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Abstract. In this paper, we have focused on Fully Fuzzy Multi-choice
Multi-Objective Linear Programming (FFMMOLP) problem in which all
the coefficients and decision variables are trapezoidal fuzzy numbers and all
the constraints are fuzzy equality or inequality. A new similarity measure
is introduced for trapezoidal fuzzy numbers. Using this similarity measure
together with magnitude of trapezoidal fuzzy numbers, a new method for
solving FFMMOLP problem is proposed. If Decision Maker (DM) fixes the
degree of similarity measure between the two side trapezoidal fuzzy num-
bers in each constraint, then the fuzzy Pareto-optimal solution of FFM-
MOLP problem is obtained. In the end, proposed method is illustrated
through a numerical example.
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1. Introduction

In real world, DM does not know precisely the exact value of decision parameters.

One of the foremost approaches to treat such situations is fuzzy linear programming

based on the concept of fuzzy set theory proposed by Zadeh [35]. In recent years,

many researchers have investigated multi-objective linear programming under fuzzy

environment [7, 13, 15, 24, 30, 36].
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In last few decades, several researchers have shifted their focus to Fully Fuzzy

Linear Programming (FFLP) problem as it is easily correlated with the real world

problems. Various methods have been proposed in the literature to solve FFLP prob-

lem. Lotfi et al. [27] approximated the parameters of FFLP problem to the nearest

symmetric triangular fuzzy numbers and found the fuzzy optimal approximate so-

lution. Amit et al. [18] applied ranking function method to convert fuzzy objective

of FFLP problem into crisp one and obtained the fuzzy optimal solution of FFLP

problem. Kumar and Singh [20] found the fuzzy optimal solution of FFLP problem

by converting the FFLP problem into crisp linear programming problem by using

ranking function. Khan et al. [22] provided a modified version of simplex method for

FFLP problem. Ezzati et al. [14] applied a new lexicographical ordering of triangu-

lar fuzzy numbers and converted the FFLP problem into crisp multi-objective linear

programming problem in order to find the exact optimal solution of FFLP problem.

Kaur and Kumar [23] introduced Mehar’s method and applied it to a FFLP problem

using L-R fuzzy numbers as parameters. Nasseri et al. [31] proposed a new method

for solving FFLP problem by using the concept of memership function. Recently,

Cheng et al. [11] solved the FFLP problem through compromise programming and

applied the similarity measure on the tolerance level of each constraint. The concept

of similarity measure between fuzzy numbers was first introduced by Zwick et al.

[37] in 1987. In the literature, several methods based on the concept of geomet-

ric distance, grade mean integration, norm, Center of Gravity (COG), height and

perimeter of fuzzy numbers for finding the similarity measure of two fuzzy numbers

have been investigated by many researchers.[6, 8, 11, 16, 17, 25, 34]

When a problem has multiple objectives, a multi-criteria approach is more suit-

able by which the decision making can be more precisely captured into an opti-

mization model. Despite the flexibility offered by fuzzy optimization models in

the real world problems, to make fuzzy optimization models more realistic recently

many researchers have incorporated multi-choice in the fuzzy optimization models

as availability of resources, technological coefficients and coefficients of objective

functions changes drastically due to some fractious and inevitable circumstances

[2, 4, 5, 9, 12, 26, 29, 33]. Biswal and Acharya [4] solved the linear programming

problem where the resources could take maximum of eight crisp choices. In 2011,

Biswal and Acharya [5] took k number of crisp choices in the resources and combine

them using interpolating polynomial.

Cheng et al. [10] solved the Fuzzy Multi-Objective Linear Programming (FMOLP)

problem using deviation degree of fuzzy number and obtained the δ-Pareto optimal

solution. In this paper, we introduce FFMMOLP problem, in which decision pa-

rameters and decision variables are trapezoidal fuzzy numbers and resources, tech-

nological coefficients and coefficients of objective functions are multi-choice. Using

a proposed similarity measure, FFMMOLP problem is transformed into the Crisp

Non-Linear Programming (CNLP) problem and fuzzy Pareto-optimal solution of

FFMMOLP problem is obtained. The paper is structured as follows: in Section 2,
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some basic definitions and arithmetic operations of trapezoidal fuzzy numbers are

presented; in Section 3, a review of existing similarity measure is given and a new

similarity measure of two trapezoidal fuzzy numbers is defined; formulation of FFM-

MOLP problem and a new algorithm for solving this problem is given in Section 4;

Section 5 presents a numerical illustration and the paper concludes in Section 6.

2. Preliminaries

In this section, some basic definitions and arithmetic operations of trapezoidal
fuzzy numbers related to fuzzy set theory are reviewed.

Definition 2.1 ([3]). A fuzzy number Ã = (a1, a2, a3, a4) is said to be a Trapezoidal
Fuzzy Number (TrFN) if its membership function is given by

µÃ(x) =



x− a1
a2 − a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,
a4 − x
a4 − a3

, a3 ≤ x ≤ a4,

0, otherwise.

TrFN(R) denotes the set of all trapezoidal fuzzy numbers.

Definition 2.2 ([3]). Let Ã be a fuzzy set in X and α ∈ (0, 1]. The α-cut of the

fuzzy set Ã is the crisp set given by

Ãα = {x ∈ X : µÃ(x) ≥ α}.

If Ã = (a1, a2, a3, a4) is a TrFN then α-cut of Ã is given by Ãα = [āα, aα] for all
0 < α ≤ 1, where āα = a1 + (a2 − a1)α and aα = a4 − (a4 − a3)α.

Definition 2.3 ([19]). A TrFN Ã = (a1, a2, a3, a4) is said to be a non-negative
TrFN if and only if a1 ≥ 0.
TrFN(R)+ denotes the set of all non-negative trapezoidal fuzzy numbers.

Definition 2.4 ([19]). Two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4) and B̃ =
(b1, b2, b3, b4) are said to be equal if and only if a1 = b1, a2 = b2, a3 = b3 and a4 = b4.

Definition 2.5 ([21]). The arithmetic operations on two trapezoidal fuzzy numbers

Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) are given by

(i) Ã⊕ B̃ = (a1, a2, a3, a4)⊕ (b1, b2, b3, b4) = (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

(ii) Ã	 B̃ = (a1, a2, a3, a4)	 (b1, b2, b3, b4) = (a1 − b4, a2 − b3, a3 − b2, a4 − b1)
(iii) The multiplication of two trapezoidal fuzzy numbers is defined as

Ã⊗ B̃ = (a1, a2, a3, a4)⊗ (b1, b2, b3, b4) ∼= (c1, c2, c3, c4)

where c1 = min(a1b1, a1b4, a4b1, a4b4), c2 = min(a2b2, a2b3, a3b2, a3b3),
c3 = max(a2b2, a2b3, a3b2, a3b3) and c4 = max(a1b1, a1b4, a4b1, a4b4).

(iv) The scalar multiplication of TrFN is defined as

λÃ =

{
(λa1, λa2, λa3, λa4), λ ≥ 0,

(λa4, λa3, λa2, λa1), λ < 0.
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Definition 2.6 ([1]). Let Ã = (a1, a2, a3, a4) be a TrFN then the magnitude of Ã
is given by

Mag(Ã) =
1

2

∫ 1

0

(aα + āα + a2 + a3)f(α)dα,

where f(α) is a non-negative and increasing function on [0, 1] with f(0) = 0, f(1) = 1

and
∫ 1

0
f(α)dα = 1

2 .

In this paper we use f(α) = α which gives Mag(Ã) = a1+5a2+5a3+a4
12 .

Definition 2.7 ([1]). Let Ã and B̃ are two trapezoidal fuzzy numbers then the

ranking of Ã and B̃ is defined by magnitude over TrFN as follows:

(i) Mag(Ã) > Mag(B̃) iff Ã � B̃.

(ii) Mag(Ã) < Mag(B̃) iff Ã ≺ B̃.

(iii) Mag(Ã) = Mag(B̃) iff Ã ∼= B̃.

Remark 2.1. Mag(Ã+ B̃) = Mag(Ã) + Mag(B̃).

Remark 2.2. Mag(kÃ) = kMag(Ã) for all k ∈ R, where R is the set of real numbers.

3. Similarity measure

In this section, firstly we have reviewed the existing similarity measures between
fuzzy numbers. Then, we have defined the new similarity measure between two
trapezoidal fuzzy numbers.

Let Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) be two trapezoidal fuzzy numbers.

Chen and Lin [6] proposed the degree of similarity between two trapezoidal fuzzy
numbers based on the concept of geometric distance as follows:

s(Ã, B̃) = 1−

4∑
i=1

(|ai − bi|)

4

Lee [25] defined the similarity measure between two trapezoidal fuzzy numbers
using the metric as follows:

s(Ã, B̃) = 1−
‖Ã, B̃‖lp
‖U‖

where ‖Ã− B̃‖lp =

(
4∑
i=1

(|ai − bi|)p
) 1

p

, U is universe of discourse and ‖U‖ =

max(U)−min(U).

Hsieh and Chen [17] proposed a similarity measure between two trapezoidal num-
bers with the help of grade mean integration representation as follows:

s(Ã, B̃) =
1

1 + d(Ã, B̃)

where d(Ã, B̃) = |P (Ã)− P (B̃)|, P (Ã) = a1+a2+a3+a4
6 and P (B̃) = b1+b2+b3+b4

6 .
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Chen and Chen [8] used the COG of trapezoidal fuzzy number and introduced
the similarity measure between two trapezoidal numbers as follows:

s(Ã, B̃) =

1−

4∑
i=1

(|ai − bi|)

4

[1− |xÃ − xB̃ |⌈S
Ã

+S
B̃

2

⌉] [min(y∗
Ã
, y∗
B̃

)

max(y∗
Ã
, y∗
B̃

)

]

where y∗
Ã

=


a3−a2
a4−a1 + 2, if a1 6= a4

1
2 , if a1 = a4

, x∗
Ã

=
y∗
Ã
(a3+a2)+(a4+a1)(1−y∗Ã)

2 ,⌈
SÃ+SB̃

2

⌉
= 0 when

⌈
SÃ+SB̃

2

⌉
= 0 and

⌈
SÃ+SB̃

2

⌉
= 1 when 0 <

⌈
SÃ+SB̃

2

⌉
≤ 1,

SÃ = a4 − a1 and SB̃ = b4 − b1.

Wei and Chen [34] proposed a similarity measure between two trapezoidal fuzzy
numbers based on the perimeters of trapezoidal numbers as follows:

s(Ã, B̃) =

1−

4∑
i=1

(|ai − bi|)

4


[

min(P (Ã), P (B̃)) + 1

max(P (Ã), P (B̃)) + 1

]

where P (Ã) =
√

(a1 − a2)2 + 1+
√

(a3 − a4)2 + 1+(a3−a2)+(a4−a1) and P (B̃) =√
(b1 − b2)2 + 1 +

√
(b3 − b4)2 + 1 + (b3 − b2) + (b4 − b1).

Hejazi et. al [16] proposed a similarity measure based on the geometric distance,
the perimeter of two fuzzy numbers and the area of the two fuzzy numbers as follows:

s(Ã, B̃) =

1−

4∑
i=1

(|ai − bi|)

4


[

min(P (Ã), P (B̃))

max(P (Ã), P (B̃))

][
min(A(Ã), A(B̃)) + 1

max(A(Ã), A(B̃)) + 1

]

where P (Ã) =
√

(a1 − a2)2 + 1 +
√

(a3 − a4)2 + 1 + (a3 − a2) + (a4 − a1),

P (B̃) =
√

(b1 − b2)2 + 1 +
√

(b3 − b4)2 + 1 + (b3 − b2) + (b4 − b1),

A(Ã) = (a3−a2+a4−a1)
2 and A(B̃) = (b3−b2+b4−b1)

2 .

Chen and Lin [6], Chen and Chen [8], Wei and Chen [34] and Hejazi et. al [16]
methods can calculate the similarity measure of those trapezoidal fuzzy numbers
in which ai, bi ∈ [0, 1] for all i = 1, 2, 3, 4. Therefore, all of the above similarity
measures cannot be applied on the FFMMOLP problem as the components of TrFNs
which are used in the FFMOLP problem are coming from the real line i.e. ai, bi ∈
<. Hence, we present a new method to determine the similarity measure between
two trapezoidal fuzzy numbers using the magnitude of the fuzzy number as the
magnitude synthetically reflects the information on every membership degree. The
weighting function (i.e.: f(r)) in the magnitude of the fuzzy numbers provide liberty
to DM for deciding the amount of influence on the different factors which determine
similarity measure of two fuzzy numbers. The similarity measure between the two
trapezoidal fuzzy numbers is defined as follows:
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Definition 3.1. Let Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) be two trapezoidal

fuzzy numbers. The similarity measure between Ã and B̃ is defined by

s(Ã, B̃) =
1

1 +
∣∣Mag(Ã)−Mag(B̃)

∣∣ ,
where Mag(Ã) = a1+5a2+5a3+a4

12 and Mag(B̃) = b1+5b2+5b3+b4
12 .

Properties of similarity measure. Let Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4)
be two trapezoidal fuzzy numbers.

Property 3.1. 0 ≤ s(Ã, B̃) ≤ 1.

Proof. Clearly,
∣∣Mag(Ã)−Mag(B̃)

∣∣ ≥ 0

⇒ 1 +
∣∣Mag(Ã)−Mag(B̃)

∣∣ ≥ 1

⇒ 1 ≥ 1

1 +
∣∣Mag(Ã)−Mag(B̃)

∣∣ ≥ 0

⇒ 0 ≤ s(Ã, B̃) ≤ 1. �

Property 3.2. s(Ã, B̃) = s(B̃, Ã).

Proof. s(Ã, B̃) =
1

1 +
∣∣Mag(Ã)−Mag(B̃)

∣∣ =
1

1 +
∣∣Mag(B̃)−Mag(Ã)

∣∣ = s(B̃, Ã).

�

Property 3.3. If Ã = B̃ then s(Ã, B̃) = 1.

Proof. Let Ã=B̃⇒ai = bi ∀ i=1, 2, 3, 4⇒Mag(Ã)=Mag(B̃)⇒s(Ã, B̃)=1. �

4. Fully fuzzy multi-choice multi-objective linear programming
problem

FFLP problem can be substantially improved by incorporating multiple choices
in the resources, technological coefficients and coefficients of the objective functions
in order to provide more flexibility in decision making. FFMMOLP problem is the
generalization of all the fuzzy linear programming problems. FFMMOLP problem
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is formulated as follows:

(P1) maxZ1(X̃) =

n∑
j=1

[(c̃1j1 or c̃1j2 . . . or c̃
1jt

(1)
j

)⊗ x̃j ]
...

maxZk(X̃) =

n∑
j=1

[(c̃kj1 or c̃kj2 . . . or c̃
kjt

(k)
j

)⊗ x̃j ]

subject to
n∑
j=1

[(ãij1 or ãij2 . . . or ã
ijs

(i)
j

)⊗ x̃j ] � b̃i1 or b̃i2 . . . or b̃iki , i = 1, 2, . . . ,m1,

n∑
j=1

[(ãij1 or ãij2 . . . or ã
ijs

(i)
j

)⊗ x̃j ] � b̃i1 or b̃i2 . . . or b̃iki ,

i = m1 + 1,m1 + 2, . . . ,m2,
n∑
j=1

[(ãij1 or ãij2 . . . or ã
ijs

(i)
j

)⊗ x̃j ] ∼= b̃i1 or b̃i2 . . . or b̃iki ,

i = m2 + 1,m2 + 2, . . . ,m,

x̃j ∈ TrFN(R)+, j = 1, 2, . . . , n,

where X̃ = [x̃j ]n×1, c̃qjt, ãijs, b̃id ∈TrFN(R) for all t= 1, 2, . . . , t
(q)
j , s= 1, 2, . . . , s

(i)
j ,

d=1, 2, . . . , ki, q=1, 2, . . . , k, j = 1, 2, . . . , n, and i = 1, 2, . . . ,m.
Let F (X̃) = {X̃ : X̃ satisfies all the constraints of (P1)} be the set of all the

fuzzy feasible solutions of (P1).
Mohanaselvi and Ganesan [28] introduced the complete fuzzy optimal solution

for fully fuzzy multi-objective linear programming problem. The complete fuzzy
optimal solution and fuzzy Pareto-optimal solution for (P1) are defined as follows:

Definition 4.1. A feasible solution X̃ ′ ∈ F (X̃) is said to be complete fuzzy optimal

solution of (P1) if there does not exist any X̃ ∈ F (X̃) such that

Mag(Zq(X̃)) ≥ Mag(Zq(X̃
′)) for all q = 1, 2, . . . , k

A complete optimal solution does not always exist since the objective functions
conflict with each other. It is very difficult to maximize all the multiple objec-
tive functions simultaneously, thus fuzzy Pareto-optimal solution provide the better
compromise solution. Hence, fuzzy Pareto-optimal solution for (P1) is defined as
follows:

Definition 4.2. A feasible solution X̃ ′ ∈ F (X̃) is said to be fuzzy Pareto-optimal

solution of (P1) if there does not exist any X̃ ∈ F (X̃) such that

Mag(Zq(X̃)) ≥ Mag(Zq(X̃
′)) for all q = 1, 2, . . . , k

and

Mag(Zw(X̃)) > Mag(Zw(X̃ ′)) for at least one w = 1, 2, . . . , k.

Combining all the multi-choices by fuzzy Lagrange interpolating polynomial given
by Qian and Hou [32] and converting all the fuzzy inequality constraints into the
fuzzy equality constraints by adding fuzzy slack and subtracting fuzzy surplus vari-
ables in the fuzzy less than and fuzzy greater than inequality constraints respectively,
we get the following problem equivalent to (P1).
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Let us denote (X̃, S̃, zi, u
(q)
j , v

(i)
j ) by Y .

(P2) maxZ1(Y ) =

n∑
j=1

R̃1j(u
(1)
j )

...

maxZk(Y ) =

n∑
j=1

R̃kj(u
(k)
j )

subject to
n∑
j=1

Q̃ij(v
(i)
j )⊕ s̃i ∼= P̃i(zi), i = 1, 2, . . . ,m1,

n∑
j=1

Q̃ij(v
(i)
j )	 s̃i ∼= P̃i(zi), i = m1 + 1,m1 + 2, . . . ,m2,

n∑
j=1

Q̃ij(v
(i)
j ) ∼= P̃i(zi), i = m2 + 1,m2 + 2, . . . ,m,

zi = 0, 1, . . . , (ki − 1), i = 1, 2, . . . ,m,

u
(q)
j = 0, 1, . . . , (t

(q)
j − 1), j = 1, 2, . . . , n, q = 1, 2, . . . , k,

v
(i)
j = 0, 1, . . . , (s

(i)
j − 1), j = 1, 2, . . . , n, i = 1, 2, . . . ,m,

x̃j , s̃p ∈ TrFN(R)+, p = 1, . . . ,m2, j = 1, 2, . . . , n,

where

S̃ = [s̃p]m2×1, s̃p = (sp1, sp2, sp3, sp4), p = 1, 2, . . . ,m2.

P̃i(zi) = (Pi1(zi), Pi2(zi), Pi3(zi), Pi4(zi)), i = 1, 2, . . . ,m,

Q̃ij(v
(i)
j ) = (Qij1(v

(i)
j ), Qij2(v

(i)
j ), Qij3(v

(i)
j ), Qij4(v

(i)
j )), j = 1, 2, . . . , n,

i = 1, 2, . . . ,m,

R̃qj(u
(q)
j ) = (Rqj1(u

(q)
j ), Rqj2(u

(q)
j ), Rqj3(u

(q)
j ), Rqj4(u

(q)
j )), j = 1, 2, . . . , n,

q = 1, 2, . . . , k,

are the fuzzy Lagrange interpolating polynomials.

Pir(zi) =
(zi − 1)(zi − 2) . . . (zi − ki + 1)

(−1)(k−1)(k − 1)!
bi1r +

zi(zi − 2) . . . (zi − ki + 1)

(−1)(k−2)(k − 2)!
bi2r

+
zi(zi−1)(zi−3) . . . (zi−ki+1)

(−1)(k−3)(k − 3)!2!
bi3r + . . . . . .

+
zi(zi−1)(zi−2) . . . (zi − ki+2)

(k−1)!
bikir, ∀ r = 1, 2, 3, 4 and

i = 1, 2, . . . ,m.
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Qijr(v
(i)
j ) =

(v
(i)
j − 1)(v

(i)
j − 2) . . . (v

(i)
j − s

(i)
j + 1)

(−1)(s
(i)
j −1)(s

(i)
j − 1)!

a′′ij1r

+
v
(i)
j (v

(i)
j − 2) . . . (v

(i)
j − s

(i)
j + 1)

(−1)(s
(i)
j −2)(s

(i)
j − 2)!

a′′ij2r

+
v
(i)
j (v

(i)
j − 1)(v

(i)
j − 3) . . . (v

(i)
j − s

(i)
j + 1)

(−1)(s
(i)
j −3)(s

(i)
j − 3)!2!

a′′ij3r + . . . . . .

+
v
(i)
j (v

(i)
j − 1)(v

(i)
j − 2) . . . (v

(i)
j − s

(i)
j + 2)

(s
(i)
j − 1)!

a′′
ijs

(i)
j r

where (a′′ijb′1, a
′′
ijb′2, a

′′
ijb′3, a

′′
ijb′4) = ãijb′ ⊗ x̃j , ∀ r = 1, 2, 3, 4, b′ = 1, 2, . . . , s

(i)
j ,

j = 1, 2, . . . , n, and i = 1, 2, . . . ,m,

Rqjr(u
(q)
j ) =

(u
(q)
j − 1)(u

(q)
j − 2) . . . (u

(q)
j − t

(q)
j + 1)

(−1)(t
(q)
j −1)(t

(q)
j − 1)!

c′qj1r

+
u
(q)
j (u

(q)
j − 2) . . . (u

(q)
j − t

(q)
j + 1)

(−1)(t
(q)
j −2)(t

(q)
j − 2)!

c′qj2r

+
u
(q)
j (u

(q)
j − 1)(u

(q)
j − 3) . . . (u

(q)
j − t

(q)
j + 1)

(−1)(t
(q)
j −3)(t

(q)
j − 3)!2!

c′
qt

(q)
j 3r

+ . . . . . .

+
u
(q)
j (u

(q)
j − 1)(u

(q)
j − 2) . . . (u

(q)
j − t

(q)
j + 2)

(t
(q)
j − 1)!

c′
qt

(q)
j r

,

where (c′qja′1, c
′
qja′2, c

′
qja′3, c

′
qja′4) = c̃qja′ ⊗ x̃j , ∀ r = 1, 2, 3, 4, a′ = 1, 2, . . . , t

(q)
j ,

j = 1, 2, . . . , n, and q = 1, 2, . . . , k.

4.1. Procedure to find the fuzzy Pareto-optimal solution of (P1).

In this subsection, we introduce a new algorithm to find the fuzzy Pareto-optimal
solution of (P1). The steps of the proposed algorithm are given as follows:

Step 1: Convert (P2) into the Crisp Multi-Objective Non-Linear Programming (CMONLP)
problem by applying the similarity measure (Definition 3.1) on the constraints and
magnitude (Definition 2.6) on the objective functions. Then (P2) can be written as:

(P3) max[Mag(Z1(Y ))] = Mag

( n∑
j=1

R̃1j(u
(1)
j )

)
...

max [Mag(Zk(Y ))] = Mag

( n∑
j=1

R̃kj(u
(k)
j )

)
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subject to

s

[ n∑
j=1

Q̃ij(v
(i)
j )⊕ s̃i, P̃i(zi)

]
≥ δi, i = 1, 2, . . . ,m1,

s

[ n∑
j=1

Q̃ij(v
(i)
j )	 s̃i, P̃i(zi)

]
≥ δi, i = m1 + 1,m1 + 2, . . . ,m2,

s

[ n∑
j=1

Q̃ij(v
(i)
j ), P̃i(zi)

]
≥ δi, i = m2 + 1,m2 + 2, . . . ,m,

zi = 0, 1 . . . , (ki − 1), i = 1, 2, . . . ,m,

u
(q)
j = 0, 1 . . . , (t

(q)
j − 1), j = 1, 2, . . . , n, q = 1, 2 . . . , k,

v
(i)
j = 0, 1 . . . , (s

(i)
j − 1), j = 1, 2, . . . , n, i = 1, 2, . . . ,m,

xj1, (xj2 − xj1), (xj3 − xj2), (xj4 − xj3) ≥ 0, j = 1, 2, . . . , n,

sp1, (sp2 − sp1), (sp3 − sp2), (sp4 − sp3) ≥ 0, p = 1, 2, . . . ,m2

where δi is the allowed similarity measure of ith constraint which is provided by
DM.

Step 2: Find the membership function of the qth (q = 1, 2, . . . , k) crisp objective
function of (P3) as follows:

Step 2(a): Find the ideal and anti-ideal values, which are the maximum and minimum
value of the qth (q = 1, 2, . . . , k) crisp objective function of (P3) obtained by solving
it individually with the constraints of (P3) respectively.

Let Uq(δ) and Lq(δ) be the ideal and anti-ideal optimal values of the qth (q =
1, 2, . . . , k) crisp objective function of (P3) respectively. It is assume that Lq(δ) 6=
Uq(δ), for all q = 1, 2, . . . , k.

Step 2(b): Define the linear membership function corresponding to qth (q = 1, 2, . . . , k)
crisp objective function of (P3) as follow:

µq(Mag(Zq(Y ))) =


(Mag(Zq(Y ))− Lq(δ))

Uq(δ)− Lq(δ)
, if Lq(δ) ≤ Mag(Zq(Y )) ≤ Uq(δ),

0, otherwise,

q = 1, 2, . . . , k.

Step 3: Using goal programming (GP) technique, (P3) can be written as:

(P4) Min =

k∑
q=1

d−q

subject to
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µq(Mag(Zq(Y ))) + d−q − d+q = 1, q = 1, 2, . . . , k,

s

[ n∑
j=1

Q̃ij(v
(i)
j )⊕ s̃i, P̃i(zi)

]
≥ δi, i = 1, 2, . . . ,m1,

s

[ n∑
j=1

Q̃ij(v
(i)
j )	 s̃i, P̃i(zi)

]
≥ δi, i = m1 + 1,m1 + 2, . . . ,m2,

s

[ n∑
j=1

Q̃ij(v
(i)
j ), P̃i(zi)

]
≥ δi, i = m2 + 1,m2 + 2, . . . ,m,

zi = 0, 1, . . . , (ki − 1), i = 1, 2 . . . ,m,

u
(q)
j = 0, 1, . . . , (t

(q)
j − 1), j = 1, 2, . . . , n, q = 1, 2, . . . , k,

v
(i)
j = 0, 1, . . . , (s

(i)
j − 1), j = 1, 2, . . . , n, i = 1, 2 . . . ,m,

d+q d
−
q = 0, q = 1, 2, . . . , k,

d+q , d
−
q ≥ 0, q = 1, 2, . . . , k,

xj1, (xj2 − xj1), (xj3 − xj2), (xj4 − xj3) ≥ 0, j = 1, 2, . . . , n,

sp1, (sp2 − sp1), (sp3 − sp2), (sp4 − sp3) ≥ 0, p = 1, 2, . . . ,m2,

where d−q and d+q are the negative and positive deviation of qth membership function
respectively.

Step 4: Solve (P4) by LINGO 14.0 and find the optimal solution.

The FFMMOLP problem (P1) is transformed into (P4) using the similarity mea-
sure and magnitude of TrFN. The main feature of (P4) is that the constraints and
objective functions are crisp by introducing the magnitude of fuzzy number and
similarity measure δ, δ = (δ1, δ2, . . . , δm) where δi (i = 1, 2, . . . ,m) is the similarity
measure of ith constraint specified by DM. So (P4) is called δ-parametric CNLP
problem. Now, we define the δ-feasible solution of (P4) as follows:

Definition 4.3. The (xjr, spr, zi, u
(q)
j , v

(i)
j , d+q , d

−
q )(δ), (r = 1, 2, 3, 4, p = 1, 2, . . . ,m2,

j = 1, 2, . . . , n, q = 1, 2, . . . , k, i = 1, 2, . . . ,m) is called a δ-feasible solution of (P4)
within the similarity measure δ, δ = (δ1, δ2 . . . δm) if it satisfies the constraints of
(P4).

Let X(δ) denote the set of all δ-feasible solutions of (P4).

Definition 4.4. The solution (x∗jr, s
∗
pr, z

∗
i , u

(q)∗
j , v

(i)∗
j , d+∗q , d−∗q )(δ) ∈ X(δ) is the

δ-optimal solution of (P4) if

k∑
q=1

d−∗q ≤
k∑
q=1

d−q for all (xjr, spr, zi, u
(q)
j , v

(i)
j , d+q , d

−
q )(δ) ∈ X(δ).

Remark 4.1. The optimal solution obtained in Step 4 is δ-optimal solution of (P4).
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Now, we are going to show that the δ-optimal solution of (P4) gives the fuzzy
Pareto-optimal solution of (P1).

Theorem 4.1. Let (x∗jr, s
∗
pr, z

∗
i , u

(q)∗
j , v

(i)∗
j , d+∗q , d−∗q )(δ) ∈ X(δ), (r = 1, 2, 3, 4, p =

1, 2, . . . ,m2, j = 1, 2, . . . n, q = 1, 2, . . . , k, i = 1, 2, . . . ,m) be the δ-optimal solution

of (P4) then X̃∗ = [x̃∗j ]n×1, where x̃
∗
j = (x∗j1, x

∗
j2, x

∗
j3, x

∗
j4), (j = 1, 2 . . . n) will be the

fuzzy Pareto-optimal solution of (P1).

Proof. Let, if possible, X̃∗ be not fuzzy Pareto-optimal solution of (P1), then there

exist a feasible solution X̃◦ ∈ F (X̃), where X̃◦ = [x̃◦j ]n×1, x̃◦j = (x◦j1, x
◦
j2, x

◦
j3, x

◦
j4)

(j = 1, 2, . . . , n) of (P1) such that

Mag(Zq(X̃
◦)) ≥ Mag(Zq(X̃

∗)) for all q = 1, 2, . . . , k

and

Mag(Zw(X̃◦)) > Mag(Zw(X̃∗)) for at least one w = 1, 2, . . . , k

(4.1)

Since (P2) is equivalent to (P1), therefore corresponding to the feasible solu-

tion X̃◦ of (P1), there exist S̃◦ = [s̃◦p]m2×1, where s̃◦p = (s◦p, s
◦
p, s
◦
p, s
◦
p), z

◦
i , u

(q)◦
j

and v
(i)◦
j (p = 1, 2, 3, 4, j = 1, 2, . . . , n, q = 1, 2, . . . , k, i = 1, 2, . . . ,m) such that

(X̃◦, S̃◦, z◦i , u
(q)◦
j , v

(i)◦
j ), (j = 1, 2, . . . , n, q = 1, 2, . . . , k, i = 1, 2, . . . ,m) become the

feasible solution of (P2).

Using Definition 3.1, it can be easily observe that (x◦jr, s
◦
ip, z

◦
i , u

(q)◦
j , v

(i)◦
j )(δ) (r =

1, 2, 3, 4, j = 1, 2, . . . , n, p = 1, 2, . . . ,m2, q = 1, 2, . . . , k, i = 1, 2, . . . ,m) is the

feasible solution of (P3) corresponding to the feasible solution (X̃◦, S̃◦, z◦i , u
(q)◦
j , v

(i)◦
j )

(j = 1, 2, . . . , n, q = 1, 2, . . . , k, i = 1, 2, . . . ,m) of (P2).

Denote (x◦jr, s
◦
ip, z

◦
i , u

(q)◦
j , v

(i)◦
j )(δ) by Y ◦(δ).

Now Y ◦(δ) is also feasible solution of all the single objective CNLP problems
corresponding to the qth crisp objective function of (P3). Uq(δ) and Lq(δ) are ideal
and anti-ideal values of qth crisp objective function of (P3) respectively. Therefore,
we have

Uq(δ) ≥ Mag(Zq(Y
◦)(δ)) ≥ Lq(δ)(4.2)

Let
(Mag(Zq(Y

◦)(δ))− Lq(δ))
(Uq(δ)− Lq(δ))

= D◦q for all q = 1, 2, . . . , k.

Then 1 ≥ D◦q ≥ 0 and using constraints of (P4), we can observe that there exist

d+◦q = 0 and 0 ≤ d−◦q ≤ 1 (q = 1, 2, . . . , k) such that

(X̃◦, S̃◦, z◦i (δ), u
(q)◦
j , v

(i)◦
j , d+◦q , d−◦q )(δ) is the feasible solution of (P4).

Also (x∗jr, s
∗
pr, z

∗
i , u

(q)∗
j , v

(q)∗
i , d+∗q , d−∗q )(δ) is the feasible solution of all CNLP

problems corresponding to the qth crisp objective function of (P3).

Denote (x∗jr, s
∗
pr, z

∗
i , u

(q)∗
j , v

(i)∗
j )(δ) by Y ∗(δ).

Hence

Uq(δ) ≥ Mag(Zq(Y
∗)(δ)) ≥ Lq(δ)(4.3)

(x◦jr, s
◦
ip, z

◦
i , u

(q)◦
j , v

(i)◦
j , d+◦q , d−◦q )(δ), (x∗jr, s

∗
pr, z

∗
i , u

(q)∗
j , v

(i)∗
j , d+∗q , d−∗q )(δ) ∈ X(δ) both

are feasible solution of (P4).
450



Uday Sharma et al./Ann. Fuzzy Math. Inform. 11 (2016), No. 3, 439–459

From (4.1), (4.2) and (4.3) we get

Uq(δ) ≥ Mag(Zq(Y
◦)(δ)) ≥ Mag(Zq(Y

∗)(δ)) ≥ Lq(δ) for all q = 1, 2, . . . , k

and

Uw(δ)≥Mag(Zw(Y ◦)(δ))>Mag(Zw(Y ∗)(δ))≥Lw(δ) for at least one w=1, 2, . . . , k

Let
(Mag(Zq(Y

∗)(δ))− Lq(δ))
(Uq(δ)− Lq(δ))

= D∗q for all q = 1, 2, . . . , k.

⇒
D◦q ≥ D∗q for all q = 1, 2, . . . , k

and

D◦w > D∗w for at least one w = 1, 2, . . . , k


⇒

D◦q − 1 ≥ D∗q − 1 for all q = 1, 2, . . . , k

and

D◦w − 1 > D∗w − 1 for at least one w = 1, 2, . . . , k


Using the constraints of (P4), we get

d◦+q − d◦−q ≥ d∗+q − d∗−q for all q = 1, 2, . . . , k

and

d◦+w − d◦−w > d∗+w − d∗−w for at least one w = 1, 2, . . . , k.


Since d◦+q , d∗+q = 0 for all q = 1, 2, . . . , k.

⇒
d◦−q ≤ d∗−q for all q = 1, 2, . . . , k

and

d◦−w < d∗−w for at least one w = 1, 2, . . . , k.

(4.4)

From (4.4) we get
k∑
q=1

d◦−q <
k∑
q=1

d∗−q .

This is a contradiction as (x∗jr, s
∗
pr, z

∗
i , u

(q)∗
j , v

(i)∗
j , d+∗q , d−∗q )(δ) (r = 1, 2, 3, 4, j =

1, 2, . . . , n, p = 1, 2, . . . ,m2, q = 1, 2, . . . , k, i = 1, 2, . . . ,m) is the optimal solution
of (P4).

Hence, X̃∗ = [x̃∗j ]n×1, where x̃∗j = (x∗j1, x
∗
j2, x

∗
j3, x

∗
j4) (j = 1, 2, . . . , n) will be fuzzy

Pareto-optimal solution of (P1). �

5. Example

In this section, the proposed method is illustrated through the following exam-
ple. The same example is solved with the help of Hiseh and Chen [17] and Lee[25]
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similarity measure and comparison is made.

maxZ1(X̃)=((5, 6, 7, 8) or (4, 5, 7, 8))⊗x̃1⊕(4, 5, 6, 7)⊗x̃2 ⊕ (1, 2, 3, 4)⊗ x̃3
maxZ2(X̃)=(6, 7, 8, 9)⊗ x̃1⊕((5, 6, 7, 8) or (5, 6, 8, 9))⊗x̃2 ⊕ (2, 3, 4, 5)⊗ x̃3
maxZ3(X̃)=(3, 4, 6, 7)⊗ x̃1⊕(2, 3, 4, 5)⊗ x̃2 ⊕ ((2, 4, 5, 6) or (1, 3, 4, 5))⊗ x̃3
subject to ((2, 4, 5, 6) or (2, 5, 6, 7))⊗ x̃1 ⊕ (2, 3, 4, 5)⊗ x̃2 ⊕ (1, 2, 3, 4)⊗ x̃3

∼= (8, 16, 20, 28) or (9, 17, 21, 28) or (8, 17, 20, 29)

(−2,−1, 1, 2)⊗ x̃1 ⊕ ((1, 2, 3, 4) or (2, 4, 5, 6))⊗ x̃2 ⊕ (1, 2, 3, 5)⊗ x̃3
� (7, 15, 20, 29) or (6, 13, 17, 24) or (8, 16, 20, 25)

(2, 3, 4, 5)⊗ x̃1 ⊕ (1, 2, 3, 5)⊗ x̃2 ⊕ ((1, 2, 4, 5) or (2, 3, 4, 5))⊗ x̃3
� (10, 18, 22, 30) or (11, 18, 23, 29) or (10, 18, 21, 29)

x̃1, x̃2, x̃3 ∈ TrFN(R)+,


(5.1)

where X̃ = [x̃j ]3×1, j = 1, 2, 3.
Using Definition 2.5, fuzzy Lagrange interpolating polynomial and adding or sub-

tracting fuzzy slack or surplus variable to convert fuzzy inequality constraints into
equality constraints, the problem (5.1) becomes:

Let (X̃, S̃, λi, βj) = Y ′.

maxZ1(Y ′)=((5β1+4(1−β1))x11+4x21+x31, (6β1+5(1−β1))x12+5x22+2x32,
(7β1+7(1−β1))x13+6x23+3x33, (8β1+8(1−β1))x14+7x24+4x34)

maxZ2(Y ′)=(6x11+(5β2+5(1−β2))x21+2x31, 7x12+(6β2+6(1−β2))x22+3x32,
8x13+(7β2+8(1−β2))x23+4x33, 9x14+(8β2+9(1−β2))x24+5x34)

maxZ3(Y ′)=(3x11+2x21+(2β3+1(1−β3))x31, 4x12+3x22+(4β3+3(1−β3))x32,
6x13+4x23+(5β3+4(1−β3))x33, 7x14+5x24+(6β3+5(1−β3))x34)

subject to

((2λ1+2(1−λ1))x11+2x21+x31, (4λ1+5(1−λ1))x12+3x22+2x32,
(5λ1+6(1−λ1))x13+4x23+3x33, (6λ1+7(1−λ1))x14+5x24+4x34)

∼=
(

(z1−1)(z1−2)
2

(8, 16, 20, 28)− z1(z1−2)
1

(9, 17, 21, 28)+
z1(z1−1)

2
(8, 17, 20, 29)

)
(−2x14+(λ2+2(1−λ2))x21+x31+s11,−x13+(2λ2+4(1−λ2))x22+2x32+s12,
x13+(3λ2+5(1−λ2))x23+3x33+s13, 2x14+(4λ2+6(1−λ2))x24+5x34+s14)

∼=
(

(z2−1)(z2−2)
2

(7, 15, 20, 29)− z2(z2−2)
1

(6, 13, 17, 24)+
z2(z2−1)

2
(8, 16, 20, 25)

)
(2x11+x21+(λ3+2(1−λ3))x31−s24, 3x12+2x22+(2λ3+3(1−λ3))x32−s23,
4x13+3x23+(4λ3+4(1−λ3))x33−s22, 5x14+5x24+(5λ3+5(1−λ3))x34−s21)

∼=
(

(z3−1)(z3−2)
2

(10, 18, 22, 30)− z3(z3−2)
1

(11, 18, 23, 29)+
z3(z3−1)

2
(10, 18, 21, 29)

)
zi = 0, 1, 2 ∀ i = 1, 2, 3, λ1, λ2, λ3, β1, β2, β3 = 0 or 1, x̃1, x̃2, x̃3, s̃1, s̃2 ∈ TrFN(R)+,



(5.2)

where S̃ = [s̃p]2×1, (p = 1, 2 and i, j = 1, 2, 3).
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Step 1: Using Definition 3.1 and Definition 2.6, (5.2) is converted into CMONLP
problem as follows:

max[Mag(Z1(Y ′))] =
C1

12

max[Mag(Z2(Y ′))] =
C2

12

max[Mag(Z3(Y ′))] =
C3

12

subject to

48 ≥ |A11 +A12 +A13 +A14|

48 ≥ |B11 +B12 +B13 +B14|

48 ≥ |C11 + C12 + C13 + C14|

zi = 0, 1, 2 ∀ i = 1, 2, 3,

λ1, λ2, λ3, β1, β2, β3 = 0 or 1,

xj1, xj2 − xj1, xj3 − xj2, xj4 − xj3 ≥ 0 ∀ j = 1, 2, 3,

sp1, sp2 − sp1, sp3 − sp2, sp4 − sp3 ≥ 0 ∀ p = 1, 2,



(5.3)

where

C1 = (5β1+4(1−β1))x11+4x21+x31+(30β1+25(1−β1))x12+25x22+10x32

+(35β1+35(1−β1))x13+30x23+15x33+(8β1+8(1−β1))x14+7x24+4x34)

C2 = (6x11+(5β2+5(1−β2))x21+2x31+35x12+(30β2+30(1−β2))x22+15x32

+40x13+(35β2+40(1−β2))x23+20x33+9x14+(8β2+9(1−β2))x24+5x34)

C3 = (3x11+2x21+(2β3+(1−β3))x31+20x12+15x22+(20β3+15(1−β3))x32

+30x13+20x23+(25β3+20(1−β3))x33+7x14+5x24+(6β3+5(1−β3))x34)

A11 = (2λ
1
+2(1−λ1))x11+2x21+x31− (z1−1)(z1−2)

2 8+ z1(z1−2)
1 9− z1(z1−1)

2 8

A12 = (20λ1+25(1−λ1))x12+15x22+10x32− (z1−1)(z1−2)
2 80+ z1(z1−2)

1 85− z1(z1−1)
2 85

A13 = (25λ1+30(1−λ1))x13+20x23+15x33− (z1−1)(z1−2)
2 100+ z1(z1−2)

1 105− z1(z1−1)
2 100

A14 = (6λ1+7(1−λ1))x14+5x24+4x34− (z1−1)(z1−2)
2 28+ z1(z1−2)

1 28− z1(z1−1)
2 29

B11 =−2x14+(λ2+2(1−λ2))x21+x31+s11− (z2−1)(z2−2)
2 7+ z2(z2−2)

1 6− z2(z2−1)
2 8

B12 =−5x13+(10λ2+20(1−λ2))x22+10x32+5s12− (z2−1)(z2−2)
2 75+ z2(z2−2)

1 65− z2(z2−1)
2 80

B13 = 5x13 + (15λ2 + 25(1− λ2))x23 + 15x33 + 5s13 − (z2−1)(z2−2)
2 100

+ z2(z2−2)
1 85− z2(z2−1)

2 100
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B14 = 2x14 + (4λ2 + 6(1− λ2))x24 + 5x34 + s14 − (z2−1)(z2−2)
2 29

+ z2(z2−2)
1 24− z2(z2−1)

2 25

C11 = 2x11 + x21 + (λ3 + 2(1− λ3))x31 − s24 − (z3−1)(z3−2)
2 10

+ z3(z3−2)
1 11− z3(z3−1)

2 10

C12 = 15x12 + 10x22 + (10λ3 + 15(1− λ3))x32 − 5s23 − (z3−1)(z3−2)
2 90

+ z3(z3−2)
1 90− z3(z3−1)

2 90

C13 = 20x13 + 10x23 + (20λ3 + 20(1− λ3))x33 − 5s22 − (z3−1)(z3−2)
2 110

+ z3(z3−2)
1 115− z3(z3−1)

2 105

C14 = 5x14 + 5x24 + (5λ3 + 5(1− λ3))x34 − s21 − (z3−1)(z3−2)
2 30

+ z3(z3−2)
1 29− z3(z3−1)

2 29

Step 2: Define the linear membership function for the qth, (q = 1, 2, 3) crisp objective
function of (5.3) as follows:

Step 2(a): The ideal and anti-ideal values of the qth (q = 1, 2, 3) crisp objective
function of (5.3) are listed below in Table 1.

Table 1.

Crisp objective function Ideal value Anti-ideal value

Mag(Z1(Y ′)) 35.42 14.5

Mag(Z2(Y ′)) 45.14 18.12

Mag(Z3(Y ′)) 39.42 15.42

Step 2(b): Linear membership function corresponding to qth (q = 1, 2, 3) crisp ob-
jective function of (5.3) is defined as follow:

µ1(Mag(Z1(Y ′))) =


(Mag(Z1(Y ′))− 14.5)

35.42− 14.5
if 14.5 ≤ Mag(Zq(Y

′)) ≤ 35.42,

0 otherwise,

µ2(Mag(Z2(Y ′))) =


(Mag(Z2(Y ′))− 18.12)

41.67− 18.12
if 18.12 ≤ Mag(Zq(Y

′)) ≤ 41.67,

0 otherwise,

µ3(Mag(Z3(Y ′))) =


(Mag(Z3(Y ′))− 15.42)

40.48− 15.42
if 15.42 ≤ Mag(Zq(Y

′)) ≤ 40.48,

0 otherwise.
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Step 3: By GP approach, (CMONLP) problem can be written as:

Min = d−1 + d−2 + d−3

subject to

µi(Mag(Zi(Y
′))) + (d−i − d

+
i ) = 1 ∀ i = 1, 2, 3

48 ≥ |A11 +A12 +A13 +A14|
48 ≥ |B11 +B12 +B13 +B14|
48 ≥ |C11 + C12 + C13 + C14|
zi = 0, 1, 2 ∀ i = 1, 2, 3,

λ1, λ2, λ3, β1, β2, β3 = 0 or 1,

xj1, xj2 − xj1, xj3 − xj2, xj4 − xj3 ≥ 0 ∀ j = 1, 2, 3,

sp1, sp2 − sp1, sp3 − sp2, sp4 − sp3 ≥ 0 ∀ p = 1, 2.



(5.4)

Solving (5.4) by LINGO 14.0, using Step 5 and Theorem 4.1, fuzzy Pareto-optimal
solution and fuzzy optimal value of the qth (q = 1, 2, 3) objective functions of (5.1)
are given below in Table 2 and Table 3, respectively.

Table 2.

Fuzzy Variables of (5.1) Fuzzy Pareto-optimal solution of (5.1)

x̃∗1 (0, 0, 0, 0)

x̃∗2 (6.07, 6.07, 6.07, 6.07)

x̃∗3 (0.67, 0.67, 0.67, 0.67)

Table 3.

Fuzzy objective function of (5.1) Fuzzy objective function value of (5.1)

Z1(X̃∗) (24.95, 31.69, 38.43, 45.17)

Z2(X̃∗) (31.69, 38.43, 51.24, 57.98)

Z2(X̃∗) (12.81, 20.89, 27.63, 34.37)

The values of fuzzy Pareto-optimal solution and fuzzy objective functions ob-
tained using the Hiseh and Chen[17] similarity measure and Lee[25] similarity mea-
sure of (5.1) are given below in Table 4 - Table 7 respectively.

Table 4.

Fuzzy Variables of (5.1) Fuzzy Pareto-optimal solution of (5.1) using

Hiseh and Chen [17] similarity measure

x̃∗1 (0.89, 0.89, 0.89, 0.89)

x̃∗2 (1.23, 1.23, 1.23, 1.23)

x̃∗3 (3.44, 3.44, 3.44, 3.44)
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Table 5.

Fuzzy objective function of (5.1) Fuzzy objective function value of (5.1)

using Hiseh and Chen [17]

similarity measure

Z1(X̃∗) (12.81, 18.37, 23.04, 29.49)

Z2(X̃∗) (18.37, 23.93, 29.49, 35.05)

Z2(X̃∗) (12.01, 21.01, 27.46, 33.02)

Table 6.

Fuzzy Variables of (5.1) Fuzzy Pareto-optimal solution of (5.1)

using Lee [25] similarity measure

x̃∗1 (1.08, 1.08, 1.08, 1.08)

x̃∗2 (0.42, 0.42, 0.42, 0.42)

x̃∗3 (2.88, 2.88, 2.98, 2.98)

Table 7.

Fuzzy objective function of (5.1) Fuzzy objective function value of (5.1)

using Lee [25] similarity measure

Z1(X̃∗) (9.96, 12.18, 19.02, 23.5)

Z2(X̃∗) (14.54, 18.72, 23.5, 27.98)

Z2(X̃∗) (10.04, 17.5, 23.04, 27.54)

(5.1) is solved using Hiseh and Chen [17] similarity measure, Lee [25] similarity
measure and proposed similarity measure. Hence, a comparison is made with the
help of definition 2.7 in Table 8 as follows:

Table 8.

Using Lee [25] Using Hiseh and Chen [17] Using proposed

similarity measure similarity measure similarity measure

Z1(X̃∗) = 15.78 < Z1(X̃∗) = 20.77 < Z1(X̃∗) = 35.06

Z2(X̃∗) = 21.13 < Z2(X̃∗) = 26.70 < Z2(X̃∗) = 40.00

Z3(X̃∗) = 20.02 < Z3(X̃∗) = 23.94 < Z3(X̃∗) = 24.14

Thus, we can easily conclude from Table 8 that proposed similarity measure gives
better fuzzy objective function values of (5.1) than Hiseh and Chen [17] and Lee [25]
similarity measure.

6. Conclusion

In this paper, a new similarity measure is defined for fuzzy numbers and an expla-
nation is given as to why some of the existing similarity measures cannot be applied
to FFMMOLP problem. A novel approach for solving the FFMMOLP problem is
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proposed. In this method, we have applied similarity measure on the fuzzy con-
straints to convert them into crisp and magnitude on objective functions. Using
this method fuzzy Pareto-optimal solution of FFMMOLP problem is obtained and
with the help of numerical example, it is shown that the proposed similarity when
applied on the FFMMOLP problem give better solution than Hsieh and Chen’s [17]
and Lee’s [25] similarity measure. The classical fuzzy multi-objective, FFLP and
multi-choice linear programming problems are special case of FFMMOLP problem.
The major advantage of this model is that it gives more choices to the DM and DM
can handle the unexpected problem that one has to face while making decision in
the real world.
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