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1. Introduction

In 1999, Molodtsov [29] introduced soft set theory for modeling vagueness and
uncertainty. In [29], Molodtsov pointed out several directions for the applications of
soft sets, such as stability and regularization, game theory, and operations research
and soft analysis. After Molodtsov, works on soft set theory have been progressing
rapidly. For instance; on the theory of soft sets [3, 13, 14, 17, 26, 30, 31, 32], on
the soft decision making [15, 16, 25, 39, 42], on the algebraic structures of soft sets
[2, 33, 35, 36, 37] are some of the selected works.

Game theory is originally the mathematical study of competition and cooperation,
in other words, game theory is a study of strategic decision making [27]. Game theory
was introduced in 1944 with the publication of von Neumann and Morgenstern [34].
They started modern game theory with the two-person zero-sum games and its
proof. Game theory is mainly used in many fields such as; economics, political
science, psychology in [5, 44]. Ferguson [20] presented various mathematical models
of game theory. Binmore [8] focused the cooperative and noncooperative game
theory. Aliprantis and Chakrabarti [4] gave games with decision making.
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In 1965, Zadeh [47] developed the theory of fuzzy sets that is the most appropriate
theory for dealing with uncertainties. In recent years, many interesting applications
of game theory have been expanded by embedding the ideas of fuzzy sets. The two
person zero-sum games with fuzzy payoffs and fuzzy goals game theory have been
studied by many authors (e.g. [6, 10, 11, 12, 21, 23, 24, 43]). The max-min solution
with respect to a degree of attainment of a fuzzy goal has also been studied (e.g.
[1, 19, 40, 41, 45, 46]). Many study of game theory have been expanded by using the
ideas of interval value (e.g. [19, 22, 28]). Theory for linear programming problems
with fuzzy parameters is introduced (e.g. [6, 7, 9]).

In the classical and fuzzy games, the payoff functions are real valued and therefore
the solutions of such games are obtained by using arithmetic operations. Especially,
fuzzy games depend on the fuzzy set that is described by its membership function. It
is mentioned in [29], there exists a difficulty to set the membership function in each
particular case and also the fuzzy set operations based on the arithmetic operations
with membership functions do not look natural since the nature of the membership
function is extremely individual.

In this work, we propose a game model for dealing with uncertainties which is
free of the difficulties mentioned above. The proposed new game is called a soft
game since it is based on soft sets theory. To construct a soft set we can use
any parametrization with the help of words and sentences, real numbers, functions,
mappings and so on. Therefore, payoff functions of the soft game are set valued
function and solution of the soft games obtained by using the operations of sets
that make this game very convenient and easily applicable in practice. The present
expository paper is a condensation of part of the dissertation [18].

This work is organized as follows. In the next section, most of the fundamental
definitions of the operations of soft sets are presented. In Section 3, we construct
two person soft games and then give four solution methods for the games which are
soft saddle points, soft lower and soft upper value, soft dominated strategies and soft
Nash equilibrium. In section 4, we give an application for two person soft games.
In section 5, we give n-person soft games that is extension of the two person soft
games. In final Section, we concluded the work.

2. Soft sets

In this section, we present the basic definitions and results of soft set theory [13].
More detailed explanations related to this subsection may be found in [13, 26, 29].

Definition 2.1 ([29]). Let U be a universe, P (U) be the power set of U and E be
a set of parameters that are describe the elements of U . A soft set S over U is a set
defined by a set valued function S representing a mapping

fS : E → P (U).

It is noting that the soft set is a parametrized family of subsets of the set U and
therefore it can be written a set of ordered pairs

S = {(x, fS(x)) : x ∈ E}.
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Here, fS is called approximate function of the soft set S and fS(x) is called x-
approximate value of x ∈ E. The subscript S in the fS indicates that fS is the
approximate function of S.

Generally, fS , fT , fV , ... will be used as an approximate functions of S, T , V ,
..., respectively.

Note that if fS(x) = ∅, then the element (x, fS(x)) is not appeared in S.

Example 2.2. Suppose that U = {u1, u2, u3, u4} is the universe contains four cars
under consideration in an auto agent and E = {x1, x2, x3, x4} is the set of param-
eters, where xi (i = 1, 2, 3, 4) stand for ‘safety”, “cheap”, “modern” and “large”,
respectively.

A customer to select a car from the auto agent, can construct a soft set S that
describes the characteristic of cars according to own requests. Assume that fS(x1) =
{u1, u2}, fS(x2) = {u1, u2, u4}, fS(x3) = ∅, fS(x4) = U then the soft-set S is
written by

S = {(x1, {u1, u2}), (x2, {u1, u2, u4}), (x4, U)}.
By using same parameter set E, another customer to select a car from the same

auto agent, can construct a soft set T according to own requests. Here T may be
different then S. Assume that fT (x1) = {u1, u2}, fT (x2) = {u1, u2, u3}, fT (x3) =
{u1, u2}, fT (x4) = {u1} then the soft-set T is written by

T = {(x1, {u1, u2}), (x2, {u1, u2, u3}), (x3, {u1, u2}), (x4, {u1})}.

Definition 2.3 ([13]). Let S and T be two soft sets. Then,

(1) If fS(x) = ∅ for all x ∈ E, then S is called a empty soft set, denoted by SΦ.
(2) If fS(x) ⊆ fT (x) for all x ∈ E, then S is a soft subset of T , denoted by

S⊆̃T .

Definition 2.4 ([13]). Let S and T be two soft sets. Then,

(1) Complement of S is denoted by S c̃. Its approximate function fSc̃ is defined
by

fSc̃(x) = U \ fS(x) for all x ∈ E.
(2) Union of S and T is denoted by S∪̃T . Its approximate function fS∪̃T is

defined by

fS∪̃T (x) = fS(x) ∪ fT (x) for all x ∈ E.
(3) Intersection of S and T is denoted by S∩̃T . Its approximate function fS∩̃T

is defined by

fS∩̃T (x) = fS(x) ∩ fT (x) for all x ∈ E.

3. Two person soft games

In this section, we construct two person soft games with soft payoffs. We then
give four solution methods for the games. The basic definitions and preliminaries of
the game theory we refer to [4, 20, 29, 34, 38, 44].

Definition 3.1. Let X,Y are a sets of strategies. A choice of behavior is called an
action. The elements of X × Y are called action pairs. That is, X × Y is the set of
available actions.
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Definition 3.2. Let U be a set of alternatives, P (U) be the power set of U , X,Y
are sets of strategies. Then, a set valued function

fS : X × Y → P (U)

is called a soft payoff function. For each (x, y) ∈ X × Y , the value fS(x, y) is called
a soft payoff.

Definition 3.3. Let X and Y be a set of strategies of Player 1 and 2, respectively,
U be a set of alternatives and fSk

: X × Y → P (U) be a soft payoff function for
player k, (k = 1, 2). Then, for each Player k, a two person soft game (tps-game) is
defined by a soft set over U as

Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X × Y }.

The tps-game is played as follows : at a certain time Player 1 chooses a strategy
xi ∈ X, simultaneously Player 2 chooses a strategy yj ∈ Y and once this is done
each player k (k=1,2) receives the soft payoff fSk

(xi, yj).
If X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn}, then the soft payoffs of Sk can be

arranged in the form of the m× n matrix shown in Table 1.

Sk y1 y2 ... yn
x1 fSk

(x1, y1) fSk
(x1, y2) ... fSk

(x1, yn)
x2 fSk

(x2, y1) fSk
(x2, y2) ... fSk

(x2, yn)
...

...
...

. . .
...

xm fSk
(xm, y1) fSk

(xm, y2) ... fSk
(xm, yn)

Table 1: The two person soft game

Now, we can give an example for tps-game.

Example 3.4. Let U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}be a set of alternatives,
P (U) be the power set of U , X = {x1, x3, x5} and Y = {x1, x2, x4} be a set of the
strategies Player 1 and 2, respectively.

If Player 1 constructs a tps-games as follows,

S1 =

{
((x1, x1), {u1, u2, u5, u8}), (x1, x2), {u1, u2, u3, u4, u5, u8}), (x1, x4),

{u3, u8}), ((x3, x1), {u1, u3, u7}), (x3, x2), {u1, u2, u3, u5, u6, u7}),
(x3, x4), {u1, u2, u3}), ((x5, x1), {u3, u4, u5, u8}), (x5, x2), {u1, u2, u3,

u4, u5, u6, u8}), (x5, x4), {u1, u2, u3, u8})
}
,

then the soft payoffs of the game can be arranged as in Table 2.

S1 x1 x2 x4

x1 {u1, u2, u5, u8} {u1, u2, u3, u4, u5, u8} {u3, u8}
x3 {u1, u3, u7} {u1, u2, u3, u5, u6, u7} {u1, u2, u3}
x5 {u3, u4, u5, u8} {u1, u2, u3, u4, u5, u6, u8} {u1, u2, u3, u8}

Table 2
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Let us explain some elements of this game; if Player 1 select x3 and Player 2 select
x2, then the value of game will be a set {u1, u2, u3, u5, u6, u7}, that is,

fS1(x3, x2) = {u1, u2, u3, u5, u6, u7}.
In this case, Player 1 wins the set of alternatives {u1, u2, u3, u5, u6, u7} and Player
2 lost the same set of alternatives.

Similarly, if Player 2 constructs a tps-game as follows,

S2 =

{
((x1, x1), {u3, u4, u6, u7}), (x1, x2), {u6, u7}), (x1, x4), {u1, u2, u4,

u5, u6, u7}), ((x3, x1), {u2, u4, u5, u6, u8}), (x3, x2), {u4, u8}), (x3, x4),
{u4, u5, u6, u7, u8}), ((x5, x1), {u1, u2, u6u7}), (x5, x2), {u7}),

(x5, x4), {u4, u5, u6, u7})
}
,

then the soft payoffs of the game can be arranged as in Table 3.

S2 x1 x2 x4

x1 {u3, u4, u6, u7} {u6, u7} {u1, u2, u4, u5, u6, u7}
x3 {u2, u4, u5, u6, u8} {u4, u8} {u4, u5, u6, u7, u8}
x5 {u1, u2, u6, u7} {u7} {u4, u5, u6, u7}

Table 3

Let us explain some element of this tps-game; if Player 1 select x3 and Player 2
select x2, then the value of game will be a set {u4, u8}, that is,

fS2
(x3, x2) = {u4, u8}

In this case, Player 1 wins the set of alternatives {u4, u8} and Player 2 lost
{u4, u8}.

Definition 3.5. Let Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X ×Y } be a two person soft

game and (xi, yj), (xr, ys) ∈ X ×Y . Then, Player k is called rational, if the player’s
soft payoff satisfies the following conditions :

(1) Either fSk
(xi, yj) ⊇ fkX×Y (xr, ys) or fSk

(xr, ys) ⊇ fkX×Y (xi, yj).

(2) When fSk
(xi, yj) ⊇ fkX×Y (xr, ys) and fSk

(xr, ys) ⊇ fkX×Y (xi, yj), then

fSk
(xi, yj) = fkX×Y (xr, ys).

Definition 3.6. Let Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X ×Y } be a two person soft

game. Then, an action (x∗, y∗) ∈ X × Y is called an optimal action if

fSk
(x∗, y∗) ⊇ fSk

(x, y) for all (x, y) ∈ X × Y.

Definition 3.7. Let Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X ×Y } be a two person soft

game. Then,

(1) if fSk
(xi, yj) ⊃ fSk

(xr, ys), we says that a player strictly prefers action pair
(xi, yj) over action (xr, ys),

(2) if fSk
(xi, yj) = fSk

(xr, ys), we says that a player is indifferent between the
two actions,

(3) if fSk
(xi, yj) ⊇ fSk

(xr, ys), we says that a player either prefers (xi, yj) to
(xr, ys) or is indifferent between the two actions.
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Definition 3.8. Let Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X ×Y } be a two person soft

game for k = 1, 2. Then,

(1) If fSk
(x, y) = ∅ for all (x, y) ∈ X × Y , then Sk is called a empty soft game,

denoted by ŠΦ.
(2) If fSk

(x, y) = U for all (x, y) ∈ X × Y , then Sk is called a full soft game,
denoted by ŠE .

Now the two person zero sum game on the classical game theory will be a two
person disjoint game on the soft game theory. It is given in following definition.

Definition 3.9. A tps-game is called a two person disjoint soft game if intersection
of the soft payoff of players is empty set for each action pair.

For instance, Example 3.4 is a two person disjoint soft game.

Proposition 3.10. Let Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X × Y } be a two person

disjoint soft game for k = 1, 2. Then,

(1) (S1
c)
c

= S1,
(2) (S2

c
)
c

= S2,
(3) S1 \ S2 = S1,
(4) S2 \ S1 = S2,
(5) S1 ∩ S2 = Šφ.

Proof. Proof is straightforward. �

Definition 3.11. A tps-game is called a two person universal soft game if union of
the soft payoff of players is universal set for each action pair.

For instance, Example 3.4 is a two person universal soft game.

Proposition 3.12. Let Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X × Y } be a two person

universal soft game for k = 1, 2. Then,

(1) (Sk
c
)
c

= Sk, k = 1, 2
(2) S1 ∪ S2 = ŠE
(3) (S1

c)
c

= S1,
(4) (S2

c
)
c

= S2,
(5) S1

c = S2,
(6) S2

c = S1.

Proof. Proof is straightforward. �

Proposition 3.13. Let Sk = {((x, y), fSk
(x, y)) : (x, y) ∈ X × Y } be a two person

both universal and disjoint soft game for k = 1, 2. Then,

(1) S1 \ S2 = S1,
(2) S2 \ S1 = S2,
(3) S1 ∩ S2 = Šφ
(4) S1 ∪ S2 = ŠE.

Proof. Proof is straightforward. �

Definition 3.14. Let fSk
be a soft payoff function of a tps-game Sk. If the following

properties hold :
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(1)
⋃m
i=1 fSk

(xi, yj) = fSk
(x, y),

(2)
⋂n
j=1 fSk

(xi, yj) = fSk
(x, y).

then fSk
(x, y) is called a a soft saddle point value and (x, y) is called a a soft saddle

point of Player k’s in the tps-game.

Note that if fS1
(x, y) is a soft saddle point of a tps-game S1, then Player 1 can

then win at least by choosing the strategy x ∈ X and Player 2 can keep her/his loss
to at most fS1(x, y) by choosing the strategy y ∈ Y . Hence the soft saddle poind is
a value of the tps-game.

Example 3.15. Let U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} be a set of alterna-
tives, X = {x1, x2, x3, x4} and Y = {y1, y2, y3} be the strategies for Player 1 and 2,
respectively. Then, tps-game of Player 21 is given as in Table 4.

S1 y1 y2 y3

x1 {u2, u4, u7} {u4} {u4}
x2 {u5} {u7} {u4, u7}
x3 {u2, u4, u5, u7, u8, u10} {u4, u8} {u7, u8}
x4 {u2, u4, u5, u7, u8} {u1, u4, u7, u8} {u4, u7, u8}

Table 4

Clearly, ⋃4
i=1 fS1(xi, y1) = {u2, u4, u5, u7, u8, u10},⋃4
i=1 fS1(xi, y2) = {u1, u4, u7, u8},⋃4
i=1 fS1(xi, y3) = {u4, u7, u8},

and ⋂3
j=1 fS1(x1, yj) = {u4},⋂3
j=1 fS1

(x2, yj) = φ,⋂3
j=1 fS1

(x3, yj) = {u8},⋂3
j=1 fS1

(x4, yj) = {u4, u7, u8}.
Therefore, {u4, u7, u8} is a soft saddle point of the tps-game, since the intersection
of the forth row is equal to the union of the third column. So, the value of the
tps-game is {u4, u7, u8}.

Note that every tps-game has not a soft saddle point. (For instance, in the above
example, if {u4, u7, u8} is replaced with {u4, u7, u8, u9} in soft payoff fS1(x4, y3),
then a soft saddle point of the game can not be found.) Saddle point can not be
used for a tps-game, soft upper and soft lower values of the tps-game may be used
is given in the following definition.

Definition 3.16. Let fSk
be a soft payoff function of a tps-game Sk. Then,

(1) Soft upper value of the tps-game, denoted v, is defined by

v = ∩y∈Y (∪x∈X(fSk
(x, y))).

(2) Soft lower value of the tps-game, denoted v, is defined by

v = ∪x∈X(∩y∈Y (fSk
(x, y))).

(3) If soft upper and soft lower value of a tps-game are equal, they are called
value of the tps-game, noted by v. That is v = v = v.
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Example 3.17. Let us consider Table 4 in Example 3.15. It is clear that soft upper
value v = {u4, u7, u8} and soft lower value v = {u4, u7, u8}, hence v = v. It means
that value of the tps-game is {u4, u7, u8}.

Theorem 3.18. v and v be a soft lower and soft upper value of a tps-game, re-
spectively. Then, the soft lower value is subset or equal to the soft upper value, that
is,

v ⊆ v.

Proof. Assume that v be a soft lower value, v be a soft upper value of a tps-game
and X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} are sets of the strategies for Player
1 and 2, respectively.

We choose x∗i ∈ X and y∗j ∈ Y . Then,

v = ∪x∈X(∩y∈Y (fX×Y (x, y)))
⊆ ∩y∈Y (fX×Y (x∗, y))
⊆ fX×Y (x∗, y∗)
⊆ ∪x∈X(fX×Y (x, y∗))
⊆ ∩y∈Y (∪x∈X(fX×Y (x, y))),

i.e.:
v = ∪x∈X(∩y∈Y (fX×Y (x, y))) ⊆ v = ∩y∈Y (∪x∈X(fX×Y (x, y))).

The proof is valid. �

Example 3.19. Let us consider soft upper value v and soft lower value v in Example
3.17. It is clear that v = {u4, u7, u8} ⊆ v = {u4, u7, u8}, hence v ⊆ v.

Theorem 3.20. Let fSk
(x, y) be a soft saddle point, v be a soft lower value and v

be a soft upper value of a tps-game. Then,

v ⊆ fSk
(x∗, y∗) ⊆ v

Proof. Assume that fSk
(x∗, y∗) be a soft saddle point, v be a soft lower value, v be

a soft upper value of a tps-game and X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn}
are sets of the strategies for Player 1 and 2, respectively.

We choose x∗i ∈ X and y∗j ∈ Y .
Since fSk

(x∗, y∗) is a soft saddle point, we have
m⋃
i=1

fSk
(xi, yj) =

n⋂
j=1

fSk
(xi, yj) = fSk

(x∗, y∗).

Clearly,

(3.1) eVL = ∪x∈X(∩y∈Y (fX×Y (x, y))) ⊆
m⋃
i=1

fSk
(xi, yj) = fSk

(x∗, y∗)

and

(3.2) fSk
(x∗, y∗) =

n⋂
j=1

fSk
(xi, yj) ⊆ eVU = ∩y∈Y (∪x∈X(fX×Y (x, y)).

Then, from (3.1) and (3.2)

eVL ⊆ fX×Y (x, y) ⊆ eVU .
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The proof is valid. �

Corollary 3.21. Let fSk
(x, y) be a soft saddle point, v be a soft lower value and v

be a soft upper value of a tps-game. If v = v = v, then fSk
(x, y) is exactly v.

Example 3.22. Let us consider Table 4 in Example 3.15 and soft upper value v
and soft lower value v in Example 3.17. It is clear that soft saddle point fSk

(x, y) is
exactly v = v = v = {u4, u7, u8}.

Note that in every tps-game, the soft lower value v can not be equals to the
soft upper value v. (For instance, in the above example, if {u4, u7, u8} is replaced
with {u4, u7, u8, u9} in soft payoff fS1

(x4, y3), then the soft lower value v can not be
equals to the soft upper value v.) If in a tps-game v 6= v, then to get the solution of
the game soft dominated strategy may be used. We define soft dominated strategy
for tps-game as follows.

Definition 3.23. Let S1 be a tps-game with its soft payoff function fS1
. Then,

(1) a strategy xi ∈ X is called a soft dominated to another strategy xr ∈ X, if
fS1(xi, y) ⊇ fS1(xr, y) for all y ∈ Y ,

(2) a strategy yj ∈ Y is called a soft dominated to another strategy ys ∈ Y , if
fS1

(x, yj) ⊆ fS1
(x, ys) for all x ∈ X

By using soft dominated strategy, tps-games may be reduced by deleting rows
and columns that are obviously bad for the player who uses them. This process of
eliminating soft dominated strategies sometimes leads us to a solution of a tps-game.
Such a method of solving tps-game is called a soft elimination method.

The following tps-game can be solved by using the method.

Example 3.24. Let U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} be a set of alterna-
tives, X = {x1, x2, x3} and Y = {y1, y2, y3} be the strategies for Player 1 and 2,
respectively. Then, tps-game of Player 1 is given as in Table 5.

S1 y1 y2 y3

x1 {u2, u4, u7} {u4} {u4}
x2 {u5} {u7} {u4, u7}
x3 {u2, u4, u5, u7, u8, u10} {u4, u7, u8} {u4, u7, u8}

Table 5

The last column is dominated by the middle column. Deleting the last column we
can obtain Table 6 as :

S1 y1 y2

x1 {u2, u4, u7} {u4}
x2 {u5} {u7}
x3 {u2, u4, u5, u7, u8, u10} {u4, u7, u8}

Table 6

Now, in Table 6, the top row is dominated by the bottom row. (Note that this is
not the case in Table 5). Deleting the top row we obtain Table 7 as :

S1 y1 y2

x2 {u5} {u7}
x3 {u2, u4, u5, u7, u8, u10} {u4, u7, u8}
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Table 7

In Table 7, Player 1 has a soft dominant strategy x3 so that x2 is now eliminated.
Player 2 can now choose between y1 and y2 and she/he will clearly choose y2. The
solution using the method is (x3, y2), that is, value of the tps-game is {u4, u7, u8}.

Note that the soft elimination method cannot be used for some tps-games which do
not have a soft dominated strategies. In this case, we can use soft Nash equilibrium
that is defined as follows.

Definition 3.25. Let Sk be a tps-game with its soft payoff function fSk
for k = 1, 2.

If the following properties hold

(1) fS1
(x∗, y∗) ⊇ fS1

(x, y∗) for each x ∈ X
(2) fS2

(x∗, y∗) ⊇ fS2
(x∗, y) for each y ∈ Y

then, (x∗, y∗) ∈ X × Y is called a soft Nash equilibrium of a tps-game.

Note that if (x∗, y∗) ∈ X × Y is a soft Nash equilibrium of a tps-game, then
Player 1 can then win at least fS1(x∗, y∗) by choosing strategy x∗ ∈ X and Player
2 can win at least fS2

(x∗, y∗) by choosing strategy y∗ ∈ Y . Hence the soft Nash
equilibrium is an optimal action for tps-game, therefore, fSk

(x∗, y∗) is the solution
of the tps-game for Player k, k = 1, 2.

Following game, given in Example 3.26, can be solved by soft Nash equilibrium,
but it is very difficult to solve by using the others methods.

Example 3.26. Let U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} be a set of alter-
natives, X = {x1, x2, x3} and Y = {y1, y2, y3} be the strategies Player 1 and 2,
respectively. Then, tps-game of Player 1 is given as in Table 8.

S1 y1 y2 y3

x1 {u1, u2, u4, u7, u8, u9} {u1, u2, u4, u7, u8} {u1, u2, u3, u4, u7, u8}
x2 {u1, u2, u3, u5} {u1, u4, u7, u8} {u1, u2, u3, u4, u5, u7}
x3 {u2, u5, u7, u8, u10} {u2, u4, u7, u8} {u4, u5, u7, u8, u10}

Table 8

and tps-game of Player 2 is given as in Table 9.

S2 y1 y2 y3

x1 {u3, u5, u6, u10} {u3, u5, u6, u9, u10} {u5, u6, u9, u10}
x2 {u4, u6, u7, u8, u9, u10} {u2, u3, u5, u6, u9, u10} {u6, u8, u9, u10}
x3 {u1, u3, u4, u6, u9} {u1, u3, u5, u6, u9, u10} {u1, u2, u3, u6, u9}

Table 9

From the tables, we have

(1) fS1
(x1, y2) ⊇ fS1

(x, y2) for each x ∈ X, and
(2) fS2

(x1, y2) ⊇ fS2
(x1, y) for each y ∈ Y .

Thus, (x1, y2) ∈ X×Y is a soft Nash equilibrium. So, fS1
(x1, y2) = {u1, u2, u4, u7, u8}

and fS2(x1, y2) = {u3, u5, u6, u9, u10} is the solution of the tps-game for Player 1 and
Player 2, respectively.
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4. An application

In this section, we give a financial problem that is solved by using both soft
dominated strategy and soft saddle point methods.

There are two companies, say Player 1 and Player 2, who competitively want to in-
crease sale of produces in the country. Therefore, they give advertisements. Assume
that two companies have a set of different products U = {u1, u2, u3, u4, u5, u6, u7, u8}
where for i = 1, 2, ..., 8, the product ui stand for “oil”, “salt”,, “honey”, “ jam”, “
cheese”, “sugar”, “cooker” and “jar”, respectively. The products can be charac-
terized by a set of strategy X = Y = {xi : i = 1, 2, 3} which contains styles of
advertisement where for j = 1, 2, 3, the strategies xj stand for “TV”, “radio” and “
newspaper”, respectively.

Suppose that X = {x1, x2, x3} and Y = {y1 = x1, y2 = x2, y3 = x3} are strategies
of Player 1 and 2, respectively. Then, a tps-game of Player 1 is given as in Table 10.

S1 y1 y2 y3

x1 {u1, u2, u3, u5, u8} {u1, u2, u3, u4, u5, u8} {u3}
x2 {u1, u3, u7} {u1, u2, u3, u5, u6, u7} {u2, u3}
x3 {u1, u2, u3, u4, u5} {u1, u2, u3, u4, u5, u6, u8} {u1, u2, u3}

Table 10

In Table 10, let us explain action pair (x1, y1); if Player 1 select x1 = ”TV ” and
Player 2 select y1 = ”TV ”, then the soft payoff of Player 1 is a set {u1, u2, u3, u5, u8},
that is,

fS1(x1, y1) = {u1, u2, u3, u5, u8}.

In this case, Player 1 increase sale of {u1, u2, u3, u5, u8} and Player 2 decrease
sale of {u1, u2, u3, u5, u8}.

We can now solve the game. It is seen in Table 10,

{u1, u2, u3, u5, u8} ⊆ {u1, u2, u3, u4, u5, u8}
{u1, u3, u7} ⊆ {u1, u2, u3, u5, u6, u7}

{u1, u2, u3, u4, u5} ⊆ {u1, u2, u3, u4, u5, u6, u8}.

the middle column is dominated by the right column. We then deleting the middle
column we obtain Table 11.

S1 y1 y3

x1 {u1, u2, u3, u5, u8} {u3}
x2 {u1, u3, u7} {u2, u3}
x3 {u1, u2, u3, u4, u5} {u1, u2, u3}

Table 11
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In Table 11, there is no another soft dominated strategy, we can use soft saddle point
method. ⋃3

i=1 fS1(xi, y1) = {u1, u2, u3, u4, u5, u7, u8},⋃3
i=1 fS1

(xi, y3) = {u1, u2, u3},⋂
j=1,3 fS1

(x1, yj) = {u3},⋂
j=1,3 fS1

(x2, yj) = {u3},⋂
j=1,3 fS1

(x3, yj) = {u1, u2, u3}.

Here, optimal strategy of the game is (x3, y3), since

3⋃
i=1

fS1(xi, y3) =
⋂
j=1,3

fS1(x3, yj).

Therefore, value of the tps-game is {u1, u2, u3}.

5. n-person soft games

In many applications the soft games can be often played between more than two
players. Therefore, tps-games can be extended to n-person soft games.

Definition 5.1. Let U be a set of alternatives, P (U) be the power set of U and
Xk is the set of strategies of Player k, (k = 1, 2, ..., n). Then, for each Player k, an
n-person soft game (nps-game) is defined by a soft set over U as

Snk = {((x1, x2, ..., xn), fSn
k

(x1, x2, ..., xn)) : (x1, x2, ..., xn) ∈ X1 ×X2 × ...×Xn}

where fSn
k

is a soft payoff function of Player k.
The nps-game is played as follows: at a certain time Player 1 chooses a strategy

x1 ∈ X1 and simultaneously each Player k (k = 2, ..., n) chooses a strategy xk ∈ Xk

and once this is done each player k receives the soft payoff fSn
k

(x1, x2, ..., xn).

Definition 5.2. Let Snk = {((x1, x2, ..., xn), fSn
k

(x1, x2, ..., xn)) : (x1, x2, ..., xn) ∈
X1 × X2 × ... × Xn} be an nps-game. Then, a strategy xk ∈ Xk is called a soft
dominated to another strategy x ∈ Xk, if

fSn
k

(x1, ..., xk−1, xk, xk+1, ..., xn) ⊇ fSn
k

(x1, ..., xk−1, x, xk+1, ..., xn)

for each strategy xi ∈ Xi of player i (i = 1, 2, ...k − 1, k + 1, ..., n), respectively.

Definition 5.3. Let Snk = {((x1, x2, ..., xn), fSn
k

(x1, x2, ..., xn)) : (x1, x2, ..., xn) ∈
X1 ×X2 × ...×Xn} be an nps-game. If for each player k (k=1,2,...,n) the following
properties hold

fSn
k

(x∗1, ..., x
∗
k−1, x

∗
k, x
∗
k+1, ..., x

∗
n) ⊇ fSn

k
(x∗1, ..., x

∗
k−1, x, x

∗
k+1, ..., x

∗
n)

for each x ∈ Xk, then (x∗1, x
∗
2, ..., x

∗
n) ∈ Snk is called a soft Nash equilibrium of an

nps-game.
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6. Conclusion

In this study, we construct tps-games with soft payofs. We also give four solution
methods for the tps-games and give an example which shows the methods can be
successfully applied to a financial problem. Finally, we extended the tps-games to
n-person soft games.
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