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ABSTRACT. In this paper, we study the algebraic sum and algebraic
product of intuitionistic fuzzy matrices and prove that the set of all intu-
itionistic fuzzy matrices forms a commutative monoid. We prove that the
DeMorgan’s laws of intuitionistic fuzzy matrices and we also prove that
the distributive laws of intuitionistic fuzzy matrices are satisfied.
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1. INTRODUCTION

Atanassov[ ] introduced the concept of intuitionistic fuzzy set(IFS) which was
the generalization of fuzzy set introduced by Zadeh[21]. Since its appearance ,IFS has
been investigated by many researchers and applied it to many fields, such as Decision
making, Clustering analysis etc., Using the idea of fuzzy sets, Kim and Roush[9]
studied fuzzy matrices as a generalization of matrices over the two element Boolean
algebra. Meenakshi[l1] studied the theoretical developments fuzzy matrices. Using
the theory of IF'S, Im et.al[3] defined the notion of intuitionistic fuzzy matrix(IFM) as
a generalization of fuzzy matrix. IFM is very useful in the discussion of intuitionistic
fuzzy relation(IFR)[2, 4, 5, 6, 7]. Xu and Yager[20] defined intuitionistic fuzzy
values(IFV). In a matrix if all the elements are IFVs then it is called an IFM[22].
Lee and Jeong[10] obtained a canonical form of the transitive IFM. Sriram and
Murugadas[16] proved the set of all IFMs form a semiring with respect to Max-
min composition of IFMs. They also investigated the Moore-Penrose inverse of
IFM[17]. Xu[l8] defined the Intuitionistic fuzzy similarity matrix and utilized it in
clustering analysis. Mondal and Pal[12] studied the similarity relations,invertibility
and eigenvalues of IFM. Murugadas and Lalitha[l41] obtained a decomposition of
rectangular IFM. In this paper, the systematically studied algebraic operations in[6]
related to IFSs are extended to IFMs and studied its algebraic properties.
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2. PRELIMINARIES

In this section, we refer to some basic definitions of intuitionistic fuzzy matrix
that are necessary for this paper.

Definition 2.1 ([12, 15]). An intuitionistic fuzzy matrix(IFM) is a matrix of pairs
A = ({Ha,, Va,, y)of a non negative real numbers satisfying jiq,, +va,, < 1 for all 7, .

Definition 2.2 ([10]). Let A and B are two intuitionistic fuzzy matrices, such that
A= (<Mai_7’7]/aij >)7 B = (<:ubi_7' ) Vbi_7‘>)' Then

AV B = (< ma’X(M(lij y Mo, )7 min(]/aij ’ Vbij)>)7

ANB = (< min(/‘l‘aij y M )7 ma‘X(Vaij ) Vb, )>)
Definition 2.3 ([16]). Let A and B be two IFMs such that4 = ((ta,,, Va,, ),
B = ((it,;+ b, ))- Then we write A < B if pia,; < p,, and vg,; > vy, for all i, ;.
Definition 2.4 ([16]). The m x n zero IFM O is an IFM all of whose entries are

(0,1).

The m x n universal IFM J is an IFM all of whose entries are <1, O>.

Definition 2.5 ([19]). Let Z = (2z;j)nxn be a matrix, if all of its elements z;;(¢,j =
1,2, ...,n) are intuitionistic fuzzy values, then Z is called an IFM.

Definition 2.6 ([13, 19]). Let Z1 = ({fta,;, Vay, )) and Z = ({pp,,, Vs, )) be two in-
tuitionistic fuzzy matrices of order n. If Z = Z;0Z5, then Z is called the composition
matrix of Z; and Z5, where

Z = (< k\zl(uaik A l’[’bkj)’ (Vaik \% kaj)>)'

bl
I=>s
—

Definition 2.7 ([15]). Let A = ((fta;Va,,)) and B = ((u,;, v, )) be two intu-
itionistic fuzzy matrices. Then
A® B = (pay; + Moy = Hag;-Hbi;» Vai; Vo)
is called the algebraic sum of A and B and
A® B = (pay; bi;» Vas; T Vbiy = Vay Vi)
is called the algebraic product of A and B.

Definition 2.8 ([3]). The complement of an intuitionistic fuzzy matrix A which is
denoted by A¢ and is defined by A° = ({Va,, fas, ))-

3. MAJOR SECTION

In this section, we prove some algebraic properties of arithmetic sum and
arithmetic product.
The Proof of the following Theorems are obvious.

Theorem 3.1. Let A and B are IFMs of same order. Then
(i) A B=B® A,
(i) A B=B® A.

Theorem 3.2. Let A, B be IFMs of same order. Then
(i) (A® B)¢ = A° ® B¢,
(ii) (A® B)¢ = A° @ B°.
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Theorem 3.3. Let A be an IFM and let O = ((0,1)) be the identity IFM with
respect to @ and J = (<17 0>) be the identity IFM with respect to ®. Then

(i) AO=0® A=A,

(i) A J=J® A=A

Proof. (i) It is obvious.
(i) A© T = (f, vor,) © (1,0))
= </’(’aij L, Ve, +0— Va,ij.0>
= 1<4“‘w 2 Vai; >

Similarly, we can prove J @ A = A. O

Theorem 3.4. Let A, B and C are IFMs of same order. Then
(i) AB)eC=Ad (B C),
(i) (A B)@ C=A® (B ().

Proof. (i) LHS=(A@B)a C
= ((Bas; + Hoiy = Hasy Hoiys Vs Vo) ® (flesss Very))
= ((Has; + Hbs; = Hass-Hoi;) + Heiy — (Hagy + Hbsy — Hag;-Hbs; ) -Hey,
Vas; Vb Veis )
</~Lau + Hb;; + Heiz = Paig-Pb; — Hagg-Mei; — Hbgg-Heg;
+/’I/ai]"lubij'/’l/cij’Vaij'ybij'ycij>’ (31)
RHS= A ¢ (B C)
= <(.uaij ) Vaij) D (/Lbi,- Tt Heyy = Hbgy-Meigs Vagg Vo, )>
= <:u(lij + (lubij + Heiy — Moy 'ILLCi,j) — Hayy '(p’bij + ey — Hbgz-Heg; )7 Vaj -Vbij 'Vcij>
= <:uaij + Hb, ; + Heiy = Hagg-Pbi; — Hag-Meijs —Hbgg-Heg; + Hagj-Hbij-Hei;
WVay, Vb Ve, ) (3.2)
From (3.1) and (3.2), (i) follows.
The proof of (ii) is similar to (i). O

Theorem 3.5. Let A, B and C are IFMs of same order. Then
(i) [ AvB)eC=(AeC)V(BaC),
(ii)  ANB)eaC=(AaC)AN (B O).

Proof. (i) LHS= (AVB)&C

= <(max(:uaij y My )7 min(l/aij » Vb )) S (MCij » Veyy )>

= < maX(lJ’aij ) /"['bij) + ey — max(uaij » M ):ucij ) min(yaij

’l/b'ij)ycij>’ (33)
RHS= (A& C) V (B& C)

< Magy T Heiy — Hagy-Meggy Vag - VC”) (Mblj T+ Heg; — Mg '/"LCij7Vbij‘VCij)>
( max(pa,, +uc” Has-Hess s Hbiy  Hewy = Moy Hery ) (Vo Veys s Vi, Vey;))
<maX(1U'a /~LC”) + MC‘L]7Mb7.](1 /‘LCij) + lucz‘j)’min(l/aij7 Vbij)l/cij>
<maX(lu‘a” /1‘61]) /‘Lbij(l /’l’cij)) +/"Lcij7min(yaij7ybij)ycij>
( max(
(max(

max(fia;,;; Wb, ) (L = pe,;) + feyy s min(Va,,;, v, )Vc”>
Max(fha,, fo;) — MAX(fayy s Wiy ) Hes; + Heyys MI(Vayy s Vo ey )

maX(/"mpM%)"‘M&; ma'X(/'l’aij7/’[/bij)lu’Cij’mln(yaij7ybij)ycij>‘ (34)
From (3.3) and (3.4), (i) follows.

~
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The proof of (ii) is similar to (i). O
The proof of the following Theorem on Distributivity is obvious.

Theorem 3.6. Let A, B and C are IFMs of same order. Then
(i) (AvVB) @ C=(A®C)V(B®C(C),
(i) (ANB)@ C=(A@C)AN(B®C).

Theorem 3.7. Let A, B and C are IFMs of same order. Then
(i) A (BVC)=(A®B)V (Aa C),
(ii) A (BANC)=(A@B)AN(A® C).

P,roof' (i) A @ (B \/ C) = </’[’llij /’I’sz> EB < max(ubij b) /’Lcij )a mln(VbU b Vcij )>
= <:uaij + maX(/Jbij ) /’[’Cij) - Maij max(ﬂbij ) :u’cij)) Vaij min<l/bij

Wei,))-
If pp,; > pe,;, then
A® (B v C) = <:uaij + Mby; — HagiHbiss Vagg min(ybij ) VCij)>'
AISO7 (A D B) \ (A 2] C) = <:u’a7;j + Mo, — Hag; Mo, ;5 Vay, min(ybij ) Vci]-)>'
Since7 Mo, ; > He;; then /’Lbij(l - /’[’(lij) > He,; (1 - Maij)?
Le, Ha;; + Ho;; — Hagj Hb;; > Ha;; + He;; = Hagj e, ;-
Similarly, if up,; < pie,; then
A®(Bv(C)=(AeB)V(A® ().
The proof of (ii) is similar to (i). O

The proof of the following Theorem is obvious.

Theorem 3.8. Let A, B and C are [FMs of same order. Then
(i) A (BVC)=(A®B)V (A ().
(1)) A (BAC)=(A®@B)AN(A® ().
Theorem 3.9. Let A and B be two IFMs with A < B. Then
(i) (ANB)® (AV B)=A®B.
(1)) (ANB)® (AV B)=A® B.
Proof. (i) LHS= (AAB)® (AV B)
= <(min(ﬂau ) Mg )7 maX(yaij » Vbij ))+(maX(Maij > Hbij ), min(yaij s Vb ))>
= < min(/’éau ) Mbij) + maX(lJ’aij ) :ubij) - min(uau ) :ubij) maX(Maij ) Maij)
,max(Va,, , V,;) Min(vy,;, Vb, )>
= (Has; + Hbiy = Hais-Hbiss Vais -V, )

=A®B.
= RHS.
Hence, (AANB)® (AV B)=A® B.
The proof of (ii) is similar to (i). O

4. CONCLUSIONS

The set of all IFMs with respect to the algebraic sum and algebraic product form

a commutative monoid. The arithmetic sum and arithmetic product of IFMs are

satisfy the De Morgan’s laws. Distributive laws (i) joint over arithmetic sum and

arithmetic product (ii) meet over arithmetic sum and arithmetic product are proved.
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