ≤ A ∈ FSO(X), but clB = 1X \A 6≤ A⇒ B is not fw-closed.

Remark 3.41. From Definition 3.2 (iii) and (iv) that fsg-continuity⇒ fgs-continuity,
but the converse need not be true as seen from the following example.

Example 3.42. fgs-continuity 6⇒ fsg-continuity.
Let X = {a, b}, τ = {0X , 1X , A,B}, τ1 = {0X , 1X , E} where A(a) = 0.4, A(b) =
0.55, B(a) = 0.5, B(b) = 0.6 and E(a) = 0.5, E(b) = 0.2. Then (X, τ) and (X, τ1)
are fts’s. Consider the identity function i : (X, τ) → (X, τ1). Then 1X \ E ∈ τ c1
and i−1(1X \E) = 1X \E where (1X \E)(a) = 0.5, (1X \E)(b) = 0.8. By Example
3.8, 1X \ E is fgs-closed but not fsg-closed and hence i is fgs-continuous but not
fsg-continuous.

Remark 3.43. It is clear from Definition 3.2 and Remark 3.35 that fs∗g-continuity
implies fgs-continuity and fsg-continuity, but not conversely as it seen from the next
two examples.

Example 3.44. fgs-continuity 6⇒ fs∗g-continuity.
Let X = {a, b}, τ = {0X , 1X , A}, τ1 = {0X , 1X , C} where A(a) = 0.4, A(b) = 0.5
and C(a) = C(b) = 0.6. Then (X, τ) and (X, τ1) are fts’s. Consider the identity
function i : (X, τ) → (X, τ1). Now 1X \ C ∈ τ c1 and i−1(1X \ C) = 1X \ C which is
fgs-closed in (X, τ) by Example 3.6. But 1X \ C 6∈ τ c (1X \ C ∈ τ c1 ⇒ 1X \ C is
fg-closed in (X, τ1)). Therefore i is fgs-continuous but not fs∗g-continuous.

Example 3.45. fsg-continuity 6⇒ fs∗g-continuity.
Consider Example 3.44. Here also 1X \ C is fsg-closed and so i is fsg-continuous
but not fs∗g-continuous.

Remark 3.46. From Definition 3.2, it is clear that fs∗g-continuity⇒ fg-continuity,
but the converse need not be true as it seen from the following example.

Example 3.47. fg-continuity 6⇒ fs∗g-continuity.
Let X = {a, b}, τ = {0X , 1X , A}, τ1 = {0X , 1X , B} where A(a) = 0.4, A(b) = 0.5,
B(a) = B(b) = 0.4. Then (X, τ) and (X, τ1) are fts’s. Consider the identity function
i : (X, τ) → (X, τ1). Now 1X \ B ∈ τ c1 , i−1(1X \ B) = 1X \ B. Now 1X is the only
fuzzy open set in X containing 1X \B and so 1X \B is fg-closed in (X, τ) and so i
is fg-continuous.
Again we know that every fuzzy closed set is fg-closed, 1X \B is fg-closed in (X, τ1),
but 1X \B /∈ τ c and so i is not fs∗g-continuous.

4. fg∗s-closed sets in a fuzzy topological space

In this section we first introduce a new type of fuzzy generalized closed set and
then find mutual relationship of this newly defined set with the sets defined in Section
3.

Definition 4.1. A fuzzy set A in a fts (X, τ) is called fuzzy g∗s-closed (fg∗s-closed,
for short) if sclA ≤ U whenever A ≤ U and U is fgs-open in (X, τ).
The complement of an fg∗s-closed set is called fg∗s-open.
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Theorem 4.2. Every fuzzy closed set in a fts (X, τ) is fg∗s-closed.

Proof. Let A ∈ τ c and U be an fgs-open set in X such that A ≤ U . Then sclA ≤
clA = A ≤ U ⇒ A is fg∗s-closed in X. �

The converse of the above theorem need not be true as seen from the following
example.

Example 4.3. fg∗s-closed 6⇒ fuzzy closed.
Consider Example 3.4. Here the collection of fuzzy semiopen sets inX is {0X , 1X , A,B, U}
where U > A and that of fuzzy semiclosed sets is {0X , 1X , 1X \ A, 1X \ B, 1X \ U}
where 1X \ U < 1X \ A. Here 1X is the only fuzzy open set in X containing
D ⇒ sclD = 1X ⇒ D is fgs-closed in (X, τ)⇒ 1X \D is fgs-open in (X, τ). Again,
1X\D is fgs-open in X containing 1X\D ⇒ scl(1X\D) = 1X\D ≤ 1X\D ⇒ 1X\D
is fg∗s-closed, but 1X \D /∈ τ c ⇒ 1X \D is not fuzzy closed in (X, τ).

Theorem 4.4. Union of two fg∗s-closed sets is fg∗s-closed.

Proof. Let A and B be two fg∗s-closed sets in a fts (X, τ). Let U be an fgs-open
set in X such that A

∨
B ≤ U . Then A ≤ U and B ≤ U . By hypothesis, sclA ≤ U ,

sclB ≤ U . Now scl(A
∨
B) = sclA

∨
sclB ≤ U (Clearly, sclA

∨
sclB ≤ scl(A

∨
B).

To prove the converse, let xα ∈ scl(A
∨
B). Then for any fuzzy semiopen set U in

X with xαqU , Uq(A
∨
B). Then there exists y ∈ X such that U(y) + (A

∨
B)(y) >

1 ⇒ U(y) + max{A(y), B(y)} > 1 ⇒ U(y) + A(y) > 1 or U(y) + B(y) > 1 ⇒ UqA
or UqB ⇒ xα ∈ sclA or xα ∈ sclB ⇒ xα ∈ sclA

∨
sclB). Hence the proof. �

Theorem 4.5. Every fg∗s-closed set in a fts (X, τ) is fgs-closed.

Proof. Let A be fg∗s-closed in X. Let U ∈ τ be such that A ≤ U . Since every
fuzzy open set is fgs-open (by Remark 3.35), by assumption, sclA ≤ U . Hence A is
fgs-closed. �

The converse of the above theorem need not be true as seen from the following
example.

Example 4.6. fgs-closed 6⇒ fg∗s-closed.
Consider Example 3.6. Here B is fgs-closed in X. Again (1X \B)(a) = 1−B(a) =
1−B(b) = (1X \B)(b) = 0.6. And so 1X is the only fuzzy open set in X containing
1X \B ⇒ scl(1X \B) ≤ 1X ⇒ 1X \B is also fgs-closed in X ⇒ B is fgs-open in X.
Now B ≤ B where B is fgs-open in X ⇒ sclB = A 6≤ B ⇒ B is not fg∗s-closed in
X.

Remark 4.7. It is clear from Definition 3.1 that A is fuzzy semiclosed ⇒ A is
fgs-closed and so A ∈ FSO(X)⇒ A is fgs-open in X.

Theorem 4.8. Every fg∗s-closed set in a fts X is fsg-closed in X.

Proof. Let A be fg∗s-closed set in X. Let U ∈ FSO(X) and A ≤ U . By Remark
4.7, U is fgs-open in X. By assumption, sclA ≤ U ⇒ A is fsg-closed in X. �

The converse of the above theorem need not be true as seen from the following
example.
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Example 4.9. fsg-closed 6⇒ fg∗s-closed.
Consider Example 4.6. Here B ≤ A and A ∈ FSO(X) and so sclB = A ≤ A ⇒ A
is fsg-closed, but not fg∗s-closed in X.

Remark 4.10. fg∗s-closedness is independent of the following classes of fuzzy
closedness, viz., fg-closedness, fw-closedness, fgα-closedness, fαg-closedness, fuzzy
preclosedness.

Example 4.11. fuzzy preclosed 6⇒ fg∗s-closed.
Consider Example 4.6. Here clintB = cl0X = 0X ≤ B ⇒ B is fuzzy preclosed, but
B is not fg∗s-closed as shown in Example 4.6.

Example 4.12. fg∗s-closed 6 ⇒ fuzzy preclosed.
Consider Example 3.22. Here B is not fuzzy preclosed. Indeed, clintB = clA =
1X \ A 6≤ B. Now we show that B is fg∗s-closed. Here 1X is the only fuzzy open
set in X containing B and so clB ≤ 1X ⇒ B is fg-closed in X ⇒ 1X \ B is fg-
open in X. But 1X \ B = B. Now B ≤ 1X \ B(= B) where 1X \ B is fg-open in
X ⇒ sclB = B ≤ B ⇒ B is fg∗s-closed in X.

Example 4.13. fg∗s-closed 6⇒ fw-closed.
Consider Example 4.12. Now B ∈ FSO(X), B ≤ B, but clB = 1X \A 6≤ B ⇒ B is
not fw-closed, though B is fg∗s-closed in X.

Example 4.14. fw-closed 6⇒ fg∗s-closed.
Consider Example 3.6 and the fuzzy set B defined by B(a) = B(b) = 0.6. Then 1X
is the only fuzzy semiopen set in X containing B and so clB ≤ 1X ⇒ B is fw-closed
in X. Again from Example 4.6, it is clear that B is fgs-open. So B ≤ B, but
sclB = 1X 6≤ B ⇒ B is not fg∗s-closed in X.

Example 4.15. fg-closed 6⇒ fg∗s-closed.
Consider Example 4.3 and consider the fuzzy set C defined by C(a) = 0.5, C(b) =
0.7. We claim that C is fg-closed. Infact, 1X is the only fuzzy open set in X
containing C and so clC ≤ 1X ⇒ C is fg-closed. Again, C is fgs-open in X.
Indeed, 1X \C ≤ B ⇒ scl(1X \C) = 1X \C ≤ B ⇒ 1X \C is fgs-closed in X ⇒ C
is fgs-open in X. Now C ≤ C and sclC = 1X 6≤ C ⇒ C is not fg∗s-closed in X.

Example 4.16. fg∗s-closed 6⇒ fg-closed.
LetX = {a, b}, τ = {0X , 1X , A,B} whereA(a) = 0.4, A(b) = 0.5, B(a) = 0.5, B(b) =
0.6. Then (X, τ) is an fts. Then the collection of fuzzy semiopen sets in X is
{0X , 1X , A,B, U} where U > A and that of fuzzy semiclosed sets is {0X , 1X , 1X \
A, 1X \ B, 1X \ U} where 1X \ U < 1X \ A. Consider the fuzzy set E defined by
E(a) = E(b) = 0.5. We claim that E is fg∗s-closed in X. Let F be a fuzzy set
defined by F (a) > 0.5, F (b) = 0.5. We first show that 1X \ F is fgs-closed in X.
Now 1X \ F < B ∈ τ and scl(1X \ F ) = 1X \ F < B ⇒ 1X \ F is fgs-closed in
X ⇒ F is fgs-open in X. Now E < F and so sclE = E < F ⇒ E is fg∗s-closed in
X. Now B is a fuzzy open set in X containing E, but clE = 1X \ A 6≤ B ⇒ E is
not fg-closed in X.

Example 4.17. fg∗s-closed 6⇒ fgα-closed.
Consider Example 4.16. Here E is fg∗s-closed. We claim that E is not fgα-closed
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in X. Now E < B(∈ FαO(X)), but αclE = 1X \ A 6≤ B ⇒ E is not fgα-closed in
X.

Example 4.18. fgα-closed 6⇒ fg∗s-closed.
Consider Example 4.14. Here B is not fg∗s-closed in X. Now 1X is the only fuzzy
open set in X containing B and so αclB = 1X ≤ 1X ⇒ B is fgα-closed in X.

Example 4.19. fαg-closed 6⇒ fg∗s-closed.
Consider Example 4.15. Now 1X is the only fuzzy open set in X containing C and
so αclC ≤ 1X ⇒ C is fαg-closed in X though C is not fg∗s-closed in X.

Example 4.20. fg∗s-closed 6⇒ fαg-closed.
Consider Example 4.16. Here E is fg∗s-closed in X. Now E < B ∈ τ , αclE =
1X \A 6≤ B ⇒ E is not fαg-closed in X.

Example 4.21. fg∗s-closed 6⇒ fs∗g-closed.
Consider Example 4.12. Here B is fg∗s-closed in X. Now B is fg-open in X and
so B ≤ B, but clB = 1X \A 6≤ B ⇒ B is not fs∗g-closed in X.

Example 4.22. fs∗g-closed 6⇒ fg∗s-closed.
Consider Example 4.14. Here B is not fg∗s-closed in X. Now B ≤ 1X where 1X is
the only fg-open set in X. Now clB ≤ 1X ⇒ B is fs∗g-closed in X.

5. fg∗s-continuous function in a fuzzy topological space

In this section a new type of fuzzy generalized continuity has been introduced
and studied and found mutual relationships of this newly defined function with
other fuzzy generalized functions defined in Section 3.

Definition 5.1. A function f : (X, τX) → (Y, τY ) is called fg∗s-continuous if
f−1(V ) is fg∗s-closed in X whenever V ∈ τ cY .

Definition 5.2 ([6]). A function f : (X, τX)→ (Y, τY ) is called fuzzy continuous if
f−1(V ) ∈ τ cX for all V ∈ τ cY .

Theorem 5.3. If f : (X, τX) → (Y, τY ) is fuzzy continuous, then it is fg∗s-
continuous.

Proof. Let V ∈ τ cY . Then f−1(V ) ∈ τ cX . By Theorem 4.2, f−1(V ) is fg∗s-closed in
X and hence the proof. �

The converse of the above theorem is not necessarily true, as seen from the fol-
lowing example.

Example 5.4. fg∗s-continuity 6⇒ fuzzy continuity.
Let X = {a, b}, τX = {0X , 1X , A,B}, where A(a) = 0.4, A(b) = 0.55, B(a) =
0.5, B(b) = 0.6, Y = {c, d}, τY = {0Y , 1Y , C}, where C(c) = 0.8, C(d) = 0.5. Then
(X, τX) and (Y, τY ) are fts’s. Let us consider the fuzzy function f : (X, τX)→ (Y, τY )
defined by f(a) = d, f(b) = c. We claim that f is fg∗s-continuous, but not fuzzy
continuous. Consider the fuzzy set D in X defined by D(a) = 0.5, D(b) = 0.8. Now
1Y \C ∈ τ cY . [f−1(1Y \C)](a) = (1Y \C)f(a) = (1Y \C)(d) = 1−C(d) = 1−0.5 = 0.5,
[f−1(1Y \C)](b) = (1Y \C)f(b) = (1Y \C)(c) = 1−C(c) = 1−0.8 = 0.2. Therefore,
f−1(1Y \ C) = 1X \ D which is fg∗s-closed in X (as shown in Example 4.3), but
not fuzzy closed in X.
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Theorem 5.5. If a function f : (X, τX) → (Y, τY ) is fg∗s-continuous, then it is
fgs-continuous.

Proof. Let V ∈ τ cY . As f is fg∗s-continuous, f−1(V ) is fg∗s-closed in X. By
Theorem 4.5, f−1(V ) is fgs-closed in X and hence by Definition 3.2(iv), f is fgs-
continuous. �

The converse of the above theorem may not be true, in general, as shown in the
following example.

Example 5.6. fgs-continuity 6⇒ fg∗s-continuity.
Let X = {a, b}, Y = {c, d}, τX = {0X , 1X , A}, τY = {0Y , 1Y , C} where A(a) =
0.4, A(b) = 0.5, C(c) = C(d) = 0.6. Then (X, τX) and (Y, τY ) are fts’s. Consider
the function f : (X, τX) → (Y, τY ) defined by f(a) = c, f(b) = d. Let B be a fuzzy
set in X defined by B(a) = B(b) = 0.4. Now 1Y \ C ∈ τ cY . [f−1(1Y \ C)](a) =
(1Y \ C)f(a) = (1Y \ C)(c) = 1− C(c) = 1− 0.6 = 0.4 = B(a), [f−1(1Y \ C)](b) =
(1Y \ C)f(b) = (1Y \ C)(d) = 1 − C(d) = 1 − 0.6 = 0.4 = B(b). Therefore,
f−1(1Y \ C) = B which is fgs-closed in X, but not fg∗s-closed in X as shown in
Example 4.6.

Remark 5.7. It is clear from Definition 5.1 that f : (X, τX) → (Y, τY ) is fg∗s-
continuous iff f−1(V ) is fg∗s-open in X for every V ∈ τY . Also composition of
two fg∗s-continuous functions may not be so as fg∗s-closed set need not be fuzzy
closed as seen from Example 4.3. Also inverse image of an fg∗s-closed set under
fg∗s-continuous function need not be fg∗s-closed follows from Example 5.8.

Example 5.8. Let X = {a, b}, τX = {0X , 1X , C} where C(a) = 0.8, C(b) = 0.5.
Then (X, τX) is a fts. Let us consider the function f : (X, τX)→ (X, τX) defined by
f(a) = b, f(b) = a. Now 1X \ C being fuzzy closed is fg∗s-closed in (X, τX). Now
[f−1(1X \C)](a) = (1X \C)f(a) = (1X \C)(b) = 1−C(b) = 0.5, [f−1(1X \C)](b) =
(1X \C)f(b) = (1X \C)(a) = 1−C(a) = 0.2. Let D be a fuzzy set in X defined by
D(a) = 0.5, D(b) = 0.2. Then f−1(1X \C) = D. We claim that D is not fg∗s-closed.
We first show that D is fgs-open in X, i.e., 1X \D is fgs-closed in X. Now 1X is
the only fuzzy open set in X containing 1X \D and so scl(1X \D) ≤ 1X ⇒ 1X \D is
fgs-closed and so D is fgs-open set in X. Again, D ≤ D, but sclD = 1X 6≤ D ⇒ D
is not fg∗s-closed in X.

To achieve the desire result that the composition of two fg∗s-continuous functions
is fg∗s-continuous, we need to define some sort of space.

Definition 5.9. A fts (X, τ) is called
(i) fTg∗s-space if every fg∗s-closed set in (X, τ) is fuzzy closed in (X, τ),
(ii) fTb-space [3] if every fgs-closed set in (X, τ) is fuzzy closed in (X, τ),
(iii) fTsg-space if every fsg-closed set in (X, τ) is fuzzy closed in (X, τ),
(iv) fTg-space if every fg-closed set in (X, τ) is fuzzy closed in (X, τ).

Theorem 5.10. Let (X, τX), (Y, τY ) and (Z, τZ) be fts’s where (Y, τY ) be an fTg∗s-
space. Let f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z, τZ) be fg∗s-continuous
functions. Then g ◦ f : (X, τX)→ (Z, τZ) is fg∗s-continuous.
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Proof. Let V ∈ τ cZ . As g is fg∗s-continuous, g−1(V ) is fg∗s-closed in Y . As
Y is fTg∗s-space, g−1(V ) ∈ τ cY . Again f is fg∗s-continuous, so f−1(g−1(V )) =
(g ◦ f)−1(V ) is fg∗s-closed in X. As a result, g ◦ f is fg∗s-continuous. �

Remark 5.11. According to Definition 5.9(iv), in a fTg-space, fg-closed set is
fg∗s-closed.

Theorem 5.12. If a function f : (X, τX) → (Y, τY ) is fg∗s-continuous, then it is
fsg-continuous.

Proof. Let V ∈ τ cY . Then f−1(V ) is fg∗s-closed in X. By Theorem 4.8, f−1(V ) is
fsg-closed in X and hence the result. �

The converse of the above theorem need not be true, as seen from the following
example.

Example 5.13. Let X = {a, b}, τ = {0X , 1X , A}, τ1 = {0X , 1X , C}, where A(a) =
0.4, A(b) = 0.5, C(a) = C(b) = 0.6. Then (X, τ) and (X, τ1) are a fts’s. Consider
the identity function i : (X, τ) → (X, τ1). Let B be a fuzzy set in X defined by
B(a) = B(b) = 0.4. Then B = 1X \ C ∈ τ c1 . Thus i−1(B) = B is fsg-closed, but
not fg∗s-closed (as shown in Example 4.9).

Remark 5.14. fg-continuity and fg∗s-continuity are independent notions as follow
from the next two examples.

Example 5.15. fg-continuity 6⇒ fg∗s-continuity.
Let X = {a, b}, τ = {0X , 1X , A}, τ1 = {0X , 1X , B}, where A(a) = 0.4, A(b) =
0.5, B(a) = 0.5, B(b) = 0.4. The collection of fuzzy semiopen sets inX is {0X , 1X , A, U}
where A ≤ U ≤ 1X \A and that of fuzzy semiclosed sets is {0X , 1X , 1X \A, 1X \U}
where A ≤ 1X \ U ≤ 1X \A. Consider the identity function i : (X, τ)→ (X, τ1).

Let D be a fuzzy set in X defined by D(a) = 0.5, D(b) = 0.6. Then D = 1X \B ∈
τ c1 . We claim that D is fg-closed but not fg∗s-closed in X. Now 1X is the only
fuzzy open set in X containing D and so D is fg-closed. Now D is fgs-open in X
also. Indeed, (1X \D)(a) = 0.5, (1X \D)(b) = 0.4 and 1X is the only fuzzy open set
in X containing 1X \D and so scl(1X \D) ≤ 1X ⇒ 1X \D is fgs-closed in X and
so D is fgs-open in X. Again D ≤ D and sclD = 1X 6≤ D ⇒ D is not fg∗s-closed
in X.

Example 5.16. fg∗s-continuity 6⇒ fg-continuity.
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4, τ1 = {0X , 1X , B}
where B(a) = 0.5, B(b) = 0.6. Then (X, τ) and (X, τ1) are fts’s. Consider the
identity function i : (X, τ)→ (X, τ1). Now 1X \B ∈ τ c1 . i−1(1X \B) = 1X \B ≤ A ∈
τ , but cl(1X \B) = 1X \A 6≤ A⇒ i is not fg-continuous. Now clearly B is fgs-closed
in (X, τ) (as 1X is the only fuzzy open set in X containing B) and so 1X \B is fgs-
open in (X, τ). Now 1X \B ≤ 1X \B and so scl(1X \B) = 1X \B ≤ 1X \B ⇒ 1X \B
is fg∗s-closed in (X, τ).

Remark 5.17. It is clear from Definition 3.2(iv) and Definition 5.1 that fs∗g-
continuous function is fg∗s-continuous. But the converse may not be true as seen
from the following example.

655



A. Bhattacharyya /Ann. Fuzzy Math. Inform. 11 (2016), No. 4, 645–659

Example 5.18. fg∗s-continuity 6⇒ fs∗g-continuity.
Consider Example 5.16. Here 1X \ B is fg∗s-closed in (X, τ) where 1X \ B ∈ τ c1
which shows that i is fg∗s-continuous. But 1X \B /∈ τ c whereas 1X \B is fg-closed
in (X, τ1). Indeed, 1X \ B ∈ τ1 and cl(1X \ B) = 1X \ B ≤ B and so i is not
fs∗g-continuous.

6. fg∗s-closed and fg∗s-open functions : Some applications

In this section we have introduced and studied fg∗s-closed and fg∗s-open func-
tions and found mutual relations with fuzzy closed [11] and fuzzy open [11] functions.
Also it has been shown that fuzzy normal space remains invariant under different
types of fuzzy generalized continuity defined in Section 3.

Definition 6.1. A function f : (X, τX) → (Y, τY ) is called fg∗s-closed (resp.,
fg∗s-open) function if for each fuzzy closed (resp., fuzzy open) set U in X, f(U) is
fg∗s-closed (resp., fg∗s-open) in Y .

Definition 6.2 ([11]). A function f : (X, τX) → (Y, τY ) is called fuzzy closed
(resp., fuzzy open) function if f(U) ∈ τ cY (resp., f(U) ∈ τY ) for every U ∈ τ cX (resp.,
U ∈ τX).

Theorem 6.3. If f : (X, τX)→ (Y, τY ) is fuzzy closed (resp., fuzzy open) function,
then it is fg∗s-closed (resp., fg∗s-open) function.

Proof. It follows from the fact that every fuzzy closed (resp., fuzzy open) set is
fg∗s-closed (resp., fg∗s-open) set. �

The converse of the above theorem need not be true, in general, as seen from the
following example.

Example 6.4. fg∗s-closed (fg∗s-open) function 6⇒ fuzzy closed (resp., fuzzy open)
function.
Let X = {a, b}, τ = {0X , 1X , C}, τ1 = {0X , 1X , A,B} where C(a) = 0.5, C(b) = 0.8,
A(a) = 0.4, A(b) = 0.55, B(a) = 0.5, B(b) = 0.6. Then (X, τ) and (X, τ1) are
fts’s. Consider the identity function i : (X, τ) → (X, τ1). Here 1X \ C ∈ τ c.
Now i(1X \ C) = 1X \ C is fg∗s-closed in (X, τ1) as seen in Example 5.4, but
1X \ C /∈ τ c1 ⇒ i is not fuzzy closed function though it is fg∗s-closed function.
Similarly C ∈ τ and i(C) = C is fg∗s-open in (X, τ1) as 1X \ C is fg∗s-closed in
(X, τ1) and so i is fg∗s-open function. But i(C) = C /∈ τ1 and so i is not fuzzy open
function.

Theorem 6.5. A bijective function f : (X, τX)→ (Y, τY ) is fg∗s-closed iff for each
fuzzy set S in Y and for each U ∈ τX such that f−1(S) ≤ U , then there is an
fg∗s-open set V in Y such that S ≤ V and f−1(V ) ≤ U .

Proof. Let S be a fuzzy set in Y and U ∈ τX be such that f−1(S) ≤ U . Then
1X \ f−1(S) ≥ 1X \ U ∈ τ cX . As f is fg∗s-closed function, f(1X \ U) is fg∗s-closed
set in Y . Now f(1X \ U) ≤ f(1X \ f−1(S)) = 1Y \ ff−1(S) = 1Y \ S (as f is
bijective) ⇒ S ≤ 1Y \ f(1X \ U) which is fg∗s-open in Y . Let V = 1Y \ f(1X \ U).
Now f−1(V ) = f−1(1Y \ f(1X \ U)) = 1X \ f−1(f(1X \ U)) = U (as f is bijective).
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Conversely, let F ∈ τ cX . Then f(F ) is a fuzzy set in Y . Let S = 1Y \ f(F ). Then
f−1(S) = f−1(1Y \ f(F )) = 1X \ f−1f(F ) = 1X \ F (as f is bijective) ∈ τX . By
hypothesis, there is an fg∗s-open set V in Y such that S ≤ V , f−1(V ) ≤ 1X \ F .
Since 1Y \ f(F ) ≤ V ,

(6.1) 1Y \ V ≤ f(F ).

Since F ≤ 1X \ f−1(V ) and f is bijective,

(6.2) f(F ) ≤ f(1X \ f−1(V )) = 1Y \ ff−1(V ) = 1Y \ V.
Combining (6.1) ad (6.2), we get f(F ) = 1Y \ V which is fg∗s-closed in Y ⇒ f is
fg∗s-closed function. �

Theorem 6.6. If f : (X, τX) → (Y, τY ) is fuzzy closed function and g : (Y, τY ) →
(Z, τZ) is fg∗s-closed function, then g◦f : (X, τX)→ (Z, τZ) is fg∗s-closed function.

Proof. Let V ∈ τ cX . As f is fuzzy closed function, f(V ) ∈ τ cY . Again, g being fg∗s-
closed function, g(f(V )) is fg∗s-closed set in Z. Consequently, g ◦ f is fg∗s-closed
function. �

Definition 6.7 ([7]). An fts (X, τ) is called fuzzy normal space if for any two fuzzy
closed sets A, B in X with A 6 qB, there exist two fuzzy open sets U , V in X such
that A ≤ U , B ≤ V and U 6 qV .

Theorem 6.8. Let f : (X, τX)→ (Y, τY ) be a bijective, fg∗s-continuous, fuzzy open
function. If X is fuzzy normal and fTg∗s-space, then Y is fuzzy normal.

Proof. Let A,B be two fuzzy closed sets in Y with A 6 qB. Then f−1(A), f−1(B)
are fg∗s-closed in X as f is fg∗s-continuous function. As X is fTg∗s-space, f−1(A),
f−1(B) ∈ τ cX . Now we claim that f−1(A) 6 qf−1(B). Indeed, f−1(A)qf−1(B) ⇒
there is x ∈ X such that [f−1(A)](x) + [f−1(B)](x) > 1 ⇒ A(f(x)) + B(f(x)) >
1⇒ AqB, a contradiction. as f(x) ∈ Y . As X is fuzzy normal, there are U, V ∈ τX
such that f−1(A) ≤ U, f−1(B) ≤ V and U 6 qV . As f is bijective, A = ff−1(A) ≤
f(U), B = ff−1(B) ≤ f(V ). Since f is fuzzy open function, f(U), f(V ) ∈ τY .
We claim that f(U) 6 qf(V ). If, f(U)qf(V ) then there exists y ∈ Y such that
[f(U)](y) + [f(V )](y) > 1 ⇒ U(f−1(y)) + V (f−1(y) > 1 as f is bijective. Let
z = f−1(y). Then U(z) + V (z) > 1 where z ∈ X ⇒ UqV , a contradiction. Hence
f(U) 6 qf(V )⇒ Y is fuzzy normal space. �

Now we can state the following four theorems the proofs of which are followed
from Theorem 6.8 as follows.

Theorem 6.9. Let f : (X, τX)→ (Y, τY ) be a bijective, fgs-continuous, fuzzy open
function. If X is fuzzy normal and fTb-space, then Y is fuzzy normal.

Theorem 6.10. Let f : (X, τX) → (Y, τY ) be a bijective, fsg-continuous, fuzzy
open function. If X is fuzzy normal and fTsg-space, then Y is fuzzy normal.

Theorem 6.11. Let f : (X, τX)→ (Y, τY ) be a bijective, fg-continuous, fuzzy open
function. If X is fuzzy normal and fTg-space, Then Y is fuzzy normal.

Theorem 6.12. Let f : (X, τX) → (Y, τY ) be a bijective, fs∗g-continuous, fuzzy
open function. If X is fuzzy normal space, then Y is fuzzy normal space.
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Proof. Let A,B be two fuzzy closed sets in Y with A 6 qB. A and B are fg-closed in
Y . As f is fs∗g-continuous function, f−1(A), f−1(B) ∈ τ cX . The rest follows from
Theorem 6.8. �

According to referee’s comment we now site examples of Definition 5.9.

Example 6.13. fTg-space.
Let X = {a}, τ = {0X , 1X , A} where A(a) ≥ 0.7. Then (X, τ) is a fts. We claim
that fg-closed sets are 0X , 1X , 1X \ A only. Let us take a fuzzy set U defined by
U(a) > 0.3. Then U ≤ A ∈ τ . But clU = 1X 6≤ A⇒ U is not fg-closed in X.

Example 6.14. fTb-space.
Consider Example 6.13. Here the collection of fuzzy semiopen sets inX is {0X , 1X , A}
only and so the collection of fuzzy semiclosed sets is the collection of fuzzy closed
sets in X and so (X, τ) is fTb -space.

Example 6.15. fTg∗s-space.
Consider Example 6.14. Here fuzzy semiclosed sets are fuzzy closed sets only and
so fgs-closed and fg-closed sets are same. Then fgs-open set is fg-open and hence
fuzzy open (shown in Example 6.13) set in X. Therefore, every fg∗s-closed set in X
is fg-closed and hence fuzzy closed in X (shown in Example 6.13). Consequently,
(X, τ) is a fTg∗s-space.

Example 6.16. fTsg-space.
Consider Example 6.14. Since here fuzzy semiopen (resp., fuzzy semiclosed) set is
fuzzy open (resp., fuzzy closed), every fsg-closed set is fg-closed and hence fuzzy
closed (shown in Example 6.13) in X. Consequently, (X, τ) is a fTsg-space.
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