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1. Introduction

The concept of fuzzy sets and fuzzy relations was first suggested by Zadeh in
his papers [27, 28]. The main objective was to create a mathematical framework to
deal with the concepts of uncertainty and ambiguity, which arise more often than
not in real life. Such uncertainty is a natural phenomenon and does not necessarily
imply a loss of accuracy. The crisp set dichotomizes the individuals of the universe
into two sharply distinct groups: members and non-members, and this may not be
suitable for practical situations. However, the Fuzzy Principle is that membership
in a fuzzy set is a matter of degree. This new frame of thought had a tremendous
impact in the scientific world. The concept of fuzzy set theory was also introduced
into the areas of topology, analysis, algebra, geometry and eventually graph theory
too.

In the classical paper [17], Rosenfeld introduced the concept of Fuzzy graphs, as
a means to model several real life situations. Ever since then, fuzzy graph theory
has witnessed tremendous growth.

Graphs are models of relations between objects. The objects are represented by
vertices and relations by edges. When the description of the objects, or relationships,
or both happens to possess uncertainty, we design a ‘Fuzzy Graph Model’. Yeh and
Bang’s [26] approach for the study of fuzzy graphs were motivated by its applicability
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to pattern classification and clustering analysis. They established the fuzzy analogue
of Whitney’s theorem. The concept of domination in graphs finds widespread appli-
cations. Somasundaram and Somasundaram [23] introduced the concepts of dom-
ination and total domination in fuzzy graphs. In [8], Sunil Mathew and Sunitha,
introduced Menger’s theorem for fuzzy graphs and discuss the concepts of strength
reducing sets and t-connected fuzzy graphs. Samanta and Pal introduced such con-
cepts as fuzzy threshold graphs, fuzzy tolerance graphs and bipolar fuzzy graphs and
studied their properties [18, 19, 20, 21, 22]. Apart from this, many mathematicians
applied the concepts of Fuzzy sets in graph theory [1, 3, 4, 12, 13, 14, 15, 16, 23, 25].

Today, fuzzy graph theory finds applications in areas as diverse as computer
science, artificial intelligence, decision analysis, pattern recognition, medicine, ge-
ography, linguistics and even robotics. An application of fuzzy graph theory to
the human cardiac function has been discussed in [24]. More applications of Fuzzy
Graph Theory can be found in the books [9, 11].

In this paper, we introduce the concept of L-fuzzy graphs and obtain a few results,
as in the studies on L-groups and L-subgroups carried out by Mordeson and Malik
[12]. We introduce the concept of L-fuzzy graphs, different types of isomorphisms on
L-fuzzy graphs and study their properties. We define the complement of an L-fuzzy
graph, self complementary L-fuzzy graphs and obtain results pertaining to these
notions.

The seminal book on fuzzy graph theory by Mordeson and Nair [12] is a primary
reference. Throughout this paper, ‘L’ is a finite lattice (L,∧,∨, 0, 1) and ‘≤’ denotes
the partial order on the lattice. For all graph theoretic concepts, we follow [5, 6].

2. Preliminaries

In this section, we review some basic definitions that will be needed in the sequel.
For details we refer to [10, 12].

Definition 2.1 ([12]). A fuzzy relation on a set V is a map µ : V × V → [0, 1]. A
fuzzy graph G = (V, σ, µ) with the underlying set V is a nonempty set V together
with a pair of functions σ : V → [0, 1] and µ : V × V → [0, 1] such that µ(u, v) ≤
σ(u) ∧ σ(v), u, v in V .

Definition 2.2 ([10]). A fuzzy group of a group V is a mapping σ : V → [0, 1]
satisfying σ(uv) ≥ σ(u) ∧ σ(v), ∀ u, v in V and σ(v−1) = σ(v), ∀v in V .

Definition 2.3 ([2]). We say a fuzzy group σ : V → [0, 1] has an embedding into
a fuzzy group σ′ : V ′ → [0, 1] if there exists a one-one map h : V → V ′ such that
σ(x) ≤ σ′(h(x)), ∀x in V .

According to Klir and Yuan [7], an L fuzzy set is a fuzzy set in which the range
[0, 1] is replaced by a lattice L. Accordingly, we can modify all fuzzy relations to
L-Fuzzy relations. For instance, we have:

Definition 2.4 ([10]). An L-subgroup of a group V is a mapping σ : V → L
satisfying σ(uv) ≥ σ(u) ∧ σ(v), ∀u, v in V and σ(v−1) = σ(v), ∀v in V .

Lemma 2.5 ([10]). Let L(G) be the set of all L-subgroups of G, a group with identity
‘e’ and µ ∈ L(G). Then

µ(e) ≥ µ(x) and µ(x) = µ(x−1), ∀x ∈ G.
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3. L-Fuzzy Graph

First, we define an L-Fuzzy graph and then the t-cut and partial fuzzy subgraphs
of an L-Fuzzy Graph. Also, we define a complete and an ordered L-Fuzzy Graphs.
In the process, results in Fuzzy Graph Theory are extended to the L-Fuzzy setting.

Definition 3.1. An L-fuzzy graph (LFG) GL = (V, σ, µ) with the underlying set V
is a nonempty set V together with a pair of functions σ : V → L and µ : V ×V → L
such that µ(u, v) ≤ σ(u) ∧ σ(v), ∀ u, v in V .

Definition 3.2. Consider the LFG GL = (V, σ, µ) and ‘t’ in L. Then tσ = {u ∈
V/σ(u) ≥ t} is called the ‘t-cut of σ’ and tµ = {(u, v) ∈ V × V/µ(u, v) ≥ t} is called
the ‘t-cut of µ’.

Proposition 3.3. Consider the LFG GL = (V, σ, µ) and t1, t2 ∈ L such that t1 ≤ t2.
Then (t2σ, t2µ) is a crisp subgraph of (t1σ, t1µ).

Proof. By definition, if u ∈ t2σ then σ(u) ≥ t2 so that σ(u) ≥ t1 and hence u ∈ t1σ.
Similarly, if u− v ∈ t2µ then µ(u, v) ≥ t2 so that µ(u, v) ≥ t1 and hence u− v ∈ t1µ.

We also note that if t1, t2 ∈ L are non comparable with t1∧t2 = t, then t1σ∩t2σ =
ttσ and t1µ ∩ t2µ = ttµ. �

Definition 3.4. An LFG HL = (V, ν, τ) is said to be a partial fuzzy subgraph of
the LFG GL = (V, σ, µ) if ν(u) ≤ τ(v) and τ(u, v) ≤ µ(u, v), ∀u, v in V .

Proposition 3.5. Let the LFG HL = (V, ν, τ) be a partial fuzzy subgraph of the
LFG GL = (V, σ, µ) and t ∈ L. Then (tν, tτ) is a crisp subgraph of (tσ, tµ).

Proof. If u ∈ tν then ν(u) ≥ t so that σ(u) ≥ t and hence u ∈ tσ. Similarly, if
uv ∈ tτ then τ(u, v) ≥ t so that µ(u, v) ≥ t and hence uv ∈ tµ. �

Definition 3.6. The LFG GL = (V, σ, µ) is said to be complete if it satisfies the
condition

µ(u, v) = σ(u) ∧ σ(v), ∀u, v in V.

Example 3.7. Let ‘L’ be the power set of {a, b, c} with set inclusion as the partial
order. Let V = {v1, v2, v3, v4}. Define GL = (V, σ, µ) as follows:
σ(v1) = {a, b}, σ(v2) = {b, c}, σ(v3) = {a, c}, σ(v4) = {a, b, c}, µ(v1, v2) = {b}.
Obviously, GL is complete.

Definition 3.8. The LFG GL = (V, σ, µ) is said to be ordered if it satisfies the
following condition:
µ(u1, v1) ≤ µ(u2, v2), ∀u1, u2, v1, v2 in V such that σ(u)1 ≤ σ(u2) and σ(v1) ≤ σ(v2).

We note that all complete LFGs are ordered but not vice versa. Hence there are
ordered LFGs that are not complete.

4. Automorphisms of LFGs

In this section, we define the concept of homomorphisms on LFGs and find several
interesting results.
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Definition 4.1. By a homomorphism of LFGs GL1
1 = (V1, σ1, µ1) and GL2

2 =
(V2, σ2, µ2), we mean a mapping h : V1 → V2 together with a mapping l : L1 → L2

such that
l[σ1(u)] ≤ σ2[h(u)]

and
l[µ1(u, v)] ≤ µ2[h(u), h(v)], ∀u, v in V1.

We note that when L1
∼= L2, l is simply the identity map.

Definition 4.2. An endomorphism of an LFG GL = (V, σ, µ) is a homomorphism
of the LFG onto itself.

Definition 4.3. By an isomomorphism of LFGs GL1
1 = (V1, σ1, µ1) and GL2

1 =
(V2, σ2, µ2), we mean a bijective mapping h : V1 → V2 together with a bijective
mapping l : L1 → L2 such that

l[σ1(u)] = σ2[h(u)]

and
l[µ1(u, v)] = µ2[h(u), h(v)], ∀ u, v in V1.

Symbolically, we write GL1
1
∼= GL2

2 .

Definition 4.4. An automorphism of an LFG GL = (V, σ, µ) is a isomomorphism
of the LFG onto itself.

Theorem 4.5. A bijective endomorphism of an LFG GL = (V, σ, µ) is an automor-
phism of the LFG GL.

Proof. Consider the bijective endomorphism of an LFG GL = (V, σ, µ). Then by the
definition, ∃ a bijective mapping h : V → V such that

σ(u) ≤ σ[h(u)] and µ(u, v) ≤ µ[h(u), h(v)], ∀ u, v in V .

Since h is a bijection,

σ(u) ≤ σ(h(u)) ≤ σ(h2(u)) ≤ · · · ≤ σ(hn(u))

for any u in V .
However, h is a bijective map from V to itself. Therefore hn(u) = h(u) for some

n.
So σ(u) ≤ σ(h(u)) ≤ σ(u). Hence σ(u) = σ(h(u)).
Similarly, µ(u, v) ≤ µ[h(u), h(v)] ≤ µ(u, v) which implies µ(u, v) = µ[h(u), h(v)].
Thus a bijective endomorphism of an LFG GL = (V, σ, µ) is an automorphism of the
LFG GL. �

Theorem 4.6. The collection GL∗ of all automorphisms of an LFG GL = (V, σ, µ)
is a group under set theoretic product of maps as a binary operation.

Proof. Let h1, h2 ∈ GL∗ . Then σ[h1 ◦h2(u)] = σ[h1(h2(u))] = σ[h2(u))] = σ(u). This
establishes closure property. Associativity follows from associativity of homomor-
phisms and identity element is the identity map, which is a homomorphism. Now, if
h : V → V is an automorphism, then it is bijective and so h−1 : V → V exists and
is a bijection. Let h−1(u) = u′. Then σ[h−1(u)] = σ[u′] = σ[u] by Theorem 4.5.

Similarly, µ[h−1(u), h−1(v)] = µ[u′, v′] = µ(u, v) by the same theorem. Thus GL∗
is a group. �
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In the following theorems, we associate LFGs with L-Fuzzy groups.

Theorem 4.7. Consider the LFG GL = (V, σ, µ) and the collection GL∗ of all auto-
morphisms of GL = (V, σ, µ). Define τ : GL∗ → L by τ(h) = ∨{µ(h(u), h(v))/(u, v) ∈
V × V }. Then τ is an L-fuzzy group.

Proof. Let h1, h2 ∈ GL∗ . Then

τ [h1 ◦ h2] = ∨{µ(h1 ◦ h2(u), h1 ◦ h2(v))/(u, v) ∈ V × V }
= ∨{µ(u, v)/(u, v) ∈ V × V }

by the property of homomorphisms of LFGs.
Again

τ [h1] = ∨{µ(h1(u), h1(v))/u ∈ V }
= ∨{µ(u, v)/(u, v) ∈ V × V }.

Similarly

τ [h2] = ∨{µ(h2(u), h2(v))/(u ∈ V )}
= ∨{µ(u, v)/(u, v) ∈ V × V }

so that

τ [h1] ∧ τ [h2] = ∨{µ(u, v)/(u, v) ∈ V × V }
= τ [h1 ◦ h2]

Again

τ [h−1] = ∨{µ(h−1(u), h−1(v))/(u, v) ∈ V × V }
= ∨{µ(u, v)/(u, v) ∈ V × V }

by the property of homomorphisms of LFGs

= τ [h]

Since it satisfies the required axioms, τ is an L-fuzzy group. �

Definition 4.8. Consider the group V, σ : V → L is an L-fuzzy group and we define
µσ : V × V → L by µσ(u, v) = σ(u) ∧ σ(v), ∀u, v in V . Then GL = (V, σ, µσ) is an
LFG.

Theorem 4.9. Every L-Fuzzy group σ : G→ L has an embedding into the L-Fuzzy
group of the group of automorphisms of some LFG.

Proof. Let GL = (V, σ, µσ) be the LFG corresponding to the L-Fuzzy group σ : G→
L, G being a group with identity ‘e’. Let GL∗ be the group of all automorphisms of
GL. To this, we associate the L-Fuzzy group τ : GL∗ → L as in Theorem 4.7. On
GL, we define the automorphism hu : GL → GL as hu(a) = u−1a. Then

τ [hu] = ∨{µσ(hu(a), hu(b))/a, b ∈ V }
= ∨{σ(hu(a)) ∧ σ(hu(b))/a, b ∈ V }
= ∨{σ(a) ∧ σ(b)/a, b ∈ V }
= σ(e)
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Again, by lemma 2.5, σ(u) ≤ σ(e). Hence σ(u) ≤ τ [hu], ∀u in G. Thus σ : G→ L
has an embedding in τ : GL∗ → L. �

5. Properties of isomorphic LFGs

In this section, we study some interesting results that rise due to the inherent
characteristics of lattices.

Theorem 5.1. Let L1 and L2 be any two sublattices of the lattice L. Consider
the two LFGs GL1

1 = (V1, σ1, µ1) and GL2
2 = (V2, σ2, µ2). If there exists a bijective

mapping h : V1 → V2 such that σ1(u) = σ2[h(u)] and µ1(u, v) = µ2[h(u), h(v)], ∀u,
v in V1 then L1 and L2 are isomorphic.

Proof. Consider u and v in V1 and the identity map ‘I’ on L. Then,

I[σ1(u) ∨ σ2(v)] = σ1(u) ∨ σ2(v)

= σ2[h(u)] ∨ σ2[h(v)]

= I{σ2[h(u)]} ∨ I{σ2[h(v)]}

Similarly,

I[σ1(u) ∧ σ2(v)] = σ1(u) ∧ σ2(v)

= σ2[h(u)] ∧ σ2[h(v)]

= I{σ2[h(u)]} ∧ I{σ2[h(v)]}

Thus the identity map is the isomorphic mapping between the two lattices. �

Theorem 5.2. Let L1 and L2 be any two isomorphic lattices. Then it is possible to
construct the LFGs GL1

1 = (V1, σ1, µ1) and GL2
2 = (V2, σ2, µ2), such that GL1

1
∼= GL2

2 ,
provided V1 and V2 are of the same order.

Proof. The construction is as follows:
Since L1 and L2 are isomorphic lattices, there exists a bijective mapping f : L1 → L2

such that f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b), ∀a, b in L.
To choose ‘h’: Consider u1 ∈ V1. Let σi(ui) = ai and f(ai) = bi, i = 1, 2. We now
choose σ2[h(u1)] = b1.

Let u1 − u2 be an edge in GL1
1 = (V1, σ1, µ1) with weight µ1(u1, u2) = a12,

a12 ≤ a1 ∧ a2. Suppose h(ui) = vi.
Choose µ2(v1, v2) = f [µ1(u1, u2)] = b12, say.
Then, µ2(v1, v2) = b12 = f [µ1(u1, u2)] = f(a12) ≤ f(a1 ∧ a2) = f(a1) ∧ f(a2) =
b1 ∧ b2 = σ2(v1) ∧ σ2(v2).

Thus, µ2(v1, v2) ≤ σ2(v1) ∧ σ2(v2). Thus GL2
2 = (V2, σ2, µ2) is an LFG.

Further, h : V1 → V2 is such that σ2[h(ui)] = bi = f(ai) = f [σ1(ui)]. Thus

GL1
1
∼= GL2

2 . �

Theorem 5.3. Consider the LFGs GL1 = (V1, σ1, µ1) and GL2 = (V2, σ2, µ2), such
that GL1

∼= GL2 . Then this isomorphism is an equivalence relation on the set of all
LFGs on the lattice L.
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Proof. We are required to prove that the isomorphism relation is reflexive, symmetric
and transitive.
Reflexivity: The mapping ‘l’ as required in the definition of isomorphism of LFGs
is the identity map and we choose ‘h’ as the identity map itself. Then every LFG is
isomorphic to itself.
Symmetry: If GL1

∼= GL2 with the bijective mapping h : V1 → V2, then GL1
∼= GL2

with h−1 : V2 → V1.
Transivity: Next, let GL1

∼= GL2 with the bijective mapping h : V1 → V2 and GL1
∼= GL3

with the bijective mapping k : V2 → V3. Then k◦h : V1 → V3 is a bijection. Further,
σ1(u) = σ2[h(u)] = σ3{k[h(u)]} = σ3[k ◦ h(u)] and µ1(u, v) = µ2[h(u), h(v)] =
µ3[k ◦ h(u), k ◦ h(v)]. Thus GL1

∼= GL3 .
The isomorphism relation is thus an equivalence relation on the set of all LFGs

on the lattice L. �

Definition 5.4. Consider the LFG GL = (V, σ, µ), where L is complete. We define
the order ‘p’ and size ‘q’ of GL as p = ∨x∈V σ(x) and q = ∨x,y∈V µ(x, y).

Definition 5.5. Consider the LFG GL = (V, σ, µ) where L is complete. Then we
define the degree ‘d(u)’ of a vertex ‘u’ in GL as d(u) = ∨v 6=u,v∈V µ(u, v).

Theorem 5.6. If GL1
∼= GL2 , where L is complete, then p1 = p2 and q1 = q2, where

pi and qi are the order and size of GLi , i = 1, 2 respectively. Also, the degree of each
vertex is preserved under the isomorphism.

Proof. By definition of isomorphism of LFGs,

p1 = ∨x∈V1
σ1(x) = ∨x∈V2

σ2[h(x)] = ∨x∈V2
σ2(y) = p2.

Also,

q1 = ∨x,y∈V1
µ1(x, y) = ∨x,y∈V1

µ2[h(x), h(y)] = ∨x,y∈V2
µ2(a, b) = p2.

Further, for any vertex ‘u’ in the LFG, GL1 ,

d(u) = ∨v 6=u,v∈V1
µ1(u, v) = ∨h(v)6=h(u),h(v)∈V2

µ2[h(u), h(v)] = d[h(u)].

�

Remark. The converse of the above theorem need not be true, i.e. if the order and
size of two LFGS are the same, they need not be isomorphic. For example, let L be
the following lattice:

Consider
Both have the same size and order but are not isomorphic.
Similarly, the following LFGs are such that the degrees of the corresponding

vertices are the same but they are non isomorphic.

Definition 5.7. By a weak isomorphism of LFGs GL1
1 = (V1, σ1, µ1) and GL2

2 =
(V2, σ2, µ2), we mean a bijective mapping h : V1 → V2 together with a bijective
mapping l : L1 → L2 such that

l[σ1(u)] = σ2[h(u)], ∀u in V1

and
l[µ1(u, v)] ≤ µ2[h(u), h(v)], ∀u and v in V1
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Thus a weak isomorphism of LFGs preserves the weight of the vertices.

A weak isomorphism of LFGs need not be an isomorphism of LFGs, as is illus-
trated by the following:

Example 5.8. Let L1 = L2 be as in the following figure:
Let GL1

1 = (V1, σ1, µ1), GL2
2 = (V2, σ2, µ2) and the weak isomorphism ‘h’ of these

LFGS be defined as follows:

V1 = {u1, u2, u3} and V2 = {v1, v2, v3},
σ1(u1) = a, σ1(u2) = b, σ1(u3) = c; µ1(u1, u2) = d, µ1(u2, u3) = f

σ2(v1) = c, σ2(v2) = a, σ2(v3) = b; µ2(v1, v2) = f, µ2(v2, v3) = g

h(u1) = v2, h(u2) = v3, h(u3) = v1

It may be verified that ‘h’ is a weak isomorphism, but µ1(u1, u2) = d 6= g =
µ2(v2, v3).

Theorem 5.9. Weak isomorphism of LFGs is a partially ordered relation on the
set of all LFGs defined on the lattice L.
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Proof. By a weak isomorphism of LFGs GL1
1 = (V1, σ1, µ1) and GL1 = (V2, σ2, µ2),

we mean a bijective mapping h : V1 → V2 such that

σ1(u) = σ2[h(u)]

and

µ1(u, v) ≤ µ2[h(u), h(v)], ∀ u, v in V1.

We have to show that this relation is reflexive, anti-symmetric and transitive.
Reflexivity: Consider the LFG GL = (V, σ, µ). Choose ‘h’ and ‘l’ to be the identity
map itself. Then obviously, µ(u, v) = µ[h(u), h(v)], ∀u, v in V .
Anti-symmetry: Let GL1 = (V1, σ1, µ1) and GL1 = (V2, σ2, µ2) be weak isomorphic.
Then, ∃ a bijective mapping h : V1 → V2 such that

σ1(u) = σ2[h(u)]

and

µ1(u, v) ≤ µ2[h(u), h(v)], ∀u, v in V1.

Again, let GL1 = (V2, σ2, µ2) and GL1 = (V1, σ1, µ1) be weak isomorphic. Then ∃ a
bijective mapping h′ : V2 → V1 such that

σ2(u) = σ1[h′(u)]

and

µ2(u, v) ≤ µ1[h′(u), h′(v)], ∀ u, v in V2.

The two inequalities can be satisfied simultaneously only when V1 = V2, σ1 = σ2
and µ1 = µ2. Hence the two LFGs are the same.
Transitivity: Next, let GL1 ∧ GL1 be weak isomorphic with the bijective mapping
h : V1 → V2 and be weak isomorphic with the bijective mapping k : V2 → V3.
Consider k ◦ h : V1 → V3. It is also a bijection. Further,

σ1(u) = σ2[h(u)] = σ3{k[h(u)]} = σ3[k ◦ h(u)]
309
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and

µ1(u, v) ≤ µ2[h(u), h(v)] ≤ µ3[k ◦ h(u), k ◦ h(v)].

Thus GL1 ∧GL3 are weak isomorphic.
Hence weak isomorphism of LFGs is a partially ordered relation on the set of all

LFGs defined on the lattice L. �

6. Complement of an LFG

Here, we firstly define the complement of an LFG and show that the complement
of a strong LFG is also a strong LFG. We also obtain a condition on the lattice on
which a self complementary LFG is defined.

Throughout this section, we take L to be a Boolean Algebra.

Definition 6.1. Consider the LFG GL = (V, σ, µ) where L is a Boolean Algebra.
We define its complement as the LFG GL = (V, σC , µC) with

σC(u) = σ(u), ∀u ∈ V and µC(u, v) = σ(u) ∧ σ(v) ∧ µ(u, v)C , ∀ edges u-v ∈ G

Example 6.2. Let L be the following Boolean Algebra:

b

b

b

1

d e

a b b

bb

b c

f

0

b

Figure 5.

Consider the LFG in Fig. 6. Then its complement is the LFG in Fig 7.

b 1

ea b

c

b

a

a

Figure 6.

Lemma 6.3. (GLC) = GL.
310
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b 1

ea b

b
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Figure 7.

Proof. Consider the LFG GL = (V, σ, µ). Then,

(µC)C(u, v) = σ(u) ∧ σ(v) ∧ [µC(u, v)]C

= σ(u) ∧ σ(v) ∧ [(σ(u) ∧ σ(v) ∨ µ(u, v)C ]C

= σ(u) ∧ σ(v) ∧ [(σ(u) ∧ σ(v))C ∨ µ(u, v)]

= σ(u) ∧ σ(v) ∧ µ(u, v)

= µ(u, v), ∀u, v ∈ µ∗

Hence (GLC)C = GL. �

Theorem 6.4. The complement of a strong LFG is also strong.

Proof. Let the LFG GL = (V, σ, µ) be strong. Then µ(u, v) = σ(u)∧σ(v), ∀u, v ∈ µ∗
by definition.

When µ(u, v) = 0, µC(u, v) = σ(u)∧σ(v)∧µ(u, v)C = σ(u)∧σ(v)∧1 = σ(u)∧σ(v).
When µ(u, v) > 0, µC(u, v) = σ(u)∧σ(v)∧µ(u, v)C = σ(u)∧σ(v)∧[σ(u)∧σ(v)]C = 0.
Hence µC(u, v) = σ(u) ∧ σ(v), ∀u, v ∈ µC∗

.
Hence the complement of a strong LFG is also strong. �

Definition 6.5. The LFG GL = (V, σ, µ) is self complementary if ∃ an isomorphism

between GL = (V, σ, µ) and GL
C

(V, σC , µC).

Example 6.6. Let L be as in Fig. 5. Then Fig 8 shows a self complementary LFG
and its complement. All the vertices in these graphs have membership degree 1.

b

1

a
b

b

b

b b 1

a

b
b

b

b

GL GLC

Figure 8.

Theorem 6.7. If GL = (V, σ, µ) is self complementary, then the Boolean Algebra L
is a Boolean Ring with a+ b = a ∨ b and a · b = 0, ∀a, b ∈ L.
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Proof. Since GL = (V, σ, µ) is self complementary, ∃ a bijective mapping h : V → V
such that

(6.1) σC [h(u)] = σ(u), ∀u ∈ V
and

(6.2) µC [h(u), h(v)] = µ(u, v), ∀u, v in V

Then by definition,

µC [h(u), h(v)] = σ(u) ∧ σ(v) ∧ [µ(h(u), h(v))]C so that by (6.2),

µ(u, v) = σ(u) ∧ σ(v) ∧ [µ(h(u), h(v))]C , ∀u, v ∈ V(6.3)

We have a+ b = (a ∧ bC) ∨ (aC ∧ b). Hence

µ(u, v) + µ[h(u), h(v)] = {µ(u, v) ∧ [µ(h(u), h(v))]C} ∨ {[µ(u, v)]C ∧ µ[h(u), h(v)]}
= µ(u, v) ∨ {[(σ(u) ∧ σ(v))C ∨ µ(h(u), h(v))] ∧ µ[h(u), h(v)]}
= µ(u, v) ∨ µ[h(u), h(v)] by absorption law.

Thus a+ b = a ∨ b, ∀a, b ∈ L.
Next, a · b = a ∧ b.
But µ(u, v) · µ[h(u), h(v)] = µ(u, v) ∧ µ[h(u), h(v)] = 0 by (6.3). Thus a · b = 0,
∀a, b ∈ L.
Hence L is a Boolean Ring with addition and multiplication as defined above. �
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