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Abstract. In the present paper, we consider fuzzy normed linear space
with min t-norm and define equivalent fuzzy norms. Moreover, we show
that all fuzzy norms on a finite dimensional vector space are equivalent.
At the end we verify Hahn Banach theorem on fuzzy normed linear spaces.
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1. Introduction

Felbin [4] has offered in 1992 an alternative definition of a fuzzy norm on a linear
space with an associated metric of the Kaleva and Seikkala type [6]. He has shown
that every finite dimensional normed linear space has a completion. Then Xiao and
Zhu [9] have modified the definition of this fuzzy norm and studied the topological
properties of fuzzy normed linear spaces. Another fuzzy norm is defined by Bag and
Samanta [1].
Bag and Samanta [3] have defined concepts of weakly fuzzy boundedness, strongly
fuzzy boundedness, fuzzy continuity, strongly fuzzy continuity, weakly fuzzy con-
tinuity, sequentially fuzzy continuity and fuzzy norm of linear operators with an
associated fuzzy norm defined in [1]. In [5] the authors have defined a norm of
operator with an associated fuzzy norm defined by Felbin [4], and studied some of
their properties. This concept has been used in developing fuzzy functional analysis
and its applications and a large number of papers by different authors have been
published (see [7, 8]).
In the this paper, using fuzzy normed linear space with min t-norm, we show that
on a finite dimensional vector space X, every pair of fuzzy norms N1 and N2 are
equivalent. Moreover, we prove the Hahn Banach theorem on fuzzy normed linear
spaces.



M. Saheli /Ann. Fuzzy Math. Inform. 11 (2016), No. 2, 293–300

2. Preliminaries

We start our work with the following definitions.

Definition 2.1 ([2]). A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a t-norm if it
satisfies the following conditions:
(i) ∗ is associative and commutative,
(ii) a ∗ 1 = a, for all a ∈ [0, 1],
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].
If ∗ is continuous then it is called continuous t-norm.

Definition 2.2 ([2]). The 3-tuple (X,N, ∗) is said to be a fuzzy normed space if X
is a vector space over R (real number), ∗ is a continuous t-norm and N is a fuzzy
set on X × R satisfying the following conditions for every x, y ∈ X and s, t ∈ R
(N1) N(x, t) = 0, for all t ≤ 0,
(N2) x = 0 if and only if N(x, t) = 1, for all t > 0,
(N3) If c 6= 0 then N(cx, t) = N(x, t/|c|), for all t ∈ R,
(N4) N(x+ u, s+ t) ≥ N(x, s) ∗N(u, t), for all s, t ∈ R,
(N5) N(x, .) is a nondecreasing function of R and limt→∞N(x, t) = 1.

We assume that
(N6) N(x, t) > 0, for all t > 0 implies x = 0,
(N7) For x 6= 0, N(x, .) is a continuous function of R and strictly increasing on the
subset {t : 0 < N(x, t) < 1} of R.

In the sequel we fix s ∗ t = min(s, t) for all s, t ∈ [0, 1] and we write (X,N) when ∗
is as indicated above.

Example 2.3. Let (X, ‖.‖) be a normed space. We define

N(x, t) =

{
t/(t+ ‖x‖) , t > 0, x ∈ X
0 , t ≤ 0, x ∈ X.

Then (X,N) is a fuzzy normed linear space such that N satisfying (N7).

Definition 2.4 ([3]). Let (X,N) be a fuzzy normed linear space.
i) A sequence {xn} ⊆ X is said to converge to x ∈ X ( lim

n→∞
xn = x), if lim

n→∞
N(xn−

x, t) = 1, for all t > 0.
ii) A sequence {xn} ⊆ X is called Cauchy, if lim

n,m→∞
N(xn−xm, t) = 1, for all t > 0.

Definition 2.5. If X is a vector space over R, a seminorm is a function p : X −→
[0,∞) having the properties:
(i) p(c(x)) = |c|p(x) for all c ∈ R and x ∈ X.
(ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

3. Hahn Banach Theorem

Theorem 3.1. Let (X,N) be a fuzzy normed linear space. Define ‖x‖α = inf{t >
0 : N(x, t) ≥ α}, α ∈ (0, 1). Then {‖.‖α : α ∈ (0, 1)} is an ascending family of
seminorms on X and they are called α-seminorms on X corresponding to the fuzzy
norm N on X.
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Proof. (i) Let x ∈ X, c ∈ R and α ∈ (0, 1), we have

‖cx‖α = ∧{t > 0 : N(cx, t) ≥ α}
= ∧{t > 0 : N(x, t/|c|) ≥ α}
= ∧{|c|t > 0 : N(x, t) ≥ α}
= |c|‖x‖α.

(ii) Let x, y ∈ X and α ∈ (0, 1), we obtain that N(x + y, ‖x‖α + ‖y‖α + ε) ≥
min{N(x, ‖x‖α + ε/2), N(y, ‖y‖α + ε/2)} ≥ α, hence ‖x + y‖α ≤ ‖x‖α + ‖y‖α + ε,
as ε −→ 0 then ‖x+ y‖α ≤ ‖x‖α + ‖y‖α. �

Definition 3.2. A fuzzy norm N1 on a vector space X is said to be equivalent to a
fuzzy norm N2 on X if there are families {mα}α∈(0,1) ⊆ (0,+∞) and {Mα}α∈(0,1) ⊆
(0,+∞) such that for all x ∈ X, t ∈ R and α ∈ (0, 1)

N1(x, t) ≥ α implies that N2(x,mαt) ≥ α,
and

N2(x, t) ≥ α implies that N1(x,Mαt) ≥ α.
Example 3.3. Let X be a finite dimensional vector space and {e1, ..., en} be a basis
for X. Define a fuzzy norm N0 : X × R −→ [0, 1] as follows:

N0(x, t) =

{
1 ,

∑n
i=1 |λi| ≤ t

0 , t <
∑n
i=1 |λi|,

where x =

n∑
i=1

λiei. It is clear that ‖x‖0α =

n∑
i=1

|λi|, for all α ∈ (0, 1).

Theorem 3.4. Let (X,N) be a finite dimensional fuzzy normed linear space such
that N satisfying (N7). Then the fuzzy norm N is equivalent to the fuzzy norm N0

defined in Example 3.3.

Proof. Let dimX = n and {e1, ..., en} be a basis for X. suppose that ‖.‖α is a
α-seminorms on X corresponding to the fuzzy norm N and ‖.‖0α ia a α-seminorms
on X corresponding to the fuzzy norm N0.
Now we show that for all α ∈ (0, 1), there exists Mα > 0 such that ‖x‖α ≤Mα‖x‖0α,
for all x ∈ X.
Let α ∈ (0, 1). Since ‖.‖α is a seminorm on X,

‖x‖α ≤
n∑
i=1

|λi|‖ei‖α, for all x =

n∑
i=1

λiei ∈ X.

Let Mα = max{‖ei‖α : 1 ≤ i ≤ n}. So ‖x‖α ≤Mα

n∑
i=1

|λi|, for all x =

n∑
i=1

λiei ∈ X.

Since ‖x‖0α =

n∑
i=1

|λi| it follows that ‖x‖α ≤Mα‖x‖0α.

Now we show that for all α ∈ (0, 1), there exists mα > 0 such that

‖x‖α ≥ mα, for all x =

n∑
i=1

λiei ∈ X with

n∑
i=1

λi = 1.
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Suppose that this is false. Then there exist α0 ∈ (0, 1) and sequence {xm} ⊆ X

such that xm =

n∑
i=1

λmi ei,

n∑
i=1

λmi = 1, for all m ∈ N and lim
m−→+∞

‖xm‖α0 = 0. Since

n∑
i=1

λmi = 1, for all m ∈ N, we have |λm1 | ≤ 1, for all m ∈ N. Hence the Sequence

{λm1 } is bounded. Consequently, by the Bolzano-Weierstrass theorem, {λm1 } has a
convergent subsequence. Let λ01 denote the limit of that subsequence, and let {x1m}
denote the corresponding subsequence of {xm}. By the same argument, {x1m}
has a subsequence {x2m} for which the corresponding subsequence of scalars λm2
converges to λ02. Continuing in this way, after n steps we obtain a subsequence

{xnm} of {xm} such that xnm =

n∑
i=1

γmi ei,

n∑
i=1

γmi = 1 and lim
m−→+∞

γmi = λ0i , for

all 1 ≤ i ≤ n. Hence ‖xnm − x0‖α0 −→ 0 where x0 =

n∑
i=1

λ0i ei. Since

n∑
i=1

λ0i = 1

it follows that x0 6= 0. We have ‖xnm‖α0 −→ ‖x0‖α0 . So ‖x0‖α0 = 0. Hence
inf{t > 0 : N(x0, t) ≥ α0} = 0. Therefore N(x0, t) ≥ α0, for all t > 0. By (N7), we
obtain that 0 = N(x0, 0) = lim

t→0+
N(x0, t) ≥ α0. This is a cotradiction.

Hence for all α ∈ (0, 1), there exists mα > 0 such that

‖x‖α ≥ mα, for all x =

n∑
i=1

λiei ∈ X with

n∑
i=1

λi = 1.

This implies that

‖x‖α ≥ mα

n∑
i=1

|λi|, for all x =

n∑
i=1

λiei ∈ X.

So

‖x‖α ≥ mα‖x‖0α, for all x ∈ X.

Now we show that N and N0 are equivalent.
Let x ∈ X, t ∈ R and α ∈ (0, 1) and N(x, t) ≥ α. Hence ‖x‖α ≤ t. Therefore
mα‖x‖0α ≤ ‖x‖α ≤ t. Thus ‖x‖0α ≤ t/mα. So inf{t > 0 : N0(x, t) ≥ α} ≤ t/mα.
Then N0(x, t/mα) ≥ α.
Let x ∈ X, t ∈ R and α ∈ (0, 1) and N0(x, t) ≥ α. Thus ‖x‖0α ≤ t. So ‖x‖α/Mα ≤
‖x‖0α ≤ t. Hence ‖x‖α ≤ Mαt. If N(x, tMα) < α. By (N7), there exists s >
tMα such that N(x, s) < α. Hence s ≤ ‖x‖α. This is a contradiction. Therefore
N(x, tMα) ≥ α.
Therefore N is equivalent to N0. �

Corollary 3.5. Let X be a finite dimensional vector space and N1, N2 be fuzzy
norms on X satisfying (N7). Then the fuzzy norm N1 is equivalent to the fuzzy
norm N2.

Theorem 3.6. (Hahn Banach Theorem) Let (X,N) be a fuzzy normed linear
space and (R, N0) be a fuzzy normed linear space defined in Example 3.3. Moreover,
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let f : Z −→ R be a linear functional which is defined on a subspace Z of X such
that

N(x, t) ≥ α implies that N0(f(x), η−α t) ≥ α for all x ∈ Z, and all t ∈ R,

for some increasing family {ηα}α∈(0,1) ⊆ (0,+∞). Then f has a linear extension f̃
from Z to X satisfying

N(x, t) ≥ α implies that N0(f̃(x), η−α t) ≥ α for all x ∈ X, and all t ∈ R.

Proof. Let A be a set of all linear extensions g : Y −→ R of f satisfying

N(x, t) ≥ α, implies that N0(g(x), η−α t) ≥ α for all x ∈ Y, and all t ∈ R.

We define a partial ordering on A by g1 ≤ g2 if and only if Y1 ⊆ Y2 and g1(x) = g2(x),

for all x ∈ Y1. Hence Zorn’s Lemma yields a maximal element f̃ of A. Now, we show

that D(f̃) is all of X. Suppose that this is false. Let x1 ∈ X −D(f̃) and consider

the subspace Y of X spanned by D(f̃) and x1. We have |f̃(x)| ≤ η−α ‖x‖α, for all

x ∈ D(f̃) and all α ∈ (0, 1]. Hence

|f̃(y)− f̃(z)| = |f̃(y − z)| ≤ η−α ‖y − z‖α
≤ η−α ‖y + x1‖α + η−α ‖x1 + z‖α,

for all y, z ∈ D(f̃) and all α ∈ (0, 1]. Therefore

−η−α ‖x1 + z‖α − f̃(z) ≤ η−α ‖y + x1‖α − f̃(y),

for all y, z ∈ D(f̃) and all α ∈ (0, 1]. Suppose that αn = 1/(n + 1). Thus there
exists cn ∈ R such that

sup
z∈D(f̃)

(−η−αn
‖x1 + z‖αn − f̃(z)) ≤ cn ≤ inf

y∈D(f̃)
(η−αn
‖y + x1‖αn − f̃(y)),

for all n ∈ N. Hence there is a subsequence {cnk
} of {cn} such that cnk

−→ c. Let
α ∈ (0, 1), then there exists N1 > 0 such that 1/(nk + 1) ≤ α, for all nk > N1. Thus

sup
z∈D(f̃)

(−η−α ‖x1 + z‖α − f̃(z)) ≤ cnk
≤ inf
y∈D(f̃)

(η−α ‖x1 + y‖α − f̃(y)), for all nk > N1.

Hence

sup
z∈D(f̃)

(−η−α ‖x1 + z‖α − f̃(z)) ≤ c ≤ inf
y∈D(f̃)

(η−α ‖x1 + y‖α − f̃(y)), for all α ∈ (0, 1).

Therefore −η−α ‖x1 + z‖α − f̃(z) ≤ c ≤ η−α ‖x1 + y‖α − f̃(y), for all z, y ∈ D(f̃), and

all α ∈ (0, 1). Hence |f̃(y) + c| ≤ η−α ‖x1 + y‖α, for all y ∈ D(f̃), and all α ∈ (0, 1).

Thus |f̃(y)+λc| ≤ η−α ‖λx1 +y‖α, for all y ∈ D(f̃), and all α ∈ (0, 1). Now we define

a linear functional g̃ : Y −→ R by g̃(x+ λx1) = f̃(x) + λc, for all x ∈ D(f̃). Hence

|g̃(x+ λx1)| = |f̃(x) + λc| ≤ η−α ‖λx1 + x‖α, for all α ∈ (0, 1].

Let x ∈ D(f̃), t ∈ R and N(x + λx1, t) ≥ α. So η−α ‖λx1 + x‖α ≤ η−α t. Thus
|g̃(x + λx1)| ≤ η−α ‖λx1 + x‖α ≤ η−α t Hence N(g̃(x + λx1), η−α t) = 1 ≥ α. Therefore

g̃ ∈ A. This ia a contradiction. So D(f̃) = X. �
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Corollary 3.7. Let (X,N) be a fuzzy normed linear space, (R, N1) be a fuzzy normed
linear space such that N1 satisfying (N7) and (R, N0) be a fuzzy normed linear space
defined in Example 3.3. And let f : Z −→ R be a linear functional which is defined
on a subspace Z of X such that

N(x, t) ≥ α implies that N1(f(x), η−α t) ≥ α for all x ∈ Z, and all t ∈ R,
for some increasing family {ηα}α∈(0,1) ⊆ (0,+∞). Moreover, let {ηαmα}α∈(0,1) be
a increasing family of positive real number where

N1(x, t) ≥ α implies that N0(x,mαt) ≥ α,
and

N0(x, t) ≥ α implies that N1(x,Mαt) ≥ α,

for all x ∈ R, t ∈ R and α ∈ (0, 1). Then f has a linear extension f̃ from Z to X
satisfying

N(x, t) ≥ α implies that N0(f̃(x),mαMαη
−
α t) ≥ α for all x ∈ X, and all t ∈ R.

Proof. Let x ∈ X, t ∈ R, α ∈ (0, 1) and N(x, t) ≥ α. Hence N1(f(x), η−α t) ≥ α. So
N0(f(x),mαηαt) ≥ α. Thus

N(x, t) ≥ α implies that N0(f(x),mαη
−
α t) ≥ α for all x ∈ Z, and all t ∈ R.

Since {ηαmα}α∈(0,1) is a increasing family of positive real number, by Theorem 3.6,

f has a linear extension f̃ from Z to X satisfying

N(x, t) ≥ α implies that N0(f̃(x),mαη
−
α t) ≥ α for all x ∈ X, and all t ∈ R.

Let x ∈ X, t ∈ R, α ∈ (0, 1) and N(x, t) ≥ α. Hence N0(f̃(x),mαη
−
α t) ≥ α. So

N1(f̃(x),Mαmαηαt) ≥ α. Thus

N(x, t) ≥ α implies that N1(f̃(x),Mαmαηαt) ≥ α for all x ∈ X, and all t ∈ R.
�

Now we give two Examples which satisfy in Corollary 3.7.

Example 3.8. Let (X,N) be a fuzzy normed linear space and R be a real number
set. Define a fuzzy norm N1 : R× R −→ [0, 1] as follows:

N1(x, t) =

 t/|x| , 0 < t ≤ |x|
1 , |x| ≤ t
0 , t ≤ 0.

It is clear that ‖x‖1α = α|x|, for all α ∈ (0, 1).
Moreover, let f : Z −→ R be a linear functional which is defined on a subspace Z of
X such that

N(x, t) ≥ α implies that N1(f(x), η−α t) ≥ α, for all x ∈ Z, t ∈ R,
and for some increasing family {ηα}α∈(0,1) ⊆ (0,+∞). And let {ηα/α}α∈(0,1) be a
increasing family of positive real number.
Suppose that (R, N0) is a fuzzy normed linear space defined in Example 3.3. We
have

N1(x, t) ≥ α implies that N0(x, t/α) ≥ α,
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and

N0(x, t) ≥ α implies that N1(x, αt) ≥ α,

for all x ∈ R, t ∈ R and α ∈ (0, 1). Since N1 satifies in (N7) and {ηα/α}α∈(0,1) is a
increasing family of positive real number, by Corollary 3.7, f has a linear extension

f̃ from Z to X satisfying

N(x, t) ≥ α implies that N1(f̃(x), ηαt) ≥ α for all x ∈ X, and all t ∈ R.

Example 3.9. Let (X,N) be a fuzzy normed linear space and R be a real number
set. Define a fuzzy norm N2 : R× R −→ [0, 1] as follows:

N1(x, t) =

{
t/(t+ |x|) , t > 0
0 , t ≤ 0.

It is clear that ‖x‖2α = (α/(1− α))|x|, for all α ∈ (0, 1).
Moreover, let f : Z −→ R be a linear functional which is defined on a subspace Z of
X such that

N(x, t) ≥ α implies that N1(f(x), η−α t) ≥ α for all x ∈ Z, t ∈ R,

and for some increasing family {ηα}α∈(0,1) ⊆ (0,+∞). And let {ηα((1−α)/α)}α∈(0,1)
be a increasing family of positive real number.
Suppose that (R, N0) is a fuzzy normed linear space defined in Example 3.3. We
have

N1(x, t) ≥ α implies that N0(x, t/((1− α)α)) ≥ α,

and

N0(x, t) ≥ α implies that N1(x, (α/(1− α))t) ≥ α,

for all x ∈ R, t ∈ R and α ∈ (0, 1). Since N1 satifies in (N7) and {ηα((1 −
α/α)}α∈(0,1) is a increasing family of positive real number, by Corollary 3.7, f has

a linear extension f̃ from Z to X satisfying

N(x, t) ≥ α implies that N1(f̃(x), ηαt) ≥ α for all x ∈ X, and all t ∈ R.

References

[1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11
(3) (2003) 687–705.

[2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, Ann. Fuzzy Math.
Inform. 6 (2) (2013) 271–283.

[3] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151

(2005) 513–547.

[4] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems 48 (1992)
239–248.

[5] A. Hasankhani, A. Nazari and M. Saheli, Some properties of fuzzy Hilbert spaces and norm
of operators, Iranian Journal of Fuzzy Systems 7 (3) (2010) 129–157.

[6] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215–229.

[7] G. Rano, T. Bag and S. K. Samanta, Hahn-Banach extension theorem in generating spaces of

quasi-norm family, Ann. Fuzzy Math. Inform. 7 (2) (2014) 239–249.
[8] U. Samanta and T. Bag, Completeness and compactness of finite dimensional fuzzy n-normed

linear spaces, Ann. Fuzzy Math. Inform. 7 (5) (2014) 837–850.

299



M. Saheli /Ann. Fuzzy Math. Inform. 11 (2016), No. 2, 293–300

[9] J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear
space, Fuzzy Sets and Systems 125 (2002) 153–161.

M. Saheli (saheli@vru.ac.ir)
Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

300


	Hahn Banach theorem on fuzzy normed linear spaces. By 

