Annals of Fuzzy Mathematics and Informatics Volume 11, No. 4, (April 2016), pp. 621–631 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Interval valued fuzzy quasi-ideals of near-rings

V. Chinnadurai, S. Kadalarasi

Received 22 July 2015; Revised 13 September 2015; Accepted 28 September 2015

ABSTRACT. In this paper, we introduce the notion of interval valued fuzzy quasi-ideals of near-rings. Some examples and characterizations of interval valued fuzzy quasi-ideals of near-rings are discussed here.

2010 AMS Classification: 18B40, 03E72, 16D25

Keywords: Near-rings, Quasi-ideals, Interval valued fuzzy quasi-ideals.

Corresponding Author: V. Chinnadurai (kv.chinnadurai@yahoo.com)

1. INTRODUCTION

The concept of fuzzy set was first initiated by Zadeh[15] in 1965. After ten years, Zadeh[16] introduced a new notion of fuzzy subsets viz., interval valued fuzzy subset (in short i-v fuzzy subsets) where the values of the membership functions are closed intervals of numbers instead of a number. Interval valued fuzzy sets have many application in several areas. In [12], Rosenfeld defined fuzzy subgroup and gave some of its properties. In 1991, Abou Said^[1] introduced the idea of fuzzy subnear-rings and fuzzy ideals in near-rings. Jun and Kim^[5] and Davvaz^[2, 3] applied a few concepts of interval valued fuzzy subsets in near-rings. Deena and Coumaressane^[4] discussed some concepts of generalized fuzzy ideals in near-ring. Narayanan et al.[10, 11] introduced the concept of generalized fuzzy quasi-ideals of near-rings. Manikantan^[7] defined and discussed fuzzy bi-ideals of near-rings. Recently, Muhammad Shabir et al.[8, 9] introduced and discussed some characterizations of fuzzy h-ideals of hemirings with interval valued fuzzy set. In this paper we introduce the notion of i-v fuzzy quasi-ideals of near-rings. We investigate some of their properties. We give examples which are i-v fuzzy quasi-ideal and i-v fuzzy quasi-ideal but not i-v fuzzy ideal of near-rings.

2. Preliminaries

In this section, we list some basic concepts and well known results of interval valued fuzzy set theory. Throughout this paper, R will denote a left near-ring.

Definition 2.1 ([6]). A non-empty set R with two binary operations + and \cdot is called a near-ring if

- (1) (R, +) is a group,
- (2) (R, \cdot) is a semigroup,

(3) $x \cdot (y+z) = x \cdot y + x \cdot z$, for all $x, y, z \in R$.

We use the word 'near-ring' to mean 'left near-ring'. We denote xy instead of $x \cdot y$. Note that x0 = 0 and x(-y) = -xy but in general $0x \neq 0$ for some $x \in R$.

Definition 2.2 ([6]). An ideal I of a near-ring R is a subset of R such that

- (4) (I, +) is a normal subgroup of (R, +),
- (5) $RI \subseteq I$,

(6) $((x+i)y - xy) \in I$ for any $i \in I$ and $x, y \in R$.

Note that I is a left ideal of R if I satisfies (4) and (5), and I is a right ideal of R if I satisfies (4) and (6).

Definition 2.3 ([5]). A two sided *R*-subgroup of a near-ring *R* is a subset *H* of *R* such that

(i) (H, +) is a subgroup of (R, +),

(ii) $RH \subset H$, (iii) $HR \subset H$.

If H satisfies (i) and (ii) then it is called a left R-subgroup of R. If H satisfies (i) and (iii) then it is called a right R-subgroup of R.

Definition 2.4 ([4]). Let R be a near-ring. Given two subsets A and B of R, the product $AB = \{ab|a \in A, b \in B\}$ and $A * B = \{(a'+b)a - a'a|a, a' \in A, b \in B\}$.

Definition 2.5 ([10]). A subgroup Q of (R, +) is said to be a quasi-ideal of R if $QR \cap RQ \cap Q * R \subseteq Q$.

Notation 2.6 ([13, 3]). By an interval number \tilde{a} , we mean an interval $[a^-, a^+]$ such that $0 \le a^- \le a^+ \le 1$ where a^- and a^+ are the lower and upper limits of \tilde{a} respectively. The set of all closed subintervals of [0, 1] is denoted by D[0, 1]. We also identify the interval [a, a] by the number $a \in [0, 1]$. For any interval numbers $\tilde{a}_i = [a_i^-, a_i^+], \tilde{b}_i = [b_i^-, b_i^+] \in D[0, 1], i \in I$ we define

$$\max^{i} \{ \widetilde{a}_{i}, \widetilde{b}_{i} \} = [\max\{a_{i}^{-}, b_{i}^{-}\}, \max\{a_{i}^{+}, b_{i}^{+}\}],\\\min^{i} \{ \widetilde{a}_{i}, \widetilde{b}_{i} \} = [\min\{a_{i}^{-}, b_{i}^{-}\}, \min\{a_{i}^{+}, b_{i}^{+}\}],\\\inf^{i} \widetilde{a}_{i} = \left[\bigcap_{i \in I} a_{i}^{-}, \bigcap_{i \in I} a_{i}^{+} \right], \sup^{i} \widetilde{a}_{i} = \left[\bigcup_{i \in I} a_{i}^{-}, \bigcup_{i \in I} a_{i}^{+} \right]$$

and let

- (1) $\tilde{a} \leq \tilde{b} \iff a^- \leq b^- \text{ and } a^+ \leq b^+,$
- (2) $\tilde{a} = \tilde{b} \iff a^- = b^- \text{ and } a^+ = b^+,$
- (3) $\widetilde{a} < \widetilde{b} \iff \widetilde{a} \le \widetilde{b}$ and $\widetilde{a} \ne \widetilde{b}$,
- (4) $k\tilde{a} = [ka^-, ka^+]$, whenever $0 \le k \le 1$.

Definition 2.7 ([13]). Let X be a non-empty set. A mapping $\tilde{\mu} : X \to D[0, 1]$ is called an i-v fuzzy subset of X. For any $x \in X$, $\tilde{\mu}(x) = [\mu^-(x), \mu^+(x)]$, where μ^- and μ^+ are fuzzy subsets of X such that $\mu^-(x) \leq \mu^+(x)$. Thus $\tilde{\mu}(x)$ is an interval (a closed subset of [0, 1]) and not a number from the interval [0, 1] as in the case of a fuzzy set.

Let $\tilde{\mu}, \tilde{\nu}$ be i-v fuzzy subsets of X. The following are defined by (1) $\tilde{\mu} \leq \tilde{\nu} \Leftrightarrow \tilde{\mu}(x) \leq \tilde{\nu}(x)$. (2) $\tilde{\mu} = \tilde{\nu} \Leftrightarrow \tilde{\mu}(x) = \tilde{\nu}(x)$. (3) $(\tilde{\mu} \cup \tilde{\nu})(x) = \max^i \{\tilde{\mu}(x), \tilde{\nu}(x)\}$. (4) $(\tilde{\mu} \cap \tilde{\nu})(x) = \min^i \{\tilde{\mu}(x), \tilde{\nu}(x)\}$.

Definition 2.8 ([13]). Let $\tilde{\mu}$ be an i-v fuzzy subset of X and $[t_1, t_2] \in D[0, 1]$. Then the set $\tilde{U}(\tilde{\mu} : [t_1, t_2]) = \{x \in X \mid \tilde{\mu}(x) \geq [t_1, t_2]\}$ is called the upper level set of $\tilde{\mu}$.

Definition 2.9 ([14]). An i-v fuzzy subset $\tilde{\mu}$ of a near-ring R is called an i-v fuzzy subnear-ring of R if

(1) $\widetilde{\mu}(x-y) \ge \min^{i} \{\widetilde{\mu}(x), \widetilde{\mu}(y)\},\$

(2) $\widetilde{\mu}(xy) \ge \min^i \{ \widetilde{\mu}(x), \widetilde{\mu}(y) \},\$

for all $x, y \in R$.

An i-v fuzzy subset $\tilde{\mu}$ of a near-ring R is called an i-v fuzzy ideal of R if $\tilde{\mu}$ is an i-v fuzzy subnear-ring of R and

(3) $\widetilde{\mu}(x) = \widetilde{\mu}(y + x - y),$ (4) $\widetilde{\mu}(xy) > \widetilde{\mu}(y)$

 $(4) \ \widetilde{\mu}(xy) \ge \widetilde{\mu}(y),$

(5) $\widetilde{\mu}((x+i)y - xy) \ge \widetilde{\mu}(i),$

for any $x, y, i \in R$.

Note that $\tilde{\mu}$ is an i-v fuzzy left ideal of R if it satisfies (1), (3) and (4), and $\tilde{\mu}$ is an i-v fuzzy right ideal of R if it satisfies (1), (2), (3) and (5).

Definition 2.10 ([5]). An i-v fuzzy subset $\tilde{\mu}$ of a near-ring R is called an i-v fuzzy R-subgroup of R if for all $x, y \in R$,

(1) $\widetilde{\mu}(x-y) \ge \min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y)\},\$

(2) $\widetilde{\mu}(xy) \ge \widetilde{\mu}(y)$,

(3) $\widetilde{\mu}(xy) \ge \widetilde{\mu}(x)$.

Note that $\tilde{\mu}$ is an i-v fuzzy left ideal of R if it satisfies (1) and (2), and $\tilde{\mu}$ is an i-v fuzzy right ideal of R if it satisfies (1) and (3).

3. INTERVAL VALUED FUZZY QUASI-IDEAL OF NEAR-RING

In this section, we introduce the notion of i-v fuzzy quasi-ideal of R. We characterize i-v fuzzy quasi-ideal of R. Throughout this paper, \overline{f}_I is an i-v fuzzy characteristic function of a subset I of R and the i-v fuzzy characteristic function of R is denoted by \mathbf{R} , that means, $\mathbf{R} : R \to D[0, 1]$ mapping every element of R to [1, 1].

Definition 3.1. An i-v fuzzy subset $\tilde{\mu}$ of R is said to be an i-v fuzzy subgroup of R if $x, y \in R$ implies $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\}.$

Definition 3.2. An i-v fuzzy subgroup $\widetilde{\mu}$ of R is called an i-v fuzzy quasi-ideal of R if $(\widetilde{\mu}\mathbf{R}) \cap (\mathbf{R}\widetilde{\mu}) \cap (\widetilde{\mu} * \mathbf{R}) \subseteq \widetilde{\mu}$.

Definition 3.3. Let \tilde{f} and \tilde{g} be any two i-v fuzzy subsets of R. Then $\tilde{f} \cap \tilde{g}$, $\tilde{f} \cup \tilde{g}$, $\tilde{f} + \tilde{g}$, $\tilde{f}\tilde{g}$ and $\tilde{f} * \tilde{g}$ are i-v fuzzy subsets of R defined by:

$$\begin{split} &(\widetilde{f} \cap \widetilde{g})(x) = \min^i \{\widetilde{f}(x), \ \widetilde{g}(x)\}. \\ &(\widetilde{f} \cup \widetilde{g})(x) = \max^i \{\widetilde{f}(x), \ \widetilde{g}(x)\}. \\ &(\widetilde{f} + \widetilde{g})(x) = \begin{cases} \sup_{x=y+z}^i \min^i \{\widetilde{f}(y), \ \widetilde{g}(z)\} & \text{if } x \text{ can be expressed as } x = y+z \\ 0 & \text{otherwise.} \end{cases} \\ &(\widetilde{f} \widetilde{g})(x) = \begin{cases} \sup_{x=(a+c)b-ab}^i \min^i \{\widetilde{f}(c), \ \widetilde{g}(b)\} & \text{if } x \text{ can be expressed as } x = yz \\ 0 & \text{otherwise.} \end{cases} \\ &(\widetilde{f} * \widetilde{g})(x) = \begin{cases} \sup_{x=(a+c)b-ab}^i \min^i \{\widetilde{f}(c), \ \widetilde{g}(b)\} & \text{if } x \text{ can be expressed as } x = (a+c)b-ab. \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Example 3.4. Let $R = \{a, b, c, d\}$ be a set with two binary operations is defined as follows:

+	a	b	c	d	•	a	b	c	a
a	a	b	c	d	a	a	a	a	a
b	b	a	d	c	b	a	a	a	a
c	c	d	b	a	c	a	a	a	a
d	d	c	a	b	d	a	a	b	b

Then clearly $(R, +, \cdot)$ is a left near-ring. Let $\tilde{\mu} : R \to D[0, 1]$ be an i-v fuzzy subset of R such that $\tilde{\mu}(a) = [0.5, 0.6]$, $\tilde{\mu}(b) = [0.3, 0.4]$ and $\tilde{\mu}(c) = [0.2, 0.3] = \tilde{\mu}(d)$. Clearly $\tilde{\mu}$ is an i-v fuzzy subgroup of R. $(\tilde{\mu}\mathbf{R})(a) = [0.5, 0.6] = (\mathbf{R}\tilde{\mu})(a)$, similarly, $(\tilde{\mu}*\mathbf{R})(a) = [0.5, 0.6]$ and $\min^i \{(\mathbf{R}\tilde{\mu})(a), (\tilde{\mu}\mathbf{R})(a), (\tilde{\mu}*\mathbf{R})(a)\} = [0.5, 0.6] = \tilde{\mu}(a)$. Similarly, $(\tilde{\mu}\mathbf{R})(b) = (\mathbf{R}\tilde{\mu})(b) = (\tilde{\mu}*\mathbf{R})(b) = [0.2, 0.3], (\tilde{\mu}\mathbf{R})(c) = (\mathbf{R}\tilde{\mu})(c) = (\tilde{\mu}*\mathbf{R})(c) = [0, 0]$ and $(\tilde{\mu}\mathbf{R})(d) = (\mathbf{R}\tilde{\mu})(d) = (\tilde{\mu}*\mathbf{R})(d) = [0, 0]$. Thus $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R.

Lemma 3.5. Let $\tilde{\mu}$ be an *i*-v fuzzy subset of *R*. If $\tilde{\mu}$ is an *i*-v fuzzy right ideal of *R*, then $\tilde{\mu}$ is an *i*-v fuzzy quasi-ideal of *R*.

Proof. Let $x' \in R$ and x' = ab = (x + z)y - xy, where a, b, x, y and z are in R. Then

$$\leq \min^{i} \left\{ \widetilde{1}, \widetilde{1}, \widetilde{\mu}((x+z)y - xy) \right\} = \widetilde{\mu}((x+z)y - xy) = \widetilde{\mu}(x').$$

If x' is not expressed as x' = ab = (x+z)y - xy, then $(\tilde{\mu}\mathbf{R} \cap \mathbf{R}\tilde{\mu} \cap \tilde{\mu} * \mathbf{R})(x') = 0 \leq \tilde{\mu}(x')$. Thus $\tilde{\mu}\mathbf{R} \cap \mathbf{R}\tilde{\mu} \cap \tilde{\mu} * \mathbf{R} \subseteq \tilde{\mu}$. Hence $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R. \Box

Lemma 3.6. Let $\tilde{\mu}$ be an *i*-v fuzzy subset of *R*. If $\tilde{\mu}$ is an *i*-v fuzzy left ideal of *R*, then $\tilde{\mu}$ is an *i*-v fuzzy quasi-ideal of *R*.

Proof. Let $x' \in R$ and x' = ab = (x + z)y - xy, where a, b, x, y and z are in R. Consider,

If x' is not expressed as x' = ab = (x + z)y - xy, then $(\widetilde{\mu}\mathbf{R} \cap \mathbf{R}\widetilde{\mu} \cap \widetilde{\mu} * \mathbf{R})(x') = 0 \leq \widetilde{\mu}(x')$. Thus $\widetilde{\mu}\mathbf{R} \cap \mathbf{R}\widetilde{\mu} \cap \widetilde{\mu} * \mathbf{R} \subseteq \widetilde{\mu}$. Hence $\widetilde{\mu}$ is an i-v fuzzy quasi-ideal of R. \Box

Theorem 3.7. Let $\tilde{\mu}$ be an *i*-v fuzzy subset of R. If $\tilde{\mu}$ is an *i*-v fuzzy ideal of R, then $\tilde{\mu}$ is an *i*-v fuzzy quasi-ideal of R.

However the converse of the Theorem 3.7 is not true in general which is demonstrated by the following Example.

Example 3.8. Let $R = \{a, b, c, d\}$ be a set with two binary operations defined as follows:

+	a	b	c	d	•	a	b	c	
a	a	b	c	d	a	a	a	a	Γ
b	b	a	d	c	b	a	a	a	
c	c	d	b	a	c	a	a	a	
d	d	c	a	b	d	a	b	c	

Then clearly $(R, +, \cdot)$ is a left near-ring. Define an i-v fuzzy subset $\tilde{\mu} : R \to D[0, 1]$ by $\tilde{\mu}(a) = [0.8, 0.9], \tilde{\mu}(b) = [0.6, 0.7], \tilde{\mu}(c) = [0.3, 0.4] = \tilde{\mu}(d)$. Then $(\tilde{\mu}\mathbf{R})(a) = [0.8, 0.9], (\mathbf{R}\tilde{\mu})(a) = [0.8, 0.9], (\mathbf{R}\tilde{\mu})(a) = [0.8, 0.9], (\mathbf{R}\tilde{\mu})(a) = [0.8, 0.9], (\mathbf{R}\tilde{\mu})(a) = [0.8, 0.9], [0.8, 0.9], [0.8, 0.9] = [0.8, 0.9] = \tilde{\mu}(a)$. Thus $\tilde{\mu}$ is an i-v fuzzy quasi ideal of R and $\tilde{\mu}$ is not an i-v fuzzy right ideal of R, since $\tilde{\mu}((c+b)d-cd) = \tilde{\mu}(d) < \tilde{\mu}(b)$. Thus $\tilde{\mu}$ is not an i-v fuzzy ideal of R.

Lemma 3.9. Every *i*-v fuzzy quasi-ideals in a zero-symmetric near-ring R is an *i*-v fuzzy subnear-ring of R.

Proof. Let μ be an i-v fuzzy quasi-ideals of a zero-symmetric near-ring R. Choose $a, b, c, x, y, z \in R$ such that a = bc = (x + z)y - xy. Then

Therefore $\tilde{\mu}(bc) \geq \min^i \{\tilde{\mu}(b), \tilde{\mu}(c)\}$ and since $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of a zerosymmetric near-ring R, then $\tilde{\mu}(b-c) \geq \min^i \{\tilde{\mu}(b), \tilde{\mu}(c)\}$ for all $b, c \in R$. Thus μ is an i-v fuzzy subnear-ring of R.

Theorem 3.10. Let $\tilde{\mu}$ be an *i*-v fuzzy subset of R. Then $\tilde{\mu}$ is an *i*-v fuzzy quasiideal of R if and only if upper level subsets $\tilde{U}(\tilde{\mu} : [t_1, t_2])$ is a quasi-ideal of R, for all $[t_1, t_2] \in D[0, 1]$ with $[t_1, t_2] \neq [0, 0]$.

Proof. Assume that $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R. Let $[t_1, t_2] \in D[0, 1]$ with $[t_1, t_2] \neq [0, 0]$. Let $x, y \in \tilde{U}(\tilde{\mu} : [t_1, t_2])$. Then $\tilde{\mu}(x) \geq [t_1, t_2]$ and $\tilde{\mu}(y) \geq [t_1, t_2]$. Since $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R, we have $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\} \geq [t_1, t_2]$. It follows that $x - y \in \tilde{U}(\tilde{\mu} : [t_1, t_2])$. Let $x' \in R$ and $x' \in \tilde{U}(\tilde{\mu} : [t_1, t_2]) \mathbb{R} \cap \mathbb{R}\tilde{U}(\tilde{\mu} : [t_1, t_2]) \otimes \mathbb{R}$. If there exist $a, b_1, z \in \tilde{U}(\tilde{\mu} : [t_1, t_2])$ and $a_1, b, x, y \in R$ such that $x' = ab = a_1b_1 = (x + z)y - xy$. Then $\tilde{\mu}(a) \geq [t_1, t_2], \tilde{\mu}(b_1) \geq [t_1, t_2]$ and $\tilde{\mu}(z) \geq [t_1, t_2]$. Thus

This implies that $\widetilde{\mu}(x') \geq [t_1, t_2]$ and so $x' \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2])$, that is, $\widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \mathbf{R} \cap \mathbf{R}\widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \cap \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) * \mathbf{R} \subseteq \widetilde{U}(\widetilde{\mu} : [t_1, t_2])$ and hence $\widetilde{U}(\widetilde{\mu} : [t_1, t_2])$ is a quasi-ideal of R.

Conversely, assume that $\widetilde{U}(\widetilde{\mu} : [t_1, t_2]), [t_1, t_2] \in D[0, 1]$ with $[t_1, t_2] \neq [0, 0]$, is a quasi-ideal of R. Let $x' \in R$. Suppose that $(\widetilde{\mu} \mathbf{R} \cap \mathbf{R}\widetilde{\mu} \cap \widetilde{\mu} * \mathbf{R})(x') > \widetilde{\mu}(x')$. Choose $[0, 0] < [t_1, t_2] \leq [1, 1]$ such that $(\widetilde{\mu} \mathbf{R} \cap \mathbf{R}\widetilde{\mu} \cap \widetilde{\mu} * \mathbf{R})(x') > [t_1, t_2] > \widetilde{\mu}(x')$. This implies that $(\widetilde{\mu} \mathbf{R})(x') \geq [t_1, t_2], (\mathbf{R}\widetilde{\mu})(x') \geq [t_1, t_2]$ and $(\widetilde{\mu} * \mathbf{R})(x') \geq [t_1, t_2]$. So,

 $(\widetilde{\mu}\mathbf{R})(x') = \sup_{x'=ab}^{i} \min^{i} \{\widetilde{\mu}(a), \mathbf{R}(b)\} = \sup_{x'=ab}^{i} \{\widetilde{\mu}(a)\} \ge [t_1, t_2] \text{ and } [t_1, t_2]$

 $\begin{aligned} (\mathbf{R}\widetilde{\mu})(x') &= \sup_{x'=a_1b_1}^{i} \min^i \{\mathbf{R}(a_1), \widetilde{\mu}(b_1)\} = \sup_{x'=a_1b_1}^{i} \{\widetilde{\mu}(b_1)\} \geq [t_1, t_2] \text{ and} \\ (\widetilde{\mu} * \mathbf{R})(x') &= \sup_{x'=(x+z)y-xy}^{i} \min^i \{\widetilde{\mu}(z), \mathbf{R}(y)\} = \sup_{x'=(x+z)y-xy}^{i} \{\widetilde{\mu}(z)\} \geq [t_1, t_2]. \end{aligned}$ Then $a, b_1, z \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2]).$ Since $\widetilde{U}(\widetilde{\mu} : [t_1, t_2])$ is a quasi-ideal of R, then 626 $\begin{aligned} x' &= ab \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \mathbf{R}, x' = a_1 b_1 \in \mathbf{R} \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \text{ and } x' = (x+z)y - xy \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \ast \mathbf{R}. \\ [t_1, t_2]) \ast \mathbf{R}. \text{ Thus } x' \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \mathbf{R} \cap \mathbf{R} \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \cap \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \ast \mathbf{R}, \text{ that is,} \\ x' \in \widetilde{U}(\widetilde{\mu} : [t_1, t_2]), \text{ because } \widetilde{U}(\widetilde{\mu} : [t_1, t_2]) \text{ is a quasi-ideal of } R. \text{ Thus } \widetilde{\mu}(x') \geq [t_1, t_2], \\ \text{which is a contradiction. Therefore, } \widetilde{\mu} \mathbf{R} \cap \mathbf{R} \widetilde{\mu} \cap \widetilde{\mu} \ast \mathbf{R} \subseteq \widetilde{\mu} \text{ and hence } \widetilde{\mu} \text{ is an i-v} \\ \text{fuzzy quasi-ideal of } R. \end{aligned}$

Lemma 3.11. Let A and B be two nonempty subsets of R. Then the following properties hold:

 $\begin{array}{l} (1) \ \widetilde{f}_A \cap \widetilde{f}_B = \widetilde{f}_{A \cap B}. \\ (2) \ \widetilde{f}_A \cup \widetilde{f}_B = \widetilde{f}_{A \cup B}. \\ (3) \ \widetilde{f}_A \widetilde{f}_B = \widetilde{f}_{AB}. \\ (4) \ \widetilde{f}_A \ast \widetilde{f}_B = \widetilde{f}_{A*B}. \end{array}$

Lemma 3.12. Let Q be a subgroup of R. Then Q is a quasi-ideal of R if and only if \tilde{f}_Q is an i-v fuzzy quasi-ideal of R.

Proof. Assume that Q is a quasi-ideal of R. Then f_Q is an i-v fuzzy subgroup of R.

$$\begin{aligned} (\widetilde{f}_Q \mathbf{R}) \cap (\mathbf{R}\widetilde{f}_Q) \cap (\widetilde{f}_Q * \mathbf{R}) &= (\widetilde{f}_Q \widetilde{f}_R) \cap (\widetilde{f}_R \widetilde{f}_Q) \cap (\widetilde{f}_Q * \widetilde{f}_R) \\ &= \widetilde{f}_{QR} \cap \widetilde{f}_{RQ} \cap \widetilde{f}_{Q*R} \\ &= \widetilde{f}_{QR \cap RQ \cap Q*R} \subseteq \widetilde{f}_Q. \end{aligned}$$

This means that \widetilde{f}_Q is an i-v fuzzy quasi-ideal of R.

Conversely, let us assume that f_Q is an i-v fuzzy quasi-ideal of R. Let x be any element of $QR \cap RQ \cap Q * R$. Then, we have

$$\begin{split} \widetilde{f}_Q(x) &\geq (\widetilde{f}_Q \mathbf{R} \cap \mathbf{R} \ \widetilde{f}_Q \cap \widetilde{f}_Q * \mathbf{R})(x) \\ &= \min^i \left\{ (\widetilde{f}_Q \mathbf{R})(x), (\mathbf{R} \ \widetilde{f}_Q)(x), (\widetilde{f}_Q * \mathbf{R})(x) \right\} \\ &= \min^i \left\{ (\widetilde{f}_Q \widetilde{f}_R)(x), (\widetilde{f}_R \widetilde{f}_Q)(x), (\widetilde{f}_Q * \widetilde{f}_R)(x) \right\} \\ &= \min^i \left\{ \widetilde{f}_{QR}(x), \widetilde{f}_{RQ}(x), \widetilde{f}_{Q*R}(x) \right\} \\ &= \widetilde{f}_{QR \cap RQ \cap Q*R}(x) = \widetilde{1}. \end{split}$$

This implies that $x \in Q$ and so $QR \cap RQ \cap Q * R \subseteq Q$. This means that Q is a quasi ideal of R.

Theorem 3.13. Every i-v fuzzy right R-subgroup of R is an i-v fuzzy quasi-ideal. 627 *Proof.* Assume that $\tilde{\mu}$ is an i-v fuzzy right *R*-subgroup of *R*. Let $a, b, x, y, z \in R$ be such that x' = ab = (x + z)y - xy. Then

Therefore $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R.

Theorem 3.14. Every i-v fuzzy left R-subgroup of R is an i-v fuzzy quasi-ideal.

Proof. Assume that $\tilde{\mu}$ is an i-v fuzzy left *R*-subgroup of *R*. Let $a, b, x, y, z \in R$ be such that x' = ab = (x + z)y - xy. Then

$$\begin{aligned} &((\widetilde{\mu}\mathbf{R}) \cap (\mathbf{R}\widetilde{\mu}) \cap (\widetilde{\mu} * \mathbf{R}))(x') \\ &= \min^{i} \{(\widetilde{\mu}\mathbf{R})(x'), (\mathbf{R}\widetilde{\mu})(x'), (\widetilde{\mu} * \mathbf{R})(x')\} \\ &= \min^{i} \{\sup_{x'=ab}^{i} \min^{i} \{\widetilde{\mu}(a), \mathbf{R}(b)\}, \sup_{x'=ab}^{i} \min^{i} \{\mathbf{R}(a), \widetilde{\mu}(b)\}, (\widetilde{\mu} * \mathbf{R})(x')\} \} \\ &= \min^{i} \{\sup_{x'=ab}^{i} \{\widetilde{\mu}(a)\}, \sup_{x'=ab}^{i} \{\widetilde{\mu}(b)\}, (\widetilde{\mu} * \mathbf{R})(x')\} \\ &\quad \text{Since } \widetilde{\mu} \text{ is an i-v fuzzy right } R\text{-subgroup of } R, \widetilde{\mu}(ab) \geq \widetilde{\mu}(b). \\ &\leq \min^{i} \{\mathbf{R}(a), \widetilde{\mu}(ab), \mathbf{R}((x+z)y-xy)\} = \min^{i} \{\widetilde{1}, \widetilde{\mu}(ab), \widetilde{1}\} = \widetilde{\mu}(ab) = \widetilde{\mu}(x'). \end{aligned}$$

$$\leq \min^{i} \left\{ \mathbf{R}(a), \widetilde{\mu}(ab), \mathbf{R}((x+z)y - xy) \right\} = \min^{i} \left\{ \widetilde{1}, \widetilde{\mu}(ab), \widetilde{1} \right\} = \widetilde{\mu}(ab) = \widetilde{\mu}(x')$$

Therefore $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R.

Theorem 3.15. Every i-v fuzzy R-subgroup of R is an i-v fuzzy quasi-ideal.

Proof. The proof is straightforward from Theorem 3.13 and Theorem 3.14.

The converse of the Theorem 3.15 is not true in general as shown in following Example.

Example 3.16. Let $R = \{0, a, b, c\}$ be a set with two binary operations + and \cdot is defined as follws:

+	0	a	b	С	•	0	a	b	С
0	0	a	b	С	0	0	a	0	a
a	a	0	c	b	a	0	a	0	a
b	b	c	0	a	b	0	a	b	c
c	c	b	a	0	c	0	a	b	c

Then clearly $(R, +, \cdot)$ is a left near-ring. Let $\tilde{\mu} : R \to D[0, 1]$ be an i-v fuzzy subset defined by $\tilde{\mu}(0) = [0.7, 0.8], \tilde{\mu}(a) = [0.2, 0.3] = \tilde{\mu}(b)$ and $\tilde{\mu}(d) = [0.4, 0.6].$ Thus, $(\widetilde{\mu}\mathbf{R})(0) = [0.7, 0.8], (\mathbf{R}\widetilde{\mu})(0) = [0.7, 0.8], (\widetilde{\mu} * \mathbf{R})(0) = [0.7, 0.8],$ $(\widetilde{\mu}\mathbf{R})(a) = [0.7, 0.8], (\mathbf{R}\widetilde{\mu})(a) = [0.4, 0.6], (\widetilde{\mu} * \mathbf{R})(a) = \overline{0},$ $(\widetilde{\mu}\mathbf{R})(b) = [0.4, 0.6], (\mathbf{R}\widetilde{\mu})(b) = [0.4, 0.6], (\widetilde{\mu} * \mathbf{R})(b) = [0.4, 0.6], \text{ and}$ $(\widetilde{\mu}\mathbf{R})(c) = [0.4, 0.6], (\mathbf{R}\widetilde{\mu})(c) = [0.4, 0.6], (\widetilde{\mu} * \mathbf{R}(c) = \overline{0},$

Hence $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R. But $\tilde{\mu}$ is not an i-v fuzzy R-subgroups of R, because $\tilde{\mu}(0c) = \tilde{\mu}(a) = [0.2, 0.3] < [0.4, 0.6] = \tilde{\mu}(c)$ and $\tilde{\mu}(ca) = \tilde{\mu}(a) = [0.2, 0.3] < [0.4, 0.6] = \tilde{\mu}(c)$.

Theorem 3.17. Let $\tilde{\mu}$ be an *i*-v fuzzy subset of R. Then $\tilde{\mu} = [\mu^-, \mu^+]$ is an *i*-v fuzzy quasi-ideal of R if and only if μ^-, μ^+ are fuzzy quasi-ideals of R.

Proof. Assume that $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R. For any $x, y \in R$, we have

$$\begin{aligned} [\mu^{-}(x-y),\mu^{+}(x-y)] &= \widetilde{\mu}(x-y) \geq \min^{i} \{\widetilde{\mu}(x),\widetilde{\mu}(y)\} \\ &= \min^{i} \{[\mu^{-}(x),\mu^{+}(x)],[\mu^{-}(y),\mu^{+}(y)]\} \\ &= [\min\{\mu^{-}(x),\mu^{-}(y)\},\min\{\mu^{+}(x),\mu^{+}(y)\}]. \end{aligned}$$

It follows that $\mu^-(x-y) \ge \min\{\mu^-(x), \mu^-(y)\}$ and $\mu^+(x-y) \ge \min\{\mu^+(x), \mu^+(y)\}$. Thus $\tilde{\mu}$ is an additive subgroup of R. Next,

$$\begin{split} [((\mu^{-}\mathbf{R}^{-}) \cap (\mathbf{R}^{-}\mu^{-}) \cap (\mu^{-} * \mathbf{R}^{-}))(x), ((\mu^{+}\mathbf{R}^{+}) \cap (\mathbf{R}^{+}\mu^{+}) \cap (\mu^{+} * \mathbf{R}^{+}))(x)] \\ &= ((\widetilde{\mu}\mathbf{R}) \cap (\mathbf{R}\widetilde{\mu}) \cap (\widetilde{\mu} * \mathbf{R}))(x) \\ &\leq \widetilde{\mu}(x) = [\mu^{-}(x), \mu^{+}(x)]. \end{split}$$

It follows that $((\mu^{-}\mathbf{R}^{-}) \cap (\mathbf{R}^{-}\mu^{-}) \cap (\mu^{-} * \mathbf{R}))(x) \leq \mu^{-}(x)$ and $((\mu^{+}\mathbf{R}^{+}) \cap (\mathbf{R}^{+}\mu^{+}) \cap (\mu^{+} * \mathbf{R}^{+}))(x) \leq \mu^{+}(x)$. Therefore μ^{-} and μ^{+} are fuzzy quasi-ideals of R. Conversely, assume that μ^{-} and μ^{+} are fuzzy quasi-ideals of R and $x \in R$ (i.e., $)(\mu^{-}\mathbf{R}^{-}) \cap (\mathbf{R}^{-}\mu^{-}) \cap (\mu^{-} * \mathbf{R}^{-})(x) \leq \mu^{-}(x)$. $((\mu^{+}\mathbf{R}^{+}) \cap (\mathbf{R}^{+}\mu^{+}) \cap (\mu^{+} * \mathbf{R}^{+}))(x) \leq \mu^{+}(x)$. $((\widetilde{\mu}\mathbf{R}) \cap (\mathbf{R}\widetilde{\mu}) \cap (\widetilde{\mu} * \mathbf{R}))(x)$

$$= [(\mu^{-}\mathbf{R}^{-} \cap \mathbf{R}^{-} \mu^{-} \cap \mu^{-} * \mathbf{R}^{-})(x), (\mu^{+}\mathbf{R}^{+} \cap \mathbf{R}^{+} \mu^{+} \cap \mu^{+} * \mathbf{R}^{+})(x)]$$

$$\leq [\mu^{-}(x), \mu^{+}(x)] = \widetilde{\mu}(x).$$

Therefore $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R.

Theorem 3.18. Let $\{\widetilde{\mu}_i : i \in \Omega\}$ be any family of *i*-v fuzzy quasi-ideals of *R*. Then $\mu = \bigcap_{i \in \Omega} \widetilde{\mu}_i$ is also an *i*-v fuzzy quasi ideal of *R*, where Ω is an index set.

Proof. Let $\{\tilde{\mu}_i : i \in \Omega\}$ be i-v fuzzy quasi-ideals of R. Let $x, y \in R$. By Theorem 3.1 of [14], μ is an i-v fuzzy subgroup of R. Since $\tilde{\mu} = \bigcap_{i \in \Omega} \tilde{\mu}_i \subseteq \tilde{\mu}_i$, for every $i \in \Omega$. Let $x \in R$. Then

$$(\widetilde{\mu}\mathbf{R}\cap\mathbf{R}\widetilde{\mu}\cap\widetilde{\mu}*\mathbf{R})(x) \leq (\widetilde{\mu}_i\mathbf{R}_i\cap\mathbf{R}_i\widetilde{\mu}_i\cap\widetilde{\mu}_i*\mathbf{R}_i)(x)$$

since $\widetilde{\mu}_i$ is an i-v fuzzy quasi-ideals of R .

 $\leq \widetilde{\mu}_i(x)$, for every $i \in \Omega$.

This implies that

$$(\widetilde{\mu}\mathbf{R}\cap\mathbf{R}\widetilde{\mu}\cap\widetilde{\mu}*\mathbf{R})(x) \leq \inf^{i}\{\widetilde{\mu}_{i}(x): i\in\Omega\} = \left(\bigcap_{i\in\Omega}\widetilde{\mu}_{i}\right)(x) = \widetilde{\mu}(x).$$

Thus, $(\widetilde{\mu}\mathbf{R}\cap\mathbf{R}\widetilde{\mu}\cap\widetilde{\mu}*\mathbf{R})\subseteq\widetilde{\mu}$. Hence $\mu = \bigcap_{\substack{i\in\Omega\\629}}\widetilde{\mu}_{i}$ is an i-v fuzzy quasi-ideal of R . \Box

Theorem 3.19. Let R be a zero-symmetric near-ring and $\tilde{\mu}$ be an *i*-v fuzzy subgroup of R. Then the following conditions are equivalent:

(i) $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R.

 $(ii) \widetilde{\mu} \mathbf{R} \cap \mathbf{R} \widetilde{\mu} \subseteq \widetilde{\mu}.$

Proof. Let R be a zero-symmetric near-ring and $\tilde{\mu}$ be an i-v fuzzy subgroup of R.

(i) \Rightarrow (ii): Assume that $\tilde{\mu}$ be an i-v fuzzy quasi-ideal of R. This implies that $\tilde{\mu}\mathbf{R}\cap\mathbf{R}\tilde{\mu}\cap\tilde{\mu}*\mathbf{R}\subseteq\tilde{\mu}$. Since $\tilde{\mu}$ is an i-v fuzzy subgroup of R, then we have $\tilde{\mu}(0) \geq \tilde{\mu}(x)$, for all $x \in R$. Clearly, $\mathbf{R}(x) = \tilde{1}$, for all $x \in R$. Then $(\tilde{\mu}\mathbf{R})(0) \geq (\tilde{\mu}\mathbf{R})(x)$, for all $x \in R$. By our assumption R is a zero-symmetric near-ring, then $\tilde{\mu}\mathbf{R}\cap\mathbf{R}\tilde{\mu}\subseteq\tilde{\mu}*\mathbf{R}$. It is clear that $\tilde{\mu}\mathbf{R}\cap\mathbf{R}\tilde{\mu}\subseteq\tilde{\mu}$.

(ii) \Rightarrow (i): Let $x \in R$. Then

 $\begin{aligned} (\widetilde{\mu}\mathbf{R}\cap\mathbf{R}\widetilde{\mu}\cap\widetilde{\mu}*\mathbf{R})(x) &= \min^{i}\{(\widetilde{\mu}\mathbf{R})(x),(\mathbf{R}\widetilde{\mu})(x),(\widetilde{\mu}*\mathbf{R})(x)\}\\ &\leq \min^{i}\{(\widetilde{\mu}\mathbf{R})(x),(\mathbf{R}\widetilde{\mu})(x)\}\\ &\leq (\widetilde{\mu}\mathbf{R}\cap\mathbf{R}\widetilde{\mu})(x) \leq \widetilde{\mu}(x). \end{aligned}$

Hence $\tilde{\mu} \mathbf{R} \cap \mathbf{R} \tilde{\mu} \cap \tilde{\mu} * \mathbf{R} \subseteq \tilde{\mu}$ and $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of R.

4. AKNOWLEDGEMENT

The authors are highly grateful to referees for their valuable comments and suggestions for improving the paper. The second author was supported in part by UGC-BSR Grant # F4-1/2006(BSR)/7-254/2009(BSR) in India.

References

- [1] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy sets and Systems 44 (1991) 139–146.
- B. Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, Journals of Sciences, Islamic republic of Iran 12 (2) (2001) 171-.175.
- [3] B. Davvaz, Jianming Zhan and K. P. Shum, Generalized fuzzy H_v-submodules endowed with interval valued membership functions, Inform. Sci. 178 (2008) 3147–3159.
- [4] P. Dheena and S. Coumaressane, Generalization of (∈, ∈ ∨q)−fuzzy subnear-rings and ideals, Iranian Journal of fuzzy systems 5 (2008) 79–97.
- [5] Y. B. Jun and K. H. kim, Interval valued fuzzy R-subgroup of near-rings, Indian Journal of Pure and Applied Mathematics 33 (1) (2002) 71–80.
- [6] S. D. Kim and H. S. kim, On Fuzzy Ideals of Near-rings, Bulletin Korean Mathamatical Society 33 (1996) 593–601.
- [7] T. Manikantan, Fuzzy bi-ideals of near-rings, J. Fuzzy Math. 17 (3) (2009) 659-671.
- [8] Muhammad Shabir, Nosheen Malik and Tahir Mahmood, Characterizations of hemirings by the properties of their interval valued fuzzy ideals, Ann. Fuzzy Math. Inform. 3 (2) (2012) 229–242.
- [9] Muhammad Shabir, Noshin Malik and Tahir Mahmood, On interval valued fuzzy h-ideals in hemirings, East Asian Mathematical Journal 28 (2012) 49–62.
- [10] AL. Narayanan and T. Manikatan, $(\in, \in \lor q)$ -fuzzy subnear-rings and $(\in, \in \lor q)$ -fuzzy ideals of near-rings, Journal of Applied Mathematics and Computing 18 (2005) 419–430.
- [11] AL. Narayanan, Contributions to the algebraic structures in fuzzy theory, Ph.D. Thesis, Annamalai University 2001.
- [12] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971) 512–517.
- [13] N. Thillaigovindan and V. Chinnadurai, On Interval Valued Fuzzy Quasi-Ideals of Semigroups, East Asian Mathematics Journals 25 (4) (2009) 449–467.
- [14] N. Thillaigovindan ,V. Chinnadurai and S. Kadalarasi, Interval valued Fuzzy ideals of nearrings, J. Fuzzy Math. 23 (2) (2015) 471–484.

- [15] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
- [16] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975) 199–249.

 $\underline{V.CHINNADURAI}$ (kv.chinnadurai@yahoo.com)

Department of mathematics, Annamalai
 University, Annamalainagar, postal code 608 $002,\,\mathrm{India}$

<u>S. KADALARASI</u> (kadalarasi89@gmail.com)

Department of mathematics, Annamalai
 University, Annamalainagar, postal code 608 002, India