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Abstract. This paper tries to establish a minimum state intuitionistic

fuzzy finite automaton with unique membership transition on an input

symbol(IFAUM) for a given intuitionistic fuzzy regular expression(IFRE).

It is considered that IFAUM is a suitable model for implementing intu-

itionistic fuzzy lexical analyzers. An intuitionistic fuzzy lexical analyzer

generator is also proposed.

2010 AMS Classification: 03Fxx,03F55,03F99

Keywords: Intuitionistic fuzzy regular expression, Intuitionistic fuzzy regular

behavior, Algorithms EPSILON, IFAUM, MINIFAUM , MIFRB and IFLEX.

Corresponding Author: Jeny Jordon A (jeny_jordon@yahoo.in)

1. Introduction

In a conventional fuzzy set, a membership function assigned to each element

of the universe of discourse, a number from the unit interval indicates the de-

gree of belongingness to the set under consideration. Zadeh [16] was the first to

consider the theory of fuzzy sets which had been used in dealing with problems

of imprecision and uncertainty. The concept of fuzzy automata was presented

by Santos [13], Wee and Fu [15], in which there were more than one fuzzy

transition from a state on an input symbol for a membership value. This devel-

opment was followed by the postulation called deterministic fuzzy finite state

automaton(DFFSA) as in Malik and Mordeson [8], in which there can be atleast

one transition on an input symbol. An equivalent DFFSA can be constructed

from a fuzzy finite state automaton. However it only acts as a deterministic

fuzzy recognizer, the fuzzy regular languages accepted by the fuzzy finite state

automaton and deterministic fuzzy finite state automaton need not necessarily

be equal (i.e. the degrees of a string in these systems need not be the same).

Rajaretnam and Ayyaswamy [10] introduced fuzzy finite state automaton with
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unique membership transition on an input symbol. One kind of determinism of

a fuzzy finite state automaton, is that the membership value of any recognized

string in both the systems are the same. Jun proposed intuitionistic fuzzy finite

state machines in [6, 7] . The two IF topologies (also called, intuitionistic fuzzy

topologies) can be associated with the state sets of IF-fuzzy automata whose

level topologies have relationships with the topologies introduced by Srivastava

and Tiwari [14] for fuzzy automata. Using the notion of intuitionistic fuzzy sets

by Atanassov [1, 2, 3, 4], it is possible to obtain intuitionistic fuzzy language [11],

by introducing nonmembership value to the strings of fuzzy language. This is

a natural generalisation of a fuzzy language characterised by two functions ex-

pressing the degree of belongingness and nonbelongingness. Zhang and Li [17]

introduced the notions of intuitionistic fuzzy recognizer and intuitionistic fuzzy

automaton. Ravi and Alka Choubey [12] stated the finite automaton (NDFA and

DFA) with intuitionistic fuzzy transitions. Mateescu and et al. [9] proposed a

model for fuzzy lexical analysis.

In the following, we first review the basic concepts of intuitionistic fuzzy fi-

nite automata with unique membership transition on an input symbol(IFAUM)

and design three algorithms namely EPSILON, IFAUM, MINIFAUM to find the

minimum state IFAUM for a given IFRE. To implement intuitionistic fuzzy lexical

analyzer, we construct an intuitionistic fuzzy finite state automaton recognizing

all tokens of the programming language being considered, using the above men-

tioned algorithms. For two different tokens we may have the same membership

values(degrees), so there is likely a conflict to resolve it. In order to avoid this,

there is a linear order of priorities associated with token names. Finally, we pro-

pose a model to design intuitionistic fuzzy lexical analyzer to recognize tokens.

2. Basic definitions

Definition 2.1 ([6]). Given a nonempty set Σ. Intuitionistic fuzzy sets(ifs) in Σ

is an object having the form

A = {(x, µA(x), νA(x)) | x ∈ Σ}

where the functions µA : Σ → [0, 1] and νA : Σ → [0, 1] denote the degree of mem-

bership and the degree of non-membership of each element x ∈ Σ to the set A

respectively, and 0 ≤ µA(x)+νA(x) ≤ 1 for each x ∈ Σ. For the sake of simplicity,

we shall use the notation A = (µA, νA) instead of A = {(x, µA(x), νA(x)) | x ∈ Σ}.

Now we define the following.

Definition 2.2. An intuitionistic fuzzy finite automaton with unique member-

ship transition on an input symbol is an ordered 5-tuple(IFAUM )

A = (Q,Σ, A, i, f), where

(i) Q is a finite non-empty set of states.

(ii) Σ is a finite non-empty set of input symbols.

(iii) A = (µA, νA) is an intuitionistic fuzzy subset of Q×Σ×Q. The fuzzy subset

µA : Q× Σ×Q → [0, 1] denotes the degree of membership value such that
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µA(p, a, q) = µA(p, a, q
′) for some q, q′ ∈ Q then q = q′ and

νA : Q × Σ × Q → [0, 1] denotes the degree of non-membership value of

every element in Q× Σ×Q.

(iv) i = (iµA
, iνA) is an intuitionistic fuzzy subset of Q, i.e. iµA

: Q → [0, 1]

and iνA : Q → [0, 1] called the intuitionistic fuzzy initial state.

(v) f = (fµA
, fνA) is an intuitionistic fuzzy subset of Q, i.e. fµA

: Q → [0, 1]

and fνA : Q → [0, 1] called the intuitionistic fuzzy subset of final states.

Definition 2.3. Let A = (Q,Σ, A, i, f) be an IFAUM. Define an ifsA∗ = (µ∗

A, ν
∗

A)

in Q× Σ∗ ×Q as follows: ∀p, q ∈ Q, x ∈ Σ∗, a ∈ Σ.

µ∗

A(q, ǫ, p) =

{

1, if p = q

0, if p 6= q
, ν∗A(q, ǫ, p) =

{

0, if p = q

1, if p 6= q

µ∗

A(q, xa, p) =
∨

{µ∗

A(q, x, r) ∧ µA(r, a, p)|r ∈ Q}

ν∗A(q, xa, p) =
∧

{ν∗A(q, x, r) ∨ νA(r, a, p)|r ∈ Q}

Definition 2.4. Let A = (Q,Σ, A, i, f) be an IFAUM and x ∈ Σ∗. Then x is

recognized by A , if LµA
(x) > 0 and LνA

(x) < 1

Definition 2.5. Let A = (Q,Σ, A, i, f) be an IFAUM. The behavior of an IFAUM

is LA = (LµA
, LνA

)

3. Construction of an IFAUM from a given IFRE

Definition 3.1 ([12]). Let Σ be a finite alphabet set and (µA , νA) be finite sets

of real numbers in [0, 1].

1. Let e be a regular expression over Σ. Then, we call e =
e

m/n
,

where m ∈ µA andn ∈ νA an intuitionistic fuzzy regular expression (IFRE).

2. Let e1 and e2 be two intuitionistic fuzzy regular expressions, then e1+e2, (e1e2)

and (e1)
∗ are all IFRE’s.

3. An intuitionistic fuzzy regular expression is formed by applying 1 and 2,

a finite number of times.

Definition 3.2 ([12]). Let e be an IFRE, then the corresponding behavior,

i.e. intuitionistic fuzzy regular behavior(IFRB) L(e) is defined by

(i) if e =
e

m/n
, where e is a regular expression,

then L(e) = {(x,m, n)|x ∈ L(e)}.

(ii) if e = e1 + e2, e = (e1e2) or e = (e1)
∗,

then L(e) = L(e1)∪L(e2), L(e) = L(e1)L(e2) or L(e) =
(

L(e1)
)

∗

respectively.

Note that if m = 1 andn = 0 then
e

m/n
is written as e.
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3.1. Algorithm EPSILON (e). This algorithm finds an intuitionistic fuzzy finite

state automaton [17] (IFFSA) A with ǫ-transitions from a given IFRE e accept-

ing an intuitionsitic fuzzy regular behavior L denoted by e.

Input: An IFRE e over an alphabet Σ denoting an intuitionistic fuzzy regular

behavior L.

Output: An IFFSA A = (Q,Σ ∪ {ǫ}, A, i, f) such that an intuitionistic fuzzy reg-

ular behavior of A is L.

Method: Decompose e into its primitive components. For each component, we

construct an IFAUM inductively as follows:-

Case (i): e =
e

m/n
First, we find an NFA for the regular expression e as in [5].

Let it be M = (Q,Σ ∪ {ǫ}, δ, q0, F ) with ǫ-transitions such that L(M) = L(e) = L.

Now, define an IFFSA A = (Q,Σ ∪ {ǫ}, A, i, f) with ǫ-transitions,

where µA, νA : Q× Σ ∪ {ǫ} ×Q → [0, 1] by

(i) ∀ p, q ∈ Q , a ∈ Σ

µA(p, a, q) =

{

m, if q ∈ δ(p, a)

0, otherwise
and νA(p, a, q) =

{

n, if q ∈ δ(p, a)

0, otherwise

(ii) ∀ p, q ∈ Q , ǫ ∈ Σ

µA(p, ǫ, q) =

{

1, if q ∈ δ(p, ǫ)

0, otherwise
and νA(p, ǫ, q) =

{

0, if q ∈ δ(p, ǫ)

1, otherwise

(iii) i : Q → [0, 1] is defined by,

iµA
(p) =

{

1, if p = q0

0, otherwise
and iνA(p) =

{

0, if p = q0

1, otherwise

(iv) f : Q → [0, 1] is defined by,

fµA
(p) =

{

1, if p ∈ F

0, otherwise
and fνA(p) =

{

0, if p ∈ F

1, otherwise

Let LµA
and LνA

be an intuitionistic fuzzy behavior of A . For all x ∈ Σ∗

LµA
(x) =

∨

{

{iµA
(p) ∧ µ∗

A(p, x, q) ∧ fµA
(q)|q ∈ Q}|p ∈ Q

}

and LνA
(x) =

∧

{

{iνA(p) ∨ ν∗A(p, x, q) ∨ fνA(q)|q ∈ Q}|p ∈ Q
}
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Now,

µ∗

A(p, x, q) =

{

m, if x ∈ L(e)& q ∈ F

0, otherwise

and ν∗A(p, x, q) =

{

n, if x ∈ L(e)& q ∈ F

0, otherwise

∴ LµA
(x) =

{

1 ∧m ∧ 1 = m, if x ∈ L(e)

0, otherwise

and LνA
(x) =

{

0 ∨ n ∨ 0 = n, if x ∈ L(e)

0, otherwise

Thus, LA = L.

Having constructed an IFFSA for e1 and e2, we now proceed to combine them

in ways that correspond to an IFRE’s. Suppose A1 and A2 are the IFFSA’s

with ǫ-transitions for e1 and e2 with an IFRB’s LA1
and LA2

respectively. Let

A1 = (Q1,Σ ∪ {ǫ}, A1, i1, f1) and A2 = (Q2,Σ ∪ {ǫ}, A2, i2, f2).

Suppose iµA1
(p1) = 1, fµA1

(q1) = 1 and iνA1
(p1) = 0, fνA1

(q1) = 0 , iµA2
(p2) = 1,

fµA2
(q2) = 1 and iνA2

(p2) = 0, fνA2
(q2) = 0 where p1, q1 ∈ Q1;p2, q2 ∈ Q2 .

Case (ii): e = e1 + e2
Constructing an IFFSA for e. Let qi and qf be two new initial and final states,

Q = Q1 ∪Q2 ∪ {qi, qf}. Define an IFFSA A = (Q,Σ, A, i, f) such that

(i) ∀ q ∈ Q1 with iµA1
(q) = 1 and iνA1

(q) = 0

include µA(qi, ǫ, q) = 1 and νA(qi, ǫ, q) = 0.

(ii) ∀ q ∈ Q2 with iµA2
(q) = 1 and iνA2

(q) = 0

include µA(qi, ǫ, q) = 1 and νA(qi, ǫ, q) = 0.

(iii) ∀ p, q ∈ Q1 , a ∈ Σ ∪ {ǫ} include µA(p, a, q) = µA1
(p, a, q)

and νA(p, a, q) = νA1
(p, a, q).

(iv) ∀ p, q ∈ Q2 , a ∈ Σ ∪ {ǫ} include µA(p, a, q) = µA2
(p, a, q)

and νA(p, a, q) = νA2
(p, a, q) .

(v) ∀ p ∈ Q1 with fµA1
(p) = 1 include µA(p, ǫ, qf ) = 1

and fνA1
(p) = 0 include νA(p, ǫ, qf ) = 0.

(vi) ∀ p ∈ Q2 with fµA2
(p) = 1 include µA(p, ǫ, qf ) = 1

and fνA2
(p) = 0 include νA(p, ǫ, qf ) = 0.

(vii) µA(p, a, q) = 0 and νA(p, a, q) = 1, for all other possibilities.

i : Q → [0, 1] is defined by

iµA
(p) =

{

1, if p = qi

0, otherwise
and iνA(p) =

{

0, if p = qf

1, otherwise

f : Q → [0, 1] is defined by

fµA
(p) =

{

1, if p = qf

0, otherwise
and fνA(p) =

{

0, if p = qf

1, otherwise
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Thus, LµA
(x) = LµA1

(x) ∨ LµA2
(x) and LνA

(x) = LνA1
(x) ∧ LνA2

(x)∀x ∈ Σ∗

Case (iii): e = e1e2
Let Q = Q1 ∪Q2. Define an IFFSA A = (Q,Σ ∪ {ǫ}, A, i, f) such that

(i) ∀ p ∈ Q1 with fµA1
(p) = 1, fνA1

(p) = 0 and ∀ q ∈ Q2 with iµA2
(q) = 1,

iνA2
(q) = 0 include µA(p, ǫ, q) = 1 and νA(p, ǫ, q) = 0.

(ii) ∀ p, q ∈ Q1 , a ∈ Σ ∪ {ǫ},

include µA(p, a, q) = µA1
(p, a, q) and νA(p, a, q) = νA1

(p, a, q).

(iii) ∀ p, q ∈ Q2 , a ∈ Σ ∪ {ǫ},

include µA(p, a, q) = µA2
(p, a, q) and νA(p, a, q) = νA2

(p, a, q).

i : Q → [0, 1] is defined by

iµA
(p) =

{

1, if iµA1
(p) = 1, p ∈ Q1

0, otherwise
and iνA(p) =

{

0, if iνA1
(p) = 0, p ∈ Q1

1, otherwise

f : Q → [0, 1] is defined by

fµA
(p) =

{

1, if fµA2
(p) = 1, p ∈ Q2

0, otherwise
and fνA(p) =

{

0, if fνA2
(p) = 0, p ∈ Q2

1, otherwise

Clearly,LµA
(x) =

∨

{LµA1
(y) ∧ LµA2

(z) |x = yz, x, y ∈ Σ∗}

and LνA
(x) =

∧

{LνA1
(y) ∨ LνA2

(z) |x = yz, x, y ∈ Σ∗}

Therefore,LA = LA1
LA2

Case (iv): e = (e1)
∗

Let Q = Q1 ∪ {pi, qf}, where pi and qf are new initial and final states which are

not in Q1. Define an IFFSA A = (Q,Σ ∪ {ǫ}, A, i, f) such that

(i) ∀ p ∈ Q1 with iµA1
(p) = 1, include µA(pi, ǫ, p) = 1

and iνA1
(p) = 0, include νA(pi, ǫ, p) = 0.

(ii) µA(pi, ǫ, qf ) = 1 and νA(pi, ǫ, qf ) = 0.

(iii) ∀ q ∈ Q1 with fµA1
(q) = 1, include µA(q, ǫ, qf ) = 1

and fνA1
(q) = 0, include νA(q, ǫ, qf ) = 0.

(iv) ∀ p, q ∈ Q1 with fµA1
(q) = 1 , iµA1

(p) = 1, include µA(q, ǫ, p) = 1

and fνA1
(q) = 0 , iνA1

(p) = 0, include νA(q, ǫ, p) = 0.

(v) ∀ p, q ∈ Q1, a ∈ Σ ∪ {ǫ}, include µA(p, a, q) = µA1
(p, a, q)

and νA(p, a, q) = νA1
(p, a, q).

For all x ∈ Σ∗, LµA
(x) > 0 and LνA

(x) < 1 if and only if x = x1x2 · · ·xn,

LµA1
(xi) ≥ 0 and LνA1

(xi) ≤ 1, i = 1, 2, . . . , n.

Moreover,

LµA
(x) = LµA1

(x1) ∧ LµA1
(x2) ∧ · · · ∧ LµA1

(xn)

andLνA
(x) = LνA1

(x1) ∨ LνA1
(x2) ∨ · · · ∨ LνA1

(xn)

Clearly,LµA
(x) =

∨

{

LµA1
(x1) ∧ LµA1

(x2) ∧ · · · ∧ LµA1
(xn)
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|x = x1x2 · · ·xn, xi ∈ Σ∗, i = 1, 2, . . . , n
}

andLνA
(x) =

∧

{

LνA1
(x1) ∨ LνA1

(x2) ∨ · · · ∨ LνA1
(xn)

|x = x1x2 · · ·xn, xi ∈ Σ∗, i = 1, 2, . . . , n
}

Hence LA = L
∗

A1
.

Example 3.3. Consider an IFRE e =
ba∗

0.7/0.2
+
( a

0.3/0.5
+

ab

0.6/0.1

)

∗

.

Following the Algorithm EPSILON (e),an IFFSA A = (Q,Σ ∪ {ǫ}, A, i, f),

where Q = {q0, q1, q2, q3, ..., q15},Σ = {a, b}, iµA
(q0) = 1 and iνA(q0) = 0,

fµA
(q15) = 1, fνA(q15) = 0 and A is shown below:

µA(q0, ǫ, q1) = 1.0 νA(q0, ǫ, q1) = 0.0 µA(q1, b, q2) = 0.7 νA(q1, b, q2) = 0.2

µA(q2, ǫ, q3) = 1.0 νA(q2, ǫ, q3) = 0.0 µA(q3, a, q4) = 0.7 νA(q3, a, q4) = 0.2

µA(q4, ǫ, q3) = 1.0 νA(q4, ǫ, q3) = 0.0 µA(q4, ǫ, q5) = 1.0 νA(q4, ǫ, q5) = 0.0

µA(q2, ǫ, q5) = 1.0 νA(q2, ǫ, q5) = 0.0 µA(q5, ǫ, q15) = 1.0 νA(q5, ǫ, q15) = 0.0

µA(q0, ǫ, q6) = 1.0 νA(q0, ǫ, q6) = 0.0 µA(q6, ǫ, q7) = 1.0 νA(q6, ǫ, q7) = 0.0

µA(q6, ǫ, q14) = 1.0 νA(q6, ǫ, q14) = 0.0 µA(q7, ǫ, q8) = 1.0 νA(q7, ǫ, q8) = 0.0

µA(q7, ǫ, q10) = 1.0 νA(q7, ǫ, q10) = 0.0 µA(q8, a, q9) = 0.3 νA(q8, a, q9) = 0.5

µA(q10, a, q11) = 0.6 νA(q10, a, q11) = 0.1 µA(q11, b, q12) = 0.6 νA(q11, b, q12) = 0.1

µA(q9), ǫ, q13) = 1.0 νA(q9, ǫ, q13) = 0.0 µA(q12, ǫ, q13) = 1.0 νA(q12, ǫ, q13) = 0.0

µA(q13, ǫ, q14) = 1.0 νA(q13, ǫ, q14) = 0.0 µA(q13, ǫ, q7) = 1.0 νA(q13, ǫ, q7) = 0.0

µA(q14, ǫ, q15) = 1.0 νA(q14, ǫ, q15) = 0.0

Clearly, an intuitionistic fuzzy behavior of A and an intuitionistic fuzzy regular

behavior denoted by an IFRE e are the same.

3.2. Algorithm IFAUM (A ). This algorithm constructs an IFAUM A ′ from an

IFFSA A which is obtained using Algorithm EPSILON (e).

Input: Let A = (Q,Σ ∪ {ǫ}, A, i, f) be an IFFSA with ǫ-transitions, which is

the output of Algorithm EPSILON (e) i.e. A := EPSILON (e). In an IFFSA A

there is only one state with non-zero initial and final intuitionistic fuzzy value.

Let q0, qf ∈ Q such that iµA
(q0) = 1, iνA(q0) = 0, fµA

(qf ) = 1 and fνA(qf ) = 0.

Output: IFAUM A
′ with LA ′ = LA .

Method: For s ∈ Q, we define

sǫ = {q ∈ Q |µ∗

A(s, ǫ, q) = 1 and ν∗A(s, ǫ, q) = 0}

i.e. the set of all reachable states from s by means of ǫ-transitions with mem-

bership value 1 and non-membership 0. Clearly, s is a member of sǫ, ∀ s ∈ Q.

If T is a set of states, then T ǫ = ∪{sǫ | s ∈ T }. We present the procedure in the

following Algorithm 1 ,to obtain T ǫ, using data structure stack called STACK.
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Algorithm 1. EPSILON e

begin

push all states in T into STACK;

T ǫ := T ;

while STACK 6= ∅ do

begin

pop s; the top element of STACK;

for each t ∈ Q with µA(s, ǫ, t) = 1, νA(s, ǫ, t) = 0 do

if t is not in T ǫ then

begin

add t to T ǫ;

push t onto STACK;

end

end

end

Construct A
′ = (Q′,Σ, A′, i′, f ′). Each state of A

′ is a set of states of A .

Q′, the states of A ′ and their intuitionistic fuzzy transitions on input symbols

are defined as follows:

Step 1: Let s0 = qǫ
0
. We assume that s0 ∈ Q′ and is initially unmarked.

Algorithm 2. IFAUM

begin

while there is an unmarked state s = {s1, s2, . . . , sn} do

begin

mark s;

for each input symbol a and for each membership value m

and non-membership value n do

begin

T := {rj |µA(si, a, rj) = mand νA(si, a, rj) = n, si ∈ s};

y := T ǫ;

if y /∈ Q′ then include y an unmarked state of Q′;

set µA′(s, a, y) := m and νA′(s, a, y) := n;

end

end

end

Step 2: Do the procedure given in Algorithm 2.

Thus Q′ , µA′ : Q′ × Σ×Q′ → [0, 1] and νA′ : Q′ × Σ×Q′ → [0, 1] are defined.

Step 3: Define i′ : Q′ → [0, 1] by

iµA′
(p) =

{

1, if p = s0

0, otherwise
and iνA′

(p) =

{

0, if p = s0

1, otherwise
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and f ′ : Q′ → [0, 1] by

fµA′
(p) =

{

1, if qf ∈ p

0, otherwise
and fνA′

(p) =

{

0, if qf ∈ p

1, otherwise

Clearly, A
′ is an IFAUM without ǫ-transitions with LA ′ = LA .

Example 3.4. Consider an IFFSA A = (Q,Σ ∪ {ǫ}, A, i, f) which is obtained in

Example 3.3. Systematically applying the Algorithms 1 and 2, we obtain

A ′ = (Q′,Σ, A′, i′, f ′), where Q′ = {q0, q1, q2, q3, q4, q5}, iµA′
(q0) = 1,

iνA′
(q0) = 0, fµA′

(qi) = 1, fνA′
(qi) = 0, i = 0, 1, 2, 4, 5 and intuitionistic fuzzy tran-

sition is shown in the diagram below.

q0

q1

q2

q3

q4

q5

b/
.7
/.
2

a/.7/.2

a/.7/.2

a/.3/.5 a/.3/.5

a/.3/.5

a/.
6/.

1

a/.6/.1 a/
.6
/.
1 b/.

6/.
1

3.3. Algorithm MINIFAUM (A ′). The number of states in an IFAUM A ′ which

is constructed using Algorithm IFAUM A is not the smallest possible. This algo-

rithm gives a more general way of reducing the number of states of A ′ as few

as possible.

Input: An IFAUM A ′ = (Q′,Σ, A′, i′, f ′) which is the output of Algorithm

IFAUM (A ) i.e. A ′ := IFAUM(A ).

Output: An IFAUM A
′′ = (Q′′,Σ, A′′, i′′, f ′′) such that LA ′′ = LA ′ and having

as few states as possible.

Method:

Step 1: We construct a partition Π of the set states of Q′. Initially, Π consists
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of three groups, Q′

1
, Q′

2
, Q′

3
such that

Q′

1 = {q ∈ Q′ | iµA′
(q) = 1 and iνA′

(q) = 0},

Q′

2
= {q ∈ Q′ | fµA′

(q) = 1 and fνA′
(q) = 0} −Q′

1
,

Q′

3
= Q′

1
−Q′

1
∪Q′

2
.

Then we construct a new partition Πnew using the procedure given in Algorithm

3 and followed by the procedure given in Algorithm 4.

Step 2: From the final partition Π, which is the output of the procedure given

in Algorithm 4, pick a representative for each group. The representatives will

be the states of the reduced IFAUM A ′′. Let s be a representative state and

µA′(s, a, t) := m and νA′(s, a, t) := n in A ′, then the set µA′′(s, a, r) := m and

νA′′(s, a, r) := n, if r is the representative of t’s group (r may be t).

Algorithm 3. MINIFAUM A
′

begin

Πnew := Π;

repeat

begin

Π := Πnew;

make all groups of Π are unmarked;

while there is an unmarked group G in Π do

begin

mark G;

new := ∅;

for each input a ∈ Σ do

begin

if
(

(

µA′(p, a, r) = m1, νA′(p, a, r) = n1 and

µA′(p′, a, r′) = m2, νA′(p′, a, r′) = n2

)

, p, p′ ∈ G,

m1 6= m2, m2 > 0 or n1 6= n2, n2 < 1 and r, r′ are in the same

group G1 of Π(G1may be G)
)

then

new := new ∪{r};

/∗ thus r and r
′

are placed in different groups ∗/

end

end

place new as a group in Πnew;

end

until (Π := Πnew);

end

Step 3: Formally, we define the initial intuitionistic fuzzy values (iµA′′
, iνA′′

)

and final intuitionistic fuzzy values (fµA′′
fνA′′

), using the procedure in

Algorithm 5.
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Algorithm 4. MINIFAUM A
′

begin

repeat

Π := Πnew;

for each group G of Π do

begin

partition G into subgroups such that two states s and

t of G are in the same group if and only if for each

input symbol a and each m > 0 and n < 1 such that

µA′(s, a, s′) = µA′(t, a, t′) = m, & νA′(s, a, s′) = νA′(t, a, t′) = n

and s′, t′ are in the same group of Π

end

place all subgroups so formed in Πnew;

until (Π := Πnew);

end

Step 4: If A ′′ has a dead state d i.e. there exists no d′ ∈ Q′′ such that

µA′′(d, a, d′) > 0 and νA′′(d, a, d′) < 1, for each a ∈ Σ and fµA′′
(d) = 0 and

fµA′′
(d) = 1, remove d from Q′′ and set µA′′(p, a, d) := 0 and νA′′(p, a, d) := 1

∀ p ∈ Q′′, a ∈ Σ.

Step 5: If s ∈ Q′′ and for any string x ∈ Σ∗, µ∗

A′′(q, x, s) = 0 and ν∗A′′(q, x, s) = 1

for q ∈ Q′′, iµA′′
(q) = 1 and iνA′′

(q) = 0, then s is not reachable, remove s from

Q′′ and set µA′′(p, a, s) := 0 and νA′′(p, a, s) := 1, p ∈ Q′′, a ∈ Σ.

Algorithm 5. MINIFAUM A
′

begin

for each group G in Π do

begin

let s be the representative of group G;

if (iµA′
(r) = 1 and iνA′

(r) = 0) for each r ∈ G then

set iµA′′
(s) := 1 and iνA′′

(s) := 0;

else set iµA′′
(s) := 0 and iνA′′

(s) := 1;

if (fµA′
(r) = 1 and fνA′

(r) = 0) for each r ∈ G then

set fµA′′
(s) := 1 and fνA′′

(s) := 0;

else set fµA′′
(s) := 0 and fνA′′

(s) := 1;

/∗ thus i′′ and f ′′ are defined ∗/

end

end

Example 3.5. Consider an IFAUM A ′ obtained in Example 3.4, Using the pro-

cedure given in the Algorithm 3, 4, 5 we get

A
′′ = (Q′′,Σ, A′′, i′′, f ′′)

where Q′′ = {q0, q1, q2, q3},Σ = {a, b}, iµA′′
(q0) = 1, iνA′′

(q0) = 0,

fµA′′
(qi) = 1, fνA′′

(qi) = 0, i = 0, 1, 2.
599



Jeny Jordon A et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 4, 589–605

b/
.7
/.
2

a/.7/.2

a/
.6
/.
1

a/.6/.1

a/.3/.5

a/.3/.5

b/
.6
/.
1

q0

q1

q2

q3

Clearly, the behavior of A
′′ is same as the intuitionistic fuzzy regular behavior

denoted by the given IFRE in Example 3.3.

4. Intuitionistic Fuzzy Lexical Analyzer

The function of the lexical analyzer is to read the source program, one charac-

ter at a time, and to translate it into a sequence of primitive units called tokens.

Keywords, identifiers, constants, and operators are examples of tokens.We pro-

pose the intuitionistic fuzzy lexical analyzer to recognize strings with degrees in

[0,1]. According to the degree of the input string, any of the four actions may

be taken which is described in this section with an example.

Definition 4.1. Let LA be an intuitionistic fuzzy behavior, T is a finite set of

names with a linear order <, and η : Σ∗ → T a function. Then we call the

set
{

(x, LA (x), η(x)) | x ∈ Σ∗
}

a marked intuitionistic fuzzy behavior, denoted

(LA , η), where η is the marking function of the behavior.

Definition 4.2. Let (LA , η) be a marked intuitionistic fuzzy behavior then (LA , η)

is called a marked intuitionistic fuzzy regular behavior, if LA is an intuitionistic

fuzzy regular behavior.

Definition 4.3. Let (LA1
, η1) and (LA2

, η2) be two marked intuitionistic fuzzy

behavior. A marked intuitionistic behavior (LA , η) is called the marked union of

(LA1
, η1) and (LA2

, η2), if LA = LA1
∪ LA2

and η : Σ∗ → T is defined by

η(x) =











η1(x), if
(

LµA1
(x) > LµA2

(x) andLνA1
(x) < LνA2

(x)
)

or
(

LA1
= LA2

and η2(x) < η1(x)
)

η2(x), otherwise

Note that if LµA
(x) = 0 and LνA

(x) = 1, for some x ∈ Σ∗, then the value of η(x)

is unimprotant.
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Example 4.4. Consider the token “identifier” which is described by the follow-

ing IFRE. Let Σl = {a, b, c . . . , z}, Σd = {0, 1, 2, . . . , 9}, Σo = Σl ∪ Σd, where l

denotes any letter belonging to Σl and d denotes any digit belonging to Σd.

ΣlΣ
∗

o +
Σl((+))Σ∗

o

0.9/0.1
+

ΣdΣlΣ
∗

o

0.7/0.2
+

ΣdΣdΣ
∗

o

0.3/0.5

Following the three algorithms, EPSILON, IFAUM, MINIFAUM systematically,

we obtain an IFAUM corresponding to the IFRE is shown below: A = (Q,Σ, A, i, f)

with intuitionistic fuzzy regular behavior LA , where Q = {j | 1 ≤ j ≤ 8},Σ is the

character set of the programming language.

i : Q → [0, 1] is defined by

iµA
(j) =

{

1, if j = 1

0, otherwise
and iνA(j) =

{

0, if j = 1

1, otherwise

f : Q → [0, 1] is defined by

fµA
(j) =

{

1, if j = 2, 4, 6, 8

0, otherwise
and fνA(j) =

{

0, if j = 2, 4, 6, 8

1, otherwise

µA, νA : Q× Σ×Q → [0, 1] is shown in the following transition diagram,

1

2

3 4

5 6

7 8

(/.9/.1,)/.9/.1 l
.9/.1 ,

d
.9/.1

l
.7/.2 ,

d
.7/.2

l
.3/.5 ,

d
.3/.5

l

l,d

l/.9/.
1

d/.7/.2

d/.3/.5

l/.7/.2

d/.3/.5

We assume the following actions for different ranges of degrees:

(0.9, 1] : {accept}

[0.8, 0.9] : {warning; accept}

[0.7, 0.8) : {question}

[0, 0.7) : {reject}

The classification of strings with some examples, to be an identifier is illus-

trated below.

(i) Let x = max, thenLµA
(x) = 1, LνA

(x) = 0

∴ max is accepted as the token identifier.
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(ii) Let x = m(ax, thenLµA
(x) = 0.9, LνA

(x) = 0.1

∴ m(ax is accepted as the token identifier with warning.

(iii) Let x = 1y, thenLµA
(x) = 0.7, LνA

(x) = 0.2

∴ 1y is accepted if the user wants to accept it as an identifier, by answering

“yes”, otherwise 1y will be rejected as non-identifier.

(iv) Let x = 123x, thenLµA
(x) = 0.3, LνA

(x) = 0.5 ∴ 123x is rejected.

4.1. Algorithm MIFRB (t1, t2, . . . , tn). The algorithm uses the input alphabet

Σ, the character set of the programming language and {t1, t2, . . . , tn}, n > 0, the

set of all tokens with linear order of priorities of their names ηi, i = 1, 2, 3, . . . , n.

It computes IFAUM for each token and then marked intuitionistic fuzzy regular

behaviors are generated. It returns the marked intuitionistic fuzzy behavior for

each token ti, i = 1, 2, 3, . . . , n.

Algorithm 6. MIFRB

begin

for i := 1 to n do

begin

Let ei be the IFRE that denotes ti;

/∗ Now find an IFFSA for the IFRE e ∗ /

Ai:= EPSILON (e);

/∗ Now find an IFAUM for the IFFSA A1 ∗ /

A
′

i := IFAUM (Ai);

/∗ Find the minimum state IFAUM for the IFFSA A
′

i ∗ /

A
′′

i := MINIFAUM (A ′

i );

/∗ We consider the final IFAUM for e as Ai ∗ /

Let Ai := A
′′

i and LAi
be an intuitionistic fuzzy regular behavior;

end

for i := 1 to n do

Let (LAi
, ηi) be the marked intuitionistic fuzzy regular behavior

for token ti;

end

4.2. Algorithm IFLEX. The algorithm uses the marked intuitionistic fuzzy reg-

ular behaviors (LAi
, ηi) for each token ti, i = 1, 2, 3 . . . , n. These are generated

by calling the Algorithm MIFRB. It determines the degree of the input string

x ∈ Σ∗ and decides the action to be taken.

Algorithm 7. IFLEX

begin

Let LµAk
(x) := ∨{LµAi

(x) | i = 1, 2, . . . , n}, for some k, 1 ≤ k ≤ n;

/∗ thus the degree of x is defined ∗/

if(LµAk
(x) 6= LµAj

(x), j 6= k) then

begin

/∗ no conflict, maximum is unique ∗/

LA (x) := (LµAk
(x), LνAk

(x));
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η(x) := ηk(x);

end

else if (LµAk
(x) = LµAj

(x)) then

begin

if (LνAk
(x) < LνAj

(x)) then

begin

η(x) := ηk(x);

end

else if (LνAk
(x) > LνAj

(x)) then

begin

η(x) := ηj(x);

end

else

begin

if(ηAk
(x) ≤ ηAj

(x)) then

η(x) := ηj(x);

else

η(x) := ηk(x);

end

end

/∗ deciding the action to be taken ∗/

if(0.9 < LA (x) ≤ 1) then

begin

write (“accepted”);

write (“Token name=”,η(x));

end

else if(0.8 < LA (x) ≤ 0.9) then

begin

write (“warning; accepted”);

write (“Token name=”, η(x));

end

else if(0.7 < LA (x) ≤ 0.8) then

begin

write (“degree is low”);

write (“Do you want to accept? yes/ no”);

if ( yes ) then

begin

write (“accepted”);

write (“Token name=”, η(x));

end

else

write (“rejected”);

end

else

write (“ERROR, the string is rejected”);

end
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5. Conclusions

Authors have investigated by designing three algorithms namely EPSILON,

IFAUM, MINIFAUM in order to find minimum state IFAUM for a given intuition-

istic fuzzy regular expression. They are thoroughly discussed by implementing

the notion of an intuitionistic fuzzy lexical analyzer.
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