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1. Introduction

The idea of statistical convergence first appeared, under the name of almost
convergence, in the first edition Zygmund [35]. In 1951, Fast [12] introduced the
concept of statistical convergence for real sequences, the statistical convergence has
been further stuided by Steinhaus [32], Fridy [13], Šalát [28] and other authors.
Mursaleen [24], introduced the notion λ-statistical convergence for real sequences.
For more details on λ-statistical convergence we refer to [4] and many others. The
notion of order statistical convergence was introduced by Gadjiev and Orhan [14].
The concept of statistical convergence of order α was studied by Çolak [5]. The
concept of λ-statistical convergence of order α was introduced by Çolak and Bektaş
[6], λ-statistical convergence of order α of sequence of functions studied by Et et al.,
[10, 11].
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Şengönül [30] defined the sequence y = (yk) which is frequently used as the Z-
transformation of the sequence x = (xk) i.e.

yk = pxk + (1− p)xk−1

where x−1 = 0, 1 ≤ k <∞ and Z denotes the matrix Z = (znk) defined by

znk =

 p, if n = k;
1− p, if n− 1 = k;

0, otherwise.

Şengönül [30] introduced the Zweier sequence spaces Z and Z0 as follows

Z = {x = (xk) ∈ w : Zx ∈ c}

and

Z0 = {x = (xk) ∈ w : Zx ∈ c0}.
For details on Zweier sequence spaces we refer to [8, 9, 16, 17, 18, 19, 20].

Let λ = (λr) be an increasing sequence of positive real numbers tending to ∞
such that λr ≤ λr + 1, λ1 = 1. We denote Λ = {λ = (λr) : λr →∞ such that λr ≤
λr + 1, λ1 = 1}. The generalized de la Vallée-Poussin mean is defined by tr(x) =
1
λr

∑
k∈Ir xk where Ir = [r− λr + 1, r] for r = 1, 2, 3, .... A sequence x = (xk) is said

to be (V, λ)-summable to a number L if tr(x) → L as r → ∞ (see [21]). If λr = r,
then (V, λ)-summability is reduced to Cesàro summability.

Fuzzy set theory proposed by Zadeh [34] which is a generalization of classical or
crisp sets. As a suitable mathematical model to handle vagueness and uncertainty,
fuzzy set theory is emerging as a powerful theory and has attracted the attention of
many researchers for Cybernetics, Artificial Intelligence, Expert System and Fuzzy
Control, Pattern recognition, Operation Research, Decision making, Image Analy-
sis, Projectiles, Probabilty theory, Weather forecasting etc and practitioners who
contributed to its develepoment and applications. Matloka [23] introduced the sets
of bounded and convergent sequences of fuzzy numbers and studied their some prop-
erties. Later on sequences of fuzzy numbers have been discussed by Diamond and
Kloeden [7], Mursaleen and Başarir [25], Altın et al. [1], Nanda [26], Çanak [3],
Tripathy et al. [33], Hazarika and Savaş [15] and many others. The statistical con-
vergence for a sequence of fuzzy numbers has been studied by several authors. In
2001, Savaş [29] discussed the statistical convergence for a sequence of fuzzy num-
bers and presented a characterization theorem. In 2012, Altınok [2] introduced the
concept of the λ-statistical convergence of order β of sequences of fuzzy numbers.
Recently, Srivastava and Ojha [31] discussed the λ-statistical convergence of fuzzy
numbers and fuzzy functions of order θ.

A fuzzy number is a function X : R→ [0, 1] which is normal, fuzzy convex, upper

semi-continuous and supp [X]0 = {t ∈ R : X(t) > 0} is compact. Here S̄ denotes
the closure of S.
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We denote L(R) the set of all fuzzy numbers, if X is a fuzzy number, then the
level set [X]a = {t ∈ R : X(t) ≥ a} = [X−a , X

+
a ] is a bounded, closed interval for

any a ∈ [0, 1]. The space L(R) has a linear structure induced by the addition X +Y
and the scalar multiplication λX in terms of a-level sets, defined by

[X + Y ]a = [X]a + [Y ]a and [λX]a = λ[X]a for each 0 ≤ a ≤ 1.

Clearly R is embedded in L(R) i.e. in this case for t ∈ R, we define r ∈ L(R) by

r(t) =

{
1, if t = r;
0, if t 6= r.

The additive identity and multiplicative identity of L(R) are denoted by 0 and 1,
respectively.

For r in R and X in L(R), the product rX is defined as follows:

rX(t) =

{
X(r−1t), if r 6= 0;

0, if r = 0.

We use the Hausdorff distance between fuzzy numbers given by d : L(R)× L(R)→
[0,+∞] as follows.

d(X,Y ) = sup
0≤a≤1

δ∞(Xa, Y a) = sup
a∈[0,1]

max{|X−a − Y −a |, |X+
a − Y +

a |},

where δ∞ is the Hausdorff metric. For X,Y ∈ L(R) define X ≤ Y if and only if
Xa ≤ Y a for any a ∈ [0, 1]. Then L(R) is complete metric space with respect to the
metric d (see [23]).

A sequence u = (uk) of fuzzy numbers is said to be

(i) bounded if the set {uk : k ∈ N} of fuzzy numbers is bounded.
(ii) convergent to a fuzzy number u0 if for every ε > 0 there is a positive integer

k0 such that d(uk, u0) < ε for all k > k0.

We denote wF , `F∞ and cF , the set of all, bounded and convergent sequences of
fuzzy numbers, respectively. It is straightforward that cF ⊂ `F∞ ⊂ wF .

The characteristic function of a subset A of N is defined as follows:

χA(k) =

{
1, if k ∈ A;
0, if k /∈ A.

Let T = (tnk) be a regular non-negative matrix. For A ⊂ N, define d
(n)
T (A) =

∞∑
k=1

tnkχA(k) for all n ∈ N. If limn→∞ d
(n)
T (A) = dT (A) exists, then dT (A) is called

as T -density of A. Clearly IdT = {A ⊂ N : dT (A) = 0} is an ideal.

Note 1: Some particular cases of T -density:

(i) Asymptotic density, for

tnk =

{
1
n , if n ≤ k;
0, otherwise.
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(ii) Logarithmic density, for

tnk =

{
k−1

sn
, if n ≤ k;

0, otherwise.

Definition 1.1 ([24]). A sequence x = (xk) of real numbers is said to be λ-
statistically convergent to L if for every ε > 0

lim
r

1

λr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

In this case we write Sλ − limx = L or xk → L(Sλ).

Definition 1.2 ([6]). A sequence x = (xk) of real numbers is said to be λ-statistically
convergent of order α to L or Sαλ -convergent to L if for every ε > 0

lim
r

1

λαr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

In this case we write Sαλ − limx = L or xk → L(Sαλ ).

2. Zweier statistical convergence

In this section, we define the concept of ZSλ-statistical convergence and estab-
lished the relationship of ZSλ with Fαλ [Z] . Also we introduced the notion of ZSλ-
statistical convergence of order α of fuzzy number sequences and obtained some
inclusion relations between the set of ZSλ-statistical convergence of order α and
Fαλ [Z,M, p] .

Definition 2.1. Let λ = (λr) be a sequence in Λ. A sequence x = (xk) of fuzzy
numbers is said to be ZSλ-convergent to x0 ∈ L(R) if for every ε > 0

lim
r

1

λr
|{k ∈ Ir : d((Zx)k, x0) ≥ ε}| = 0.

In this case we write ZSλ − limx = x0 or xk → x0(ZSλ).

Definition 2.2. Let λ = (λr) be a sequence in Λ. A sequence x = (xk) of fuzzy
numbers is said to be Zweier strong λ-summable to x0 ∈ L(R) if

lim
r→∞

1

λr

∑
k∈Ir

d((Zx)k, x0) = 0.

We denote the set of all Zweier strong λ-summable sequences of fuzzy numbers by
Fλ[Z].

Theorem 2.3. Let λ = (λr) be a sequence in Λ.

(a) If xk → x0(Fλ[Z]) then xk → x0(ZSλ),
(b) If x ∈ lF∞ [Z] and xk → x0(ZSλ) then xk → x0(Fλ [Z]),
(c) Fλ [Z] ∩ lF∞ [Z] = ZSλ ∩ lF∞ [Z] , where

lF∞ [Z] =

{
x ∈ wF : sup

k
d((Zx)k , 0̄) <∞

}
.
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Proof. (a) Suppose that ε > 0 and xk → x0(Fλ [Z]). Then we have∑
k∈Ir

d((Zx)k , x0) ≥
∑
k∈Ir

d((Zx)k,x0)≥ε

d((Zx)k , x0)

≥ ε |{k ∈ Ir : d((Zx)k , x0) ≥ ε}| .

Thus xk → x0(ZSλ).
(b) Suppose that x ∈ lF∞ [Z] and xk → x0(ZSλ), i.e., for some K > 0,

d((Zx)k , x0) ≤ K for all k. Given ε > 0, we get

1

λr

∑
k∈Ir

d((Zx)k , x0) =
1

λr

∑
k∈Ir

d((Zx)k,x0)≥ε

d((Zx)k , x0) +
1

λr

∑
k∈Ir

d((Zx)k,x0)<ε

d((Zx)k , x0)

≤ K

λr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|+ ε

as r →∞, the right side goes to zero, which implies that xk → x0(Fλ [Z]).
(c) Follows from (a) and (b). �

Definition 2.4. Let 0 < α ≤ 1 be given. A sequence x = (xk) of fuzzy numbers is
said to be Zweier statistically convergent of order α to x0 ∈ L(R) or ZSα-convergent
of order α to x0 ∈ L(R) if for every ε > 0

lim
n→∞

1

nα
|{k ≤ n : d((Zx)k , x0) ≥ ε}| = 0.

In this case we write ZSα − limx = x0 or xk → x0(ZSα).

Definition 2.5. Let λ = (λr) be a sequence in Λ and 0 < α ≤ 1 be given. A
sequence x = (xk) of fuzzy numbers is said to be ZSαλ−convergent of order α to
x0 ∈ L(R) if for every ε > 0

(2.1) lim
r→∞

1

λαr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}| = 0.

In this case we write ZSαλ − limx = x0 or xk → x0(ZSαλ ).

Theorem 2.6. For 0 < α ≤ 1, if ZSα − limk xk = x0 then x0 is unique.

Proof. The proof of the result is easy, so omitted. �

Theorem 2.7. Let 0 < α ≤ 1 and x = (xk) and y = (yk) be sequences of fuzzy
numbers.

(a) If ZSα − limk xk = x0 and c ∈ C then ZSα − limk(cxk) = cx0;
(b) If ZSα− limk xk = x0 and ZSα− limk yk = y0 then ZSα− limk(xk + yk) =

x0 + y0.

Proof. (a) For c = 0 the result is trivial. Suppose that c 6= 0, then for every ε > 0
the result follows form the following inequality

1

nα
|{k ≤ n : d((Zcx)k , cx0) ≥ ε}| = 1

nα

∣∣∣∣{k ≤ n : d((Zx)k , x0) ≥ ε

|c|

}∣∣∣∣ .
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(b) For every ε > 0. The result follows from the following inequality.

1

nα
|{k ≤ n : d((Z(x+ y))k , (x0 + y0)) ≥ ε}|

≤ 1

nα

∣∣∣{k ≤ n : d((Zx)k , x0) ≥ ε

2

}∣∣∣+
1

nα

∣∣∣{k ≤ n : d((Zy)k , y0) ≥ ε

2

}∣∣∣ .
�

Theorem 2.8. Let 0 < α ≤ 1 and x = (xk) and y = (yk) be sequences of fuzzy
numbers.

(a) If ZSαλ − limk xk = x0 and c ∈ C, then ZSαλ − limk(cxk) = cx0;
(b) If ZSαλ − limk xk = x0 and ZSαλ − limk yk = y0, then ZSαλ limk(xk + yk) =

x0 + y0.

Proof. (a) For c = 0, the result is trivial. Suppose that c 6= 0, then for every ε > 0
the result follows form the following inequality

1

λαr
|{k ∈ Ir : d((Zcx)k , cx0) ≥ ε}| = 1

λαr

∣∣∣∣{k ∈ Ir : d((Zx)k , x0) ≥ ε

|c|

}∣∣∣∣ .
(b) For every ε > 0. The result follows from the following enequality.

1

λαr
|{k ∈ Ir : d((Z(x+ y))k , (x0 + y0)) ≥ ε}|

≤ 1

λαr

∣∣∣{k ∈ Ir : d((Zx)k , x0) ≥ ε

2

}∣∣∣+
1

λαr

∣∣∣{k ∈ Ir : d((Zy)k , y0) ≥ ε

2

}∣∣∣ .
�

Theorem 2.9. If 0 < α < β ≤ 1 then ZSαλ ⊂ ZS
β
λ and the inclusion is strict.

Proof. The proof of the result follows form the following inequality.

1

λβr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}| = 1

λαr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}| .

To prove the inclusion is strict, let (λr) be given and we consider the sequence
x = (xk) be defined by

(Zx)k =

{
1̄, if r − [

√
λr] + 1 ≤ k ≤ r;

0̄, otherwise.

Then

1

λβr
|{k ∈ Ir : d((Zx)k , 0̄) ≥ ε}|

=
1

λβr
|{k ∈ Ir : r − [

√
λr] + 1 ≤ k ≤ r}| ≤

√
λr

λβr
.

Thus x ∈ ZSβλ for 1
2 < β ≤ 1, but x /∈ ZSαλ for 0 < α ≤ 1

2 . �

Corollary 2.10. If a sequence is ZSαλ -convergent to x0 then it is ZSλ-convergent
to x0 for 0 < α ≤ 1.
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Theorem 2.11. Let 0 < α ≤ 1 and λ = (λr) ∈ Λ. Then ZSα ⊂ ZSαλ if

lim inf
r→∞

λαr
rα

> 0.

Proof. If xk → x0 (ZSα), then for every ε > 0 and for sufficiently large r, we have

1

rα
|{k ≤ r : d((Zx)k , x0) ≥ ε}|

≥ 1

rα
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|

≥ λαr
rα

1

λαr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}| .

Taking the limit as r → ∞ and using the given condition, we get xk → x0 (ZSαλ ) .
This completes the proof of the theorem. �

Corollary 2.12. Let 0 < α ≤ 1 and λ = (λr) ∈ Λ. Then ZSαλ ⊂ ZS.

Theorem 2.13. Let 0 < α ≤ 1 and λ = (λr) ∈ Λ. Then ZS ⊂ ZSαλ if and only if

(2.2) lim inf
r→∞

λαr
r
> 0.

Proof. Let the condition (2.2) holds and x = (xk) ∈ ZS. For a given ε > 0 we have

{k ≤ r : d((Zx)k , x0) ≥ ε} ⊃ {k ∈ Ir : d((Zx)k , x0) ≥ ε}.
Then we have

1

rα
|{k ≤ r : d((Zx)k , x0) ≥ ε}|

≥ 1

r
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|

=
λαr
r

1

λαr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}| .

By taking limit as r →∞ and from relation (2.2) we have

xk → L (ZS)⇒ xk → L (ZSαλ ) .

Next we suppose that

lim inf
r→∞

λαr
r

= 0.

Then we can choose a subsequence (ri) such that
λαri
ri

< 1
i . Define a sequence x = (xk)

as follows:

(x)k =

{
1̄, if k ∈ Iri ;
0̄, otherwise.

Then clearly x = (xk) ∈ ZS but x = (xk) /∈ ZSλ. Since ZSαλ ⊂ ZSλ, we have
x = (xk) /∈ ZSαλ , which is a contradiction. Hence the relation (2.2) holds. �

Theorem 2.14. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N and 0 < α ≤ β ≤ 1. If

(2.3) lim inf
r→∞

λαr

µβr
,
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then ZSβµ ⊆ ZSαλ .

Proof. Suppose that λr ≤ µr for all r ∈ N and the condition (2.3) satisfied. Then
Ir ⊂ Jr and so that for ε > 0 we can write

{k ∈ Jr : d((Zx)k , x0) ≥ ε} ⊃ {k ∈ Ir : d((Zx)k , x0) ≥ ε}.
Then we have

1

µβr
|{k ∈ Jr : d((Zx)k , x0) ≥ ε}| ≥ λαr

µβr

1

λαr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|,

for all r ∈ N, where Jr = [r − µr + 1, r]. Taking limit r → ∞ in the last inequality
and using (2.3), we have ZSβµ ⊆ ZSαλ . �

Corollary 2.15. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N. If (2.3) holds, then

(a) ZSαµ ⊆ ZSαλ for 0 < α ≤ 1,
(b) ZSµ ⊆ ZSαλ for 0 < α ≤ 1,
(c) ZSµ ⊆ ZSλ.

Theorem 2.16. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N and 0 < α ≤ β ≤ 1. If

(2.4) lim
r→∞

µr

λβr
= 1,

then ZSαλ ⊆ ZSβµ .

Proof. Let ZSαλ − limx = x0 and (2.4) be satisfied. Since Ir ⊂ Jr, for ε > 0 we can
write

1

µβr
|{k ∈ Jr : d((Zx)k , x0) ≥ ε}|

=
1

µβr
|{r − µr + 1 ≤ k ≤ r − λr : d((Zx)k , x0) ≥ ε}|

+
1

µβr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|

≤ µr − λr
µβr

+
1

µβr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|

≤ µr − λβr
λβr

+
1

µβr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|

≤
(
µr

λβr
− 1

)
+
λαr

µβr

1

λαr
|{k ∈ Ir : d((Zx)k , x0) ≥ ε}|.

Using the relation (2.4) and ZSαλ − limx = x0 the right-hand side of the above
inequality tends to zero as r →∞. This implies that ZSαλ ⊆ ZSβµ . �

Corollary 2.17. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N. If (2.4) holds, then

(a) ZSαλ ⊆ ZSαµ for 0 < α ≤ 1,
(b) ZSλ ⊆ ZSαµ for 0 < α ≤ 1,
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(c) ZSλ ⊆ ZSµ.

3. Zweier de la Vallée-Poussin mean of order α

A function M : [0,∞) → [0,∞) is said to be an Orlicz function if is continuous,
convex, nondecreasing with M(0) = 0, M(x) > 0, for x > 0 and M (x) → ∞ as
x → ∞. If convexity of Orlicz function is replaced by M(x + y) ≤ M (x) + M (y)
then this function is called the modulus function and it was characterized by Ruckle
[27]. An Orlicz function M is said to satisfy ∆2−condition for all values u, if there
exists K > 0 such that M(2u) ≤ KM(u), u ≥ 0.

Lemma 3.1. An Orlicz function satisfies the inequality M (λx) ≤ λM (x) for all λ
with 0 < λ < 1.

Lindenstrauss and Tzafriri [22] used the idea of Orlicz function to construct the
sequence space

lM =

{
(xk) :

∞∑
k=1

M

(
|xk|
r

)
<∞, for some r > 0

}

which is a Banach space normed by

‖(xk)‖ = inf

{
r > 0 :

∞∑
k=1

M

(
|xk|
r

)
≤ 1

}
.

The space lM is closely related to the space lp, which is an Orlicz sequence space
with M (x) = |x|p , for 1 ≤ p <∞.

Now we define a new sequence space as follows. Let M be an Orlicz function,
p = (pk) be a sequence of positive real numbers, α ∈ (0, 1], λ = (λr) be a sequence
of positive reals, and for ρ > 0, we define

Fαλ [Z,M, p] =

{
x ∈ wF : lim

r→∞

1

λαr

∑
k∈Ir

[
M

(
d((Zx)k , l)

ρ

)]pk
= 0, for some l ∈ L(R)

}
.

If M(x) = x and pk = p for all k ∈ N then we shall write Fαλ [Z,M, p] = Fαλ [Z, ] (p)
and if M(x) = x then we shall write Fαλ [Z,M, p] = Fαλ [Z, p] .

Theorem 3.2. Let (pk) be a bounded and 0 < infk pk ≤ pk ≤ supk pk = H < ∞.
If 0 < α ≤ β ≤ 1, M is an Orlicz function, and λ = (λr) is a sequence of positive

reals, then Fαλ [Z,M, p] ⊂ ZSβλ .
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Proof. Let x = (xk) ∈ Fαλ [Z,M, p] . Let ε > 0 be given. As λαr ≤ λβr for each r, we
can write

1

λαr

∑
k∈Ir

[
M

(
d((Zx)k , l

ρ

)]pk

=
1

λαr

 ∑
k∈Ir

d((Zx)k,l)≥ε

[
M

(
d((Zx)k , l)

ρ

)]pk
+

∑
k∈Ir

d((Zx)k,l)<ε

[
M

(
d((Zx)k , l)

ρ

)]pk

≥ 1

λβr

 ∑
k∈Ir

d((Zx)k,l)≥ε

[
M

(
d((Zx)k , l)

ρ

)]pk
+

∑
k∈Ir

d((Zx)k,l)<ε

[
M

(
d((Zx)k , l)

ρ

)]pk
≥ 1

λβr

∑
k∈Ir

d((Zx)k,l)≥ε

[
M

(
ε

ρ

)]pk
≥ 1

λβr

∑
k∈Ir

d((Zx)k,l)≥ε

min
(
[M (ε1)]h, [M(ε1)]H

)
, ε1 =

ε

ρ

≥ 1

λβr
|{k ∈ Ir : d((Zx)k , l) ≥ ε}|min

(
[M (ε1)]h, [M(ε1)]H

)
.

From the above inequality, we have (xk) ∈ ZSβλ . �

Corollary 3.3. If 0 < α ≤ 1, M is an Orlicz function, and λ = (λr) is an element
of Λ, then Fαλ [Z,M, p] ⊂ ZSαλ .

Theorem 3.4. Let M be an Orlicz function, x = (xk) be a sequence in lF∞ [Z] , and
λ = (λr) be an element of Λ. If limr→∞

λr
λαr

= 1, then ZSαλ ⊂ Fαλ [Z,M, p] .

Proof. Suppose that x = (xk) is in lF∞ [Z] and ZSα − limk xk = l. Then there exists
K > 0 such that d((Zx)k , 0̄) ≤ K for all k. For given ε > 0, we have

1

λαr

∑
k∈Ir

[
M

(
d((Zx)k , l)

ρ

)]pk
=

1

λαr

∑
k∈Ir

d((Zx)k,l)≥ε

[
M

(
d((Zx)k , l)

ρ

)]pk
+

1

λαr

∑
k∈Ir

d((Zx)k,l)<ε

[
M

(
d((Zx)k , l)

ρ

)]pk

≤ 1

λαr

∑
k∈Ir

d((Zx)k,l)≥ε

max

{[
M

(
K

ρ

)]h
,

[
M

(
K

ρ

)]H}
+

1

λαr

∑
k∈Ir

d((Zx)k,l)<ε

[
M

(
ε

ρ

)]pk

≤ max

{[
M

(
K

ρ

)]h
,

[
M

(
K

ρ

)]H}
1

λαr
|d((Zx)k , l) ≥ ε|

+
λr
λαr

max

{[
M

(
ε

ρ

)]h
,

[
M

(
ε

ρ

)]H}
.

Thus we have (xk) ∈ Fαλ [Z,M, p] . �
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Theorem 3.5. If λ = (λr) ∈ Λ, 0 < α ≤ β ≤ 1, p is a positive real number, then

Fαλ [Z, ] (p) ⊆ Fβλ [Z] (p).

Proof. The proof is easy, so omitted. �

Corollary 3.6. If λ = (λr) ∈ Λ and p is a positive real number, then Fαλ [Z] (p) ⊆
Fλ [Z] (p).

Theorem 3.7. If λ = (λr) ∈ Λ, 0 < α ≤ β ≤ 1 and p is a positive real number,

then Fαλ [Z] (p) ⊆ ZSβλ .

Proof. Let x = (xk) ∈ Fαλ [Z] (p). Then we have for ε > 0 that∑
k∈Ir

(d((Zx)k , l))
p

=
∑
k∈Ir

d((Zx)k,l)≥ε

(d((Zx)k , l))
p

+
∑
k∈Ir

d((Zx)k,l)<ε

(d((Zx)k , l))
p

≥
∑
k∈Ir

d((Zx)k,l)≥ε

(d((Zx)k , l))
p

≥ |{k ∈ Ir : d((Zx)k , l) ≥ ε}| ε
p.

Thus we have

1

λαr

∑
k∈Ir

d(
(
Zix

)
k
, l)|p ≥ 1

λβr
|{k ∈ Ir : d(

(
Zix

)
k
, l) ≥ ε}| εp.

The last inequality implies that x = (xk) ∈ ZSβλ . This completes the proof of the
theorem. �

Theorem 3.8. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N and 0 < α ≤ β ≤ 1. If (2.3) holds, then Fβµ [Z] (p) ⊆ Fαλ [Z] (p).

Proof. The proof is easy, so omitted. �

Corollary 3.9. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N. If (2.3) holds, then

(a) Fαµ [Z] (p) ⊆ Fαλ [Z] (p) for 0 < α ≤ 1,
(b) Fµ [Z] (p) ⊆ Fαλ [Z] (p) for 0 < α ≤ 1,
(c) Fµ [Z] (p) ⊆ Fλ [Z] (p).

Theorem 3.10. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N and 0 < α ≤ β ≤ 1. If (2.3) holds, then Fβµ [Z] (p) ⊆ ZSαλ .

Proof. Let x = (xk) ∈ Fβµ [Z] (p). Then we have for ε > 0,∑
k∈Ir

(d((Zx)k , l))
p

=
∑
k∈Ir

d((Zx)k,l)≥ε

(d((Zx)k , l))
p

+
∑
k∈Ir

d((Zx)k,l)<ε

(d((Zx)k , l))
p

≥
∑
k∈Ir

d((Zx)k,l)≥ε

(d((Zx)k , l))
p

≥ |{k ∈ Ir : d((Zx)k , l) ≥ ε}| ε
p.
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Thus we have
1

µβr

∑
k∈Ir

(d((Zx)k , l))
p ≥ λαr

µβr

1

λαr
|{k ∈ Ir : d((Zx)k , l) ≥ ε}| ε

p.

Since (2.3) holds and x = (xk) ∈ Fβµ [Z] (p), the last inequality implies that x =
(xk) ∈ ZSαλ . This completes the proof of the theorem. �

Corollary 3.11. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N and 0 < α ≤ 1. If (2.3) holds, then

(a) Fαµ [Z] (p) ⊆ ZSαλ ,
(b) Fµ [Z] (p) ⊆ ZSαλ ,
(c) Fµ [Z] (p) ⊆ ZSλ.

Theorem 3.12. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N and 0 < α ≤ β ≤ 1. If (2.4) holds, then `F∞[Z]∩Fαλ [Z] (p) ⊆ Fβµ [Z] (p).

Proof. Let x = (xk) ∈ `F∞[Z] ∩ Fαλ [Z] (p) and suppose that (2.4) holds. Since
(xk) ∈ `F∞[Z], there esists K > 0 such that d((Zx)k , 0̄) ≤ K for all k. Since λr ≤ µr
and Ir ⊂ Jr for all r ∈ N we can write

1

µβr

∑
k∈Jr

(d((Zx)k , l))
p

=
1

µβr

∑
k∈Jr−Ir

(d((Zx)k , l))
p

+
1

µβr

∑
k∈Ir

(d((Zx)k , l))
p

≤
(
µr − λr
µβr

)
Kp +

1

µβr

∑
k∈Ir

(d((Zx)k , l))
p

≤
(
µr − λβr
µβr

)
Kp +

1

µβr

∑
k∈Ir

(d((Zx)k , l))
p

≤
(
µr − λβr
λβr

)
Kp +

λαr

µβr

1

λαr

∑
k∈Ir

(d((Zx)k , l))
p

≤
(
µr

λβr
− 1

)
Kp +

λαr

µβr

1

λαr

∑
k∈Ir

(d((Zx)k , l))
p
.

This imples that x = (xk) ∈ Fβµ [Z] (p). Hence `F∞[Z] ∩ Fαλ [Z] (p) ⊆ Fβµ [Z] (p). �

Corollary 3.13. Let λ = (λr) and µ = (µr) be two sequences in Λ such that λr ≤ µr
for all r ∈ N. If (2.4) holds, then

(a) `F∞[Z] ∩ Fαλ [Z] (p) ⊆ Fαµ [Z] (p) for 0 < α ≤ 1,

(b) `F∞[Z] ∩ Fαλ [Z] (p) ⊆ Fµ [Z] (p) for 0 < α ≤ 1,
(c) `F∞[Z] ∩ Fλ [Z] (p) ⊆ Fµ [Z] (p).

Theorem 3.14. Let M be an Orlicz function and if infk pk > 0, then limit of any
sequence x = (xk) in Fαλ [Z,M, p] is unique.

Proof. Let limk pk = s > 0. Suppose that (xk) → l1 (Fαλ [Z,M, p]) and (xk) →
l2 (Fαλ [Z,M, p]) , as k →∞. Then there exist ρ1 > 0 and ρ2 > 0 such that

lim
r→∞

1

λαr

∑
k∈Ir

[
M

(
d ((Zx)k , l1)

ρ

)]pk
= 0
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and

lim
r→∞

1

λαr

∑
k∈Ir

[
M

(
d ((Zx)k , l2)

ρ

)]pk
= 0.

Let ρ = max{2ρ1, 2ρ2}. As M is nondecreasing and convex, we have

1

λαr

∑
k∈Ir

[
M

(
d(l1, l2)

ρ

)]pk
≤ D

λαr

∑
k∈Ir

1

2pk

([
M

(
d ((Zx)k , l1)

ρ

)]pk
+

[
M

(
d ((Zx)k , l2)

ρ

)]pk)

≤ D

λαr

∑
k∈Ir

([
M

(
d ((Zx)k , l1)

ρ

)]pk
+
D

λαr

∑
k∈Ir

[
M

(
d ((Zx)k , l2)

ρ

)]pk)
→ 0 as r →∞,

where supk pk = H and D = max(1, 2H−1). Therefore we get

lim
r→∞

1

λαr

∑
k∈Ir

[
M

(
d (l1, l2)

ρ

)]pk
= 0.

As limk pk = s, we have

lim
k→∞

[
M

(
d (l1, l2)

ρ

)]pk
=

[
M

(
d (l1, l2)

ρ

)]s
and so l1 = l2. Hence the limit is unique. �

4. Conclusion

The present work is a generalization of ideal convergence using Zweier trans-
formation. Also, we investigate some futher results on generalized form of ideal
convergence. So that one may expect it to be more useful tool in the field of metric
space theory in modelling various problems occurring in many areas of science, com-
puter science, information theory, dynamical systems, biological science, geographic
information systems, population modelling, medical sciences and motion planning
in robotics. It seems that an investigation of the present work taking ”nets” instead
of ”sequences” could be done using the properties of ”nets” instead of using the
properties of ”sequences” in different abstract spaces.
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