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Abstract. In this paper the solution of a second order differential

equation of type d2x(t)

dt2
= kx(t), k < or,> 0 is described in fuzzy environ-

ments. It is discussed for three different cases: Initial condition is fuzzy
number, coefficient is fuzzy number and initial condition and coefficient are
both fuzzy numbers. Here all the fuzzy numbers are taken as Generalized
Trapezoidal Fuzzy Numbers (GTrFNs). Further numerical examples are
illustrated.
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1. Introduction

1.1. Fuzzy derivative and fuzzy differential equation. The topic fuzzy differ-
ential equation(FDE) has been rapidly developing in recent years. The use of fuzzy
differential equations is an innate way to model dynamic systems under possibilistic
uncertainty [29]. The notion of the fuzzy derivative was first induced by Chang and
Zadeh [11]. It was followed up by Dubois and Prade [12]. Other process has been
discussed by Puri and Ralescu [23] and Goetschel and Voxman [14]. The concept
of differential equations in a fuzzy environment was first formulated by Kaleva [20].
In fuzzy differential equation the concepts of all derivative is deliberated as either
Hukuhara or generalized derivatives. The Hukuhara differentiability has a deficiency
(see [3, 13]). The solution turns fuzzier as time goes by. Bede manifested that a
large class of BVPs has no solution if the Hukuhara derivative is used [4]. To over-
come this difficulty, the concept of a generalized derivative was developed ( [3, 8])
and fuzzy differential equations were discussed using this concept (see [5, 9, 10, 26]).
Khastan and Nieto found solutions for a large enough class of boundary value prob-
lems using the generalized derivative [21].Bede in [6] discussed the generalized



Sankar Prasad Mondal et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 2, 197–221

differentiability for fuzzy valued functions. The disadvantage of strongly general-
ized differentiability of a function in comparison H-differentiability is that, a fuzzy
differential equation has no unique solution [3]. Stefanini and Bede (see [26, 27])
by the concept of generalization of the Hukuhara difference for compact convex
set and introduced generalized Hukuhara differentiability for fuzzy valued function
and they demonstrated that, this concept of differentiability have relationships with
weakly generalized differentiability and strongly generalized differentiability. Re-
cently Gasilov et. al. [15] solve the fuzzy initial value problem by a new technique
where Barros et. al. [7] solve fuzzy differential equation via fuzzification of the
derivative operator.

1.2. Second order fuzzy differential equation. Second order fuzzy Differential
Equation (FDE) is also most important among all FDE. Second order FDE has
many applications. There are many different methods for solving this FDE. In [22]
the authors consider two point fuzzy boundary value problems (BVP). Wang and
Gue [28] consider second order fuzzy differential equation and solve the problem
by adomian method. Gasilov et al. in [16] described a new solution procedure by
linear transformation on second order BVP. Repeatedly in [15] , Gasilov et al. take
second order initial value problem. The solution strategy is same as the previous
one. Using fuzzy Laplace transformation (FLT),Toluti and Ahmadi [24] solving
fuzzy two order differential equation. Ahmad et al. [2] apply FLT in fuzzy two
point BVP. There exists some paper where numerical solutions are derived. In [17]
approximate solution of second order fuzzy BVP was found. Variational iteration
methods are applying in [1]. Jamshidi and Avazpour [18] find solution using shoot-
ing method. Rabiei et al. [25] taking improved runge-kutta nystrom method for
solving second order FDE. Ismail et al. [19] Nth Order Two Point Fuzzy Boundary
Value Problems by Optimal Homotopy Asymptotic Method.

There are many approaches in solve the second order FDE. These are (i) The one
approach is Hukuhara or generalized derivative. There is some difficulty in using
Hukuhara derivative approach. To overcome the difficulty generalized derivative was
developed. (ii) The second approaches are extension principle. In this method first
we solve the associated crisp differential equation and then fuzzify the solutions. (iii)
The third approaches is the fuzzy problem transformed into a crisp problem.(iv) The
fourth one is the method base on linear transform. Split up the problem into two
parts, corresponding crisp problem and the fuzzy problems. Both the solutions are
unique. (v) The another approaches is numerical solution of this FDE.

1.3. Motivation. Many researcher works on second order fuzzy differential equa-
tion. All the authors take only the fuzzy initial value i.e., the initial condition is
fuzzy number. But if the only coefficients and coefficients and initial condition both
of the second order differential equation is fuzzy number then how its behavior is.
For these we take possible three cases: Initial condition is fuzzy, coefficients are
fuzzy and both initial condition and coefficients are fuzzy number. In other hand
previously all authors take fuzzy number with maximum gradation one. But it is
not necessary that the maximum gradation is one. To develop in generalized sense
we take generalized fuzzy number.
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1.4. Novelties. In spite of above mentioned developments on second order fuzzy
differential equation, the following lacunas still exists in the formulation and solution
of second order fuzzy differential equation, which are summarized below:

(i) Though there are some articles of second order fuzzy differential equation prob-
lem was solved but till now none has solve FDE in fuzzy environment i.e., Initial
conditions are fuzzy number, coefficients are fuzzy number, initial conditions and
coefficient are both fuzzy numbers.

(ii) Here also second order differential equation is solved with generalized trape-
zoidal fuzzy number.

1.5. Structure of the paper. The paper is organized as follows. In Section 2,
we recall some fundamental results on fuzzy number and fuzzy calculus. In Sec-
tion 3, second order FDE is discussed in generalized trapezoidal fuzzy environment.
Numerical examples are also given in Section 4. Application is given in Section 5.
Finally we conclude the paper and tell some future research scope in Section 6.

2. Preliminaries

Definition 2.1. (Fuzzy Set) A fuzzy set Ã is defined by Ã = {(x, µÃ(x)) :
xεA, µÃ(x)ε[0, 1]}. In the pair (x, µÃ(x)) the first element belongs to the classical
set A, the second element µÃ(x), belongs to the interval [0, 1], called membership
function.

Definition 2.2. (α-cut of a fuzzy set) The α-level set (or, interval of confidence

at level α or α-cut) of the fuzzy set Ã of X that have membership values in A greater

than or equal to α i.e., Ã = {x : µÃ(x) ≥ α, xεX, αε[0, 1]}.

Definition 2.3. (Fuzzy number) A fuzzy number is an extension of a regular
number in the sense that it does not refer to one single value but rather to a connected
set of possible values, where each possible value has its own weight between 0 and
1.This weight is called membership function. Thus a fuzzy number is a convex and
normal fuzzy set.

Definition 2.4. (Trapezoidal fuzzy number) A TrIFN Ãi is a subset of IFN in
R with following membership function and non membership function as follows:

µÃ(x) =


x−a1
a2−a1 if a1 ≤ x < a2
1 if a2 ≤ x ≤ a3
a4−x
a4−a3 if a3 < x ≤ a4
0 otherwise

where a1 ≤ a2 ≤ a3 ≤ a4 and the TrFN is denoted by

ÃTrFN = (a1, a2, a3, a4)
199
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Definition 2.5. (Generalized trapezoidal fuzzy number) A GTrIFN Ãi is a
subset of IFN in R with following membership function and non membership func-
tion as follows:

µÃ(x) =


ω x−a1
a2−a1 if a1 ≤ x < a2

ω if a2 ≤ x ≤ a3
ω a4−x
a3−a3 if a3 < x ≤ a4

0 otherwise

where a1 ≤ a2 ≤ a3 ≤ a4 and GTrFN is denoted by

ÃGTrFN = (a1, a2, a3, a4;ω)

Now we have proposed a chart of generalized fuzzy number

Figure 1. Chart of TrFN and GTrFN

Definition 2.6 ([20]). (Generalized Hukuhara difference) The generalized
Hukuhara difference of two fuzzy number u, v ∈ <F is defines as follows

u	gH v = w is equivalent to

{
(i)u = v ⊕ w
(ii)v = u⊕ (−1)w

Consider [w]α = [w1(α), w2(α)], then w1(α) = min{u1(α)−v1(α), u2(α)−v2(α)}
and w2(α) = max{u1(α)− v1(α), u2(α)− v2(α)}

Here the parametric representation of a fuzzy valued function f : [a, b] → <F is
expressed by [f(t)]α = [f1(t, α), f2(t, α)], t ∈ [a, b], α ∈ [0, 1].

Definition 2.7 ([20]). (Generalized Hukuhara derivative for first order) The
generalized Hukuhara derivative of a fuzzy valued function f : (a, b) → <F at t0 is

defined as f
′
(t0)=limh→0

f(t0+h)	gHf(t0)
h

If f
′
(t0) ∈ <F satisfying (2.1) exists, we say that f is generalized Hukuhara

differentiable at t0.
Also we say that f(t) is (i)-gH differentiable at t0 if
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[f
′
(t0)]α = [f

′

1(t0, α), f
′

2(t0, α)]

and f(t) is (ii)-gH differentiable at t0 if

[f
′
(t0)]α = [f

′

2(t0, α), f
′

1(t0, α)]

Definition 2.8 ([23]). (Generalized Hukuhara derivative for second or-
der) The second order generalized Hukuhara derivative of a fuzzy valued function
f : (a, b)→ <F at t0 is defined as

f
′′
(t0) = limh→0

f
′
(t0+h)	gHf

′
(t0)

h

If f
′′ ∈ <F , we say that f

′
(t0) is generalized Hukuhara at t0.

Also we say that f
′
(t0) is (i)-gH differentiable at t0 if

f
′′
(t0, α) =

{
(f

′

1(t0, α), f
′

2(t0, α)) if f be (i)-gH differentiable on (a,b)

(f
′

2(t0, α), f
′

1(t0, α)) if f be (ii)-gH differentiable on (a,b)

for all α ∈ [0, 1], and that f
′
(t0) is (ii)-gH differentiable at t0 if

f
′′
(t0, α) =

{
(f

′

2(t0, α), f
′

1(t0, α)) if f be (i)-gH differentiable on (a,b)

(f
′

1(t0, α), f
′

2(t0, α)) if f be (ii)-gH differentiable on (a,b)

for all α ∈ [0, 1].

Definition 2.9. (Second order fuzzy ordinary differential equation (FODE)

Consider the second order linear homogeneous ordinary differential equation d2x(x)
dt2 =

kx(t),k > 0 with initial conditions x(t0) = a and dx(t0)
dt = b.

The above ODE is called FODE if any one of the following three cases holds:

(i) Only a and b is generalized fuzzy number (Type-I).

(ii) Only k is a generalized fuzzy number (Type-II).

(iii) Both k, a and b are generalized fuzzy numbers (Type-III).

Figure 2. Second order fuzzy differential equation
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Definition 2.10. (Strong and week solution) If the solution of fuzzy differential
equation is of the form [x1(t, α), x2(t, α)], the solution is called strong solution when

dx1(t,α)
dα > 0, dx2(t,α)

dα < 0 ∀α ∈ [0, ω], x1(t, ω) ≤ x2(t, ω).
Otherwise it is weak solution.

3. Solution procedure of 2nd order linear homogeneous FODE

The solution procedures of 2nd order linear homogeneous FODE of Type-I, Type-
II and Type-III are described taking the coefficients positive and negative respec-
tively. Here fuzzy numbers are taken as GTrFNs.

3.1. Solution procedure of 2nd order linear homogeneous FODE when co-
efficient is positive. For this section two different cases arise

3.1.1 Solution Procedure of 2nd Order Linear Homogeneous FODE of
Type-I i.e., Initial value is Fuzzy number

Consider the initial value problem

d2x(t)

dt2
= kx(t), k > 0(3.1)

With fuzzy initial condition x(t0) = ã = (a1, a2, a3, a4;ω) and dx(t0)
dt = b̃ =

(b1, b2, b3, b4;ω)

Here we solve the given problem for (i)-gH and (ii)-gH differentiability concepts
respectively.

Here four cases arise

Case 3.1.1.1: when x(t) and dx(t)
dt is (i)-gH differentiable

Case 3.1.1.2: when x(t) is (i)-gH differentiable and dx(t)
dt is (ii)-gH differentiable

Case 3.1.1.3: when x(t) is (ii)-gH differentiable and dx(t)
dt is (i)-gH differentiable

Case 3.1.1.4: when x(t) and dx(t)
dt is (ii)-gH differentiable

Using the concept of Generalized Hukuhara differentiability the Case 3.1.1.1
and Case 3.1.1.4 are same where the Case 3.1.1.2 and Case 3.1.1.3 are same.

Solution of Case 3.1.1.1 and Case 3.1.1.4

In these case we have from (3.1) two differential equation

d2x1(t, α)

dt2
= kx1(t, α)(3.2)
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and

d2x2(t, α)

dt3
= kx2(t, α)(3.3)

With initial condition x1(t0, α) = a1+αlã
ω , x2(t0, α) = a4−αrã

ω , dx1(t0,α)
dt = b1+

αl
b̃

ω

and dx2(t0,α)
dt = b4 −

αr
b̃

ω

Where, lã = a2 − a1,rã = a4 − a3, l̃b = b2 − b1 and rb̃ = b4 − b3.

The general solution of (3.2) is given by

x1(t, α) = c1e
√
kt + c2e

−
√
kt(3.4)

Using initial condition we have

a1 +
αlã
ω

= c1e
√
kt0 + c2e

−
√
kt0(3.5)

and

1√
k

(b1 +
αl̃b
ω

) = c1e
√
kt0 − c2e−

√
kt0(3.6)

Solving we get

c1 =
1

2
{(a1 +

αlã
ω

) +
1√
k

(b1 +
αl̃b
ω

)}e−
√
kt0(3.7)

and

c2 =
1

2
{(a1 +

αlã
ω

)− 1√
k

(b1 −
αl̃b
ω

)}e
√
kt0(3.8)

Hence from (3.4) we have

x1(t, α) = 1
2{(a1 + αlã

ω ) + 1√
k

(b1 +
αl
b̃

ω )}e−
√
k(t−t0) + 1

2{(a1 + αlã
ω ) − 1√

k
(b1 −

αl
b̃

ω )}e−
√
k(t−t0)

Similarly from (3.3) we have

x2(t, α) = 1
2{(a4 −

αrã
ω ) + 1√

k
(b4 −

αr
b̃

ω )}e−
√
k(t−t0) − 1

2{(a4 −
αrã
ω ) − 1√

k
(b4 −

αr
b̃

ω )}e−
√
k(t−t0)
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Solution of Case 3.1.1.2 and Case 3.1.1.3

In these case we have from (3.1) two differential equation

d2x2(t, α)

dt2
= kx1(t, α)(3.9)

d2x1(t, α)

dt3
= kx2(t, α)(3.10)

With initial condition x1(t0, α) = a1+αlã
ω , x2(t0, α) = a4−αrã

ω , dx1(t0,α)
dt = b1+

αl
b̃

ω

and dx2(t0,α)
dt = b4 −

αr
b̃

ω

Where, lã = a2 − a1,rã = a4 − a3, l̃b = b2 − b1 and rb̃ = b4 − b3.

The general solution are

x1(t, α) = d1e
√
kt + d2e

−
√
kt + d3 sin

√
kt+ d4 cos

√
kt(3.11)

and

x2(t, α) = d1e
√
kt + d2e

−
√
kt − d3 sin

√
kt− d4 cos

√
kt(3.12)

Using initial condition we have

a1 + αlã
ω = d1e

√
kt0 + d2e

−
√
kt0 + d3 sin

√
kt0 + d4 cos

√
kt0

1√
k

(b1 +
αl
b̃

ω ) = d1e
√
kt0 − d2e−

√
kt0 + d3 sin

√
kt0 − d4 cos

√
kt0

a4 − αrã
ω = d1e

√
kt0 + d2e

−
√
kt0 − d3 sin

√
kt0 − d4 cos

√
kt0

1√
k

(b4 −
αr
b̃

ω ) = d1e
√
kt0 − d2e−

√
kt0 − d3 sin

√
kt0 + d4 cos

√
kt0

Solving this above equation we get

d1 = 1
4{a1 + a4 + α(lã−rã)

ω + 1√
k

(b1 + b4 +
α(l

b̃
−r

b̃
)

ω )}e−
√
kt0

d2 = 1
4{a1 + a4 + α(lã−rã)

ω − 1√
k

(b1 + b4 +
α(l

b̃
−r

b̃
)

ω )}e
√
kt0

d3 = 1
4

1
sin
√
kt0
{a1 − a4 + α(lã+rã)

ω + 1√
k

(b1 − b4 +
α(l

b̃
+r

b̃
)

ω )}

d4 = 1
4

1
sin
√
kt0
{a1 − a4 + α(lã+rã)

ω − 1√
k

(b1 − b4 +
α(l

b̃
+r

b̃
)

ω )}

Hence the solution is (3.11) and (3.12) when the constants are the above value.
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3.1.2 Solution Procedure of 2nd Order Linear Homogeneous FODE of
Type-II

Consider the initial value problem

d2x(t)

dt2
= k̃x(t)(3.13)

With k̃ = (k1, k2, k3, k4;λ) > 0 and

With fuzzy initial condition x(t0) = a and dx(t0)
dt = b

Here we solve the given problem for (i)-gH and (ii)-gH differentiability concepts
respectively.

Here four cases arise

Case 3.1.2.1: when x(t) and dx(t)
dt is (i)-gH differentiable

Case 3.1.2.2: when x(t) is (i)-gH differentiable and dx(t)
dt is (ii)-gH differentiable

Case 3.1.2.3: when x(t) is (ii)-gH differentiable and dx(t)
dt is (i)-gH differentiable

Case 3.1.2.4: when x(t) and dx(t)
dt is (ii)-gH differentiable

Using the concept of Generalized Hukuhara differentiability the Case 3.1.2.1
and Case 3.1.2.4 are same where the Case 3.1.2.2 and Case 3.1.2.3 are same.

Solution of Case 3.1.2.1 and Case 3.1.2.4

In this case we have from (3.13) two differential equations

d2x1(t, α)

dt2
= k1(α)x1(t, α)(3.14)

d2x2(t, α)

dt2
= k2(α)x2(t, α)(3.15)

With initial conditions x1(t0, α) = a, x2(t0, α) = a, dx1(t0,α)
dt = b and dx2(t0,α)

dt = b

and coefficients coefficients k1(α) = k1 +
αl
k̃

λ and k2(α) = k4 −
αr
k̃

λ

Using the initial condition the solution is given by

x1(t, α) = 1
2{a+ 1√

k1+
αl
k̃
λ

b}e
√
k1+

αl
k̃
λ (t−t0) + 1

2{a−
1√

k1+
αl
k̃
λ

b}e−
√
k1+

αl
k̃
λ (t−t0)

and
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x2(t, α) = 1
2{a+ 1√

k4−
αr
k̃
λ

b}e
√
k4−

αr
k̃
λ (t−t0) + 1

2{a−
1√

k4−
αr
k̃
λ

b}e−
√
k4−

αr
k̃
λ (t−t0)

Solution of Case 3.1.2.2 and Case 3.1.2.3

In this case we have from (3.13) two differential equations

d2x2(t, α)

dt2
= k1(α)x1(t, α)(3.16)

d2x1(t, α)

dt2
= k2(α)x2(t, α)(3.17)

With initial conditions x1(t0, α) = a, x2(t0, α) = a, dx1(t0,α)
dt = b and dx2(t0,α)

dt = b

and coefficients k1(α) = k1 +
αl
k̃

λ and k2(α) = k4 −
αr
k̃

λ

The solution is written as

x1(t, α) = d1e
√
p(α)t + d2e

−
√
p(α)t + d3 sin

√
p(α)t+ d4 cos

√
p(α)t

x2(t, α) =
√

k2(α)
k1(α)

[d1e
√
p(α)t + d2e

−
√
p(α)t − d3 sin

√
p(α)t− d4 cos

√
p(α)t]

Where, p(α) =
√
k1(α)k2(α)

d1 = 1
4 (a+ b√

p(α)
)(1 +

√
k1(α)
k2(α)

)e−
√
p(α)t0

d2 = 1
4 (a− b√

p(α)
)(1 +

√
k1(α)
k2(α)

)e
√
p(α)t0

d3 = 1
2 (a sin

√
p(α)t0 +

b cos
√
p(α)t0√
p(α)

)(1−
√

k1(α)
k2(α)

)

d4 = 1
2 (a cos

√
p(α)t0 −

b sin
√
p(α)t0√
p(α)

)(1−
√

k1(α)
k2(α)

)

3.1.1.3 Solution Procedure of 2nd Order Linear Homogeneous FODE of
Type-III

Consider the initial value problem

d2x(t)

dt2
= k̃x(t)(3.18)

and k̃ = (k1, k2, k3, k4;λ) > 0

With fuzzy initial condition x(t0) = ã = (a1, a2, a3, a4;ω) and dx(t0)
dt = b̃ =

(b1, b2, b3, b4;ω)
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Here we solve the given problem for (i)-gH and (ii)-gH differentiability concepts
respectively.

Here four cases arise

Case 3.1.3.1: when x(t) and dx(t)
dt is (i)-gH differentiable

Case 3.1.3.2: when x(t) is (i)-gH differentiable and dx(t)
dt is (ii)-gH differentiable

Case 3.1.3.3: when x(t) is (ii)-gH differentiable and dx(t)
dt is (i)-gH differentiable

Case 3.1.3.4: when x(t) and dx(t)
dt is (ii)-gH differentiable

Using the concept of Generalized Hukuhara differentiability the Case 3.1.3.1
and Case 3.1.3.4 are same where the Case 3.1.3.2 and Case 3.1.3.3 are same.

Solution of Case 3.1.3.1 and Case 3.1.3.4

In this case we have from (3.18) two differential equations

d2x1(t, α)

dt2
= k1(α)x1(t, α)(3.19)

d2x2(t, α)

dt2
= k2(α)x2(t, α)(3.20)

With initial conditions x1(t0, α) = a1 + αlã
ω , x2(t0, α) = a4 − αrã

ω , dx1(t0,α)
dt =

b1 +
αl
b̃

ω and dx2(t0,α)
dt = b4 − αrã

ω

With coefficients k1(α) = k1 +
αl
k̃

λ and k2(α) = k4 −
αr
k̃

λ

Using the initial condition the solution is given by

x1(t, α) = 1
2{(a1 + αlã

η ) + 1√
k1+

αl
k̃
η

(b1 +
αl
b̃

η )}e

√
k1+

αl
k̃
η (t−t0)

+ 1
2{(a1 + αlã

η ) −

1√
k1+

αl
k̃
η

(b1 +
αl
b̃

η )}e−
√
k1+

αl
k̃
η (t−t0)

and

x2(t, α) = 1
2{(a4 −

αrã
η ) + 1√

k4−
αr
k̃
η

(b4 − αrã
η )}e

√
k4−

αr
k̃
η (t−t0) + 1

2{(a4 −
αrã
η ) −

1√
k4−

αr
k̃
η

(b4 − αrã
η )}e−

√
k4−

αr
k̃
η (t−t0)

Where, η = min{ω, λ}
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Solution of Case 3.1.3.2 and Case 3.1.3.3

In this case we have from (3.18) two differential equations

d2x2(t, α)

dt2
= k1(α)x1(t, α)(3.21)

d2x1(t, α)

dt2
= k2(α)x2(t, α)(3.22)

With initial conditions x1(t0, α) = a1 + αlã
ω , x2(t0, α) = a4 − αrã

ω , dx1(t0,α)
dt =

b1 +
αl
b̃

ω and dx2(t0,α)
dt = b4 − αrã

ω

With coefficients k1(α) = k1 +
αl
k̃

λ and k2(α) = k4 −
αr
k̃

λ

The solution is written as

x1(t, α) = d1e
√
p(α)t + d2e

−
√
p(α)t + d3 sin

√
p(α)t+ d4 cos

√
p(α)t

x2(t, α) =
√

k1(α)
k2(α)

[d1e
√
p(α)t + d2e

−
√
p(α)t − d3 sin

√
p(α)t− d4 cos

√
p(α)t]

Where, p(α) =
√
k1(α)k2(α)

d1 = 1
4 [{(a1 + αlã

η ) +
√

k2(α)
k1(α)

(a4 − αrã
η )} + 1√

p(α)
{(b1 +

αl
b̃

η ) +
√

k2(α)
k1(α)

(b4 −
αrã
η )}]e−

√
p(α)t0

d2 = 1
4 [{(a1 + αlã

η ) +
√

k2(α)
k1(α)

(a4 − αrã
η )} − 1√

p(α)
{(b1 +

αl
b̃

η ) +
√

k2(α)
k1(α)

(b4 −
αrã
η )}]e−

√
p(α)t0

d3 = 1
4 [{(a1+αlã

η )−
√

k2(α)
k1(α)

(a4−αrãη )} sin
√
p(α)t0+ 1√

p(α)
{(b1+

αl
b̃

η )−
√

k2(α)
k1(α)

(b4−
αrã
η )} cos

√
p(α)t0]

d4 = 1
4 [{(a1+αlã

η )−
√

k2(α)
k1(α)

(a4−αrãη )} cos
√
p(α)t0− 1√

p(α)
{(b1+

αl
b̃

η )−
√

k2(α)
k1(α)

(b4−
αrã
η )} sin

√
p(α)t0]

Where, η = min{ω, λ}

3.2. Solution Procedure of 2nd Order Linear Homogeneous FODE when
Coefficient is Negative. We split up this case into three subcases

Solution procedure of 2nd order linear homogeneous FODE of Type-I
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Consider the initial value problem

d2x(t)

dt2
= −mx(t), k > 0(3.23)

With fuzzy initial condition x(t0) = ã = (a1, a2, a3, a4;ω) and dx(t0)
dt = b̃ =

(b1, b2, b3, b4;ω)

Here we solve the given problem for (i)-gH and (ii)-gH differentiability concepts
respectively.

Here four cases arise

Case 3.2.1.1: when x(t) and dx(t)
dt is (i)-gH differentiable

Case 3.2.1.2: when x(t) is (i)-gH differentiable and dx(t)
dt is (ii)-gH differentiable

Case 3.2.1.3: when x(t) is (ii)-gH differentiable and dx(t)
dt is (i)-gH differentiable

Case 3.2.1.4: when x(t) and dx(t)
dt is (ii)-gH differentiable

Using the concept of Generalized Hukuhara differentiability the Case 3.2.1.1
and Case 3.2.1.4 are same where the Case 3.2.1.2 and Case 3.2.1.3 are same.

Solution of Case 3.2.1.1 and Case 3.2.1.4

In these case we have from (3.23) two differential equation

d2x1(t, α)

dt2
= −mx2(t, α)(3.24)

d2x2(t, α)

dt3
= −mx1(t, α)(3.25)

With initial condition x1(t0, α) = a1+αlã
ω , x2(t0, α) = a4−αrã

ω , dx1(t0,α)
dt = b1+

αl
b̃

ω

and dx2(t0,α)
dt = b4 −

αr
b̃

ω

Where, lã = a2 − a1,rã = a4 − a3, l̃b = b2 − b1 and rb̃ = b4 − b3.

The general solution are

x1(t, α) = d1e
√
mt + d2e

−
√
mt + d3 sin

√
mt+ d4 cos

√
mt(3.26)

and

x2(t, α) = −d1e
√
mt − d2e−

√
mt + d3 sin

√
mt+ d4 cos

√
mt(3.27)
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Using initial condition we have

a1 + αlã
ω = d1e

√
mt0 + d2e

−
√
mt0 + d3 sin

√
mt0 + d4 cos

√
mt0

1√
m

(b1 +
αl
b̃

ω ) = d1e
√
mt0 − d2e−

√
mt0 + d3 cos

√
mt0 − d4 sin

√
mt0

a4 − αrã
ω = −d1e

√
mt0 − d2e−

√
mt0 + d3 sin

√
mt0 − d4 cos

√
mt0

1√
m

(b4 −
αr
b̃

ω ) = −d1e
√
mt0 + d2e

−
√
mt0 + d3 cos

√
kt0 − d4 sin

√
mt0

Solving this above equation we get

d1 = 1
4{a1 − a4 + α(lã+rã)

ω + 1√
m

(b1 − b4 +
α(l

b̃
+r

b̃
)

ω )}e−
√
mt0

d2 = 1
4{a1 − a4 + α(lã+rã)

ω − 1√
m

(b1 − b4 +
α(l

b̃
+r

b̃
)

ω )}e
√
mt0

d3 = 1
2{a1 + a4 + α(lã−rã)

ω sin
√
mt0 + 1√

m
(b1 + b4 +

α(l
b̃
−r

b̃
)

ω ) cos
√
mt0}

d4 = 1
2{a1 + a4 + α(lã−rã)

ω cos
√
mt0 − 1√

m
(b1 + b4 +

α(l
b̃
−r

b̃
)

ω ) sin
√
mt0}

Hence the solution is (3.26) and (3.27) when the constants are the above value.

Solution of Case 3.2.1.2 and Case 3.2.1.3

In these case we have from (3.23) two differential equation

d2x2(t, α)

dt2
= −mx2(t, α)(3.28)

d2x1(t, α)

dt3
= −mx1(t, α)(3.29)

With initial condition x1(t0, α) = a1+αlã
ω , x2(t0, α) = a4−αrã

ω , dx1(t0,α)
dt = b1+

αl
b̃

ω

and dx2(t0,α)
dt = b4 −

αr
b̃

ω

Where, lã = a2 − a1,rã = a4 − a3, l̃b = b2 − b1 and rb̃ = b4 − b3.

Using the above initial conditions we get the solution as

x1(t, α) = (a1 + αlã
ω ) cos

√
m(t− t0) + 1√

m
(b1 +

αl
b̃

ω ) sin
√
m(t− t0)

and
x2(t, α) = (a4 − αrã

ω ) cos
√
m(t− t0) + 1√

m
(b4 −

αr
b̃

ω ) sin
√
m(t− t0)
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3.2.2 Solution Procedure of 2nd Order Linear Homogeneous FODE of
Type-II

Consider the initial value problem

d2x(t)

dt2
= −m̃x(t), m̃ = (m1,m2,m3,m4;λ) > 0(3.30)

With fuzzy initial condition x(t0) = a and dx(t0)
dt = b

Here we solve the given problem for (i)-gH and (ii)-gH differentiability concepts
respectively.

Here four cases arise

Case 3.2.2.1: when x(t) and dx(t)
dt is (i)-gH differentiable

Case 3.2.2.2: when x(t) is (i)-gH differentiable and dx(t)
dt is (ii)-gH differentiable

Case 3.2.2.3: when x(t) is (ii)-gH differentiable and dx(t)
dt is (i)-gH differentiable

Case 3.2.2.4: when x(t) and dx(t)
dt is (ii)-gH differentiable

Using the concept of Generalized Hukuhara differentiability the Case 3.2.2.1
and Case 3.2.2.4 are same where the Case 3.2.2.2 and Case 3.2.2.3 are same.

Solution of Case 3.2.2.1 and Case 3.2.2.4

In this case we have from (3.30) two differential equations

d2x1(t, α)

dt2
= −m2(α)x2(t, α)(3.31)

d2x2(t, α)

dt2
= −m1(α)x1(t, α)(3.32)

With initial conditions x1(t0, α) = a, x2(t0, α) = a, dx1(t0,α)
dt = b and dx2(t0,α)

dt = b

With coefficients m1(α) = m1 + αlm̃
λ and m2(α) = m4 − αrm̃

λ

The solution is written as

x1(t, α) = d1e
√
q(α)t + d2e

−
√
q(α)t + d3 sin

√
q(α)t+ d4 cos

√
q(α)t(3.33)
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√
m1(α)

m2(α)
x2(t, α) = −d1e

√
q(α)t − d2e−

√
q(α)t + d3 sin

√
q(α)t+ d4 cos

√
q(α)t(3.34)

(3.35)

Where, q(α) =
√
m1(α)m2(α)

d1 = 1
4 (a+ b√

q(α)
)(1−

√
m1(α)
m2(α)

)e−
√
q(α)t0

d2 = 1
4 (a− b√

q(α)
)(1−

√
m1(α)
m2(α)

)e
√
q(α)t0

d3 = 1
2 (a sin

√
q(α)t0 +

b cos
√
q(α)t0√
q(α)

)(1 +
√

m1(α)
m2(α)

)

d4 = 1
2 (a cos

√
q(α)t0 −

b sin
√
q(α)t0√
q(α)

)(1 +
√

m1(α)
m2(α)

)

Solution of Case 3.2.2.3 and Case 3.2.2.3

In this case we have from (3.1.2.1) two differential equations

d2x2(t, α)

dt2
= −m2(α)x2(t, α)(3.36)

d2x1(t, α)

dt2
= −m1(α)x1(t, α)(3.37)

With initial conditions x1(t0, α) = a, x2(t0, α) = a, dx1(t0,α)
dt = b and dx2(t0,α)

dt = b

With coefficients k1(α) = k1 +
αl
k̃

λ and k2(α) = k4 −
αr
k̃

λ

The general solution is given by

x1(t, α) = c1 sin
√
m1(t, α)t+ c2 cos

√
m1(α)t(3.38)

x2(t, α) = c3 sin
√
m2(t, α)t+ c4 cos

√
m2(α)t(3.39)

Where, c1 = a sin
√
m1(α)t0 +

b cos
√
m1(α)t0√
m1(α)

c2 = a sin
√
m1(α)t0 −

b cos
√
m1(α)t0√
m1(α)

c3 = a sin
√
m2(α)t0 +

b cos
√
m2(α)t0√
m2(α)

c4 = a sin
√
m2(α)t0 −

b cos
√
m2(α)t0√
m2(α)
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3.2.3 Solution Procedure of 2nd Order Linear Homogeneous FODE of
Type-III

Consider the initial value problem

d2x(t)

dt2
= −m̃x(t), m̃ = (m1,m2,m3,m4;λ) > 0(3.40)

With fuzzy initial condition x(t0) = ã = (a1, a2, a3, a4;ω) and dx(t0)
dt = b̃ =

(b1, b2, b3, b4;ω)

Here we solve the given problem for (i)-gH and (ii)-gH differentiability concepts
respectively.

Here four cases arise

Case 3.2.3.1: when x(t) and dx(t)
dt is (i)-gH differentiable

Case 3.2.3.2: when x(t) is (i)-gH differentiable and dx(t)
dt is (ii)-gH differentiable

Case 3.2.3.3: when x(t) is (ii)-gH differentiable and dx(t)
dt is (i)-gH differentiable

Case 3.2.3.4: when x(t) and dx(t)
dt is (ii)-gH differentiable

Using the concept of Generalized Hukuhara differentiability the Case 3.2.3.1
and Case 3.2.3.4 are same where the Case 3.2.3.2 and Case 3.2.3.3 are same.

Solution of Case 3.2.3.1 and Case 3.2.3.4

In this case we have from (3.40) two differential equations

d2x1(t, α)

dt2
= −m2(α)x2(t, α)(3.41)

d2x2(t, α)

dt2
= −m1(α)x1(t, α)(3.42)

With initial conditions x1(t0, α) = a1 + αlã
ω , x2(t0, α) = a4 − αrã

ω , dx1(t0,α)
dt =

b1 +
αl
b̃

ω and dx2(t0,α)
dt = b4 − αrã

ω

With coefficients m1(α) = m1 + αlm̃
λ and m2(α) = m4 − αrm̃

λ

The solution is written as

x1(t, α) = e1e
√
q(α)t + e2e

−
√
e(α)t + e3 sin

√
q(α)t+ e4 cos

√
q(α)t(3.43)
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x2(t, α) =

√
m1(α)

m2(α)
[−e1e

√
q(α)t − e2e−

√
q(α)t + e3 sin

√
e(α)t+ e4 cos

√
q(α)t](3.44)

Where, q(α) =
√
m1(α)m2(α)

e1 = 1
4 [{(a1 + αlã

η ) +
√

m2(α)
m1(α)

(a4 − αrã
η )} + 1√

q(α)
{(b1 +

αl
b̃

η ) −
√

m2(α)
m1(α)

(b4 −
αrã
η )}]e−

√
q(α)t0

e2 = 1
4 [{(a1 + αlã

η ) +
√

m2(α)
m1(α)

(a4 − αrã
η )} − 1√

q(α)
{(b1 +

αl
b̃

η ) −
√

m2(α)
m1(α)

(b4 −
αrã
η )}]e−

√
q(α)t0

e3 = 1
2 [{(a1+αlã

η )+
√

m2(α)
m1(α)

(a4−αrãη )} sin
√
q(α)t0+ 1√

q(α)
{(b1+

αl
b̃

η )+
√

m2(α)
m1(α)

(b4−
αrã
η )} cos

√
q(α)t0]

e4 = 1
2 [{(a1+αlã

η )+
√

m2(α)
m1(α)

(a4−αrãη )} cos
√
q(α)t0− 1√

q(α)
{(b1+

αl
b̃

η )+
√

m2(α)
m1(α)

(b4−
αrã
η )} sin

√
q(α)t0]

Where, η = min{ω, λ}

Solution of Case 3.2.3.2 and Case 3.2.3.3

In this case we have from (3.40) two differential equations

d2x2(t, α)

dt2
= −m2(α)x2(t, α)(3.45)

d2x1(t, α)

dt2
= −m1(α)x1(t, α)(3.46)

With initial conditions x1(t0, α) = a1 + αlã
ω , x2(t0, α) = a4 − αrã

ω , dx1(t0,α)
dt =

b1 +
αl
b̃

ω and dx2(t0,α)
dt = b4 − αrã

ω

With coefficients m1(α) = m1 + αlm̃
λ and m2(α) = m4 − αrm̃

λ

The solution is written as

x1(t, α) = c1 sin
√
m1(α)t+ c2 cos

√
m1(α)t(3.47)

and

x2(t, α) = c3 sin
√
m2(α)t+ c4 cos

√
m2(α)t(3.48)
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Where, c1 = (a1 + αlã
η ) sin

√
m1(t, α)t0 + 1√

m1(α)
(b1 +

αl
b̃

η ) cos
√
m1(α)t0

c2 = (a1 + αlã
η ) cos

√
m1(t, α)t0 + 1√

m1(α)
(b1 −

αl
b̃

η ) sin
√
m1(α)t0

c3 = (a4 − αrã
η ) sin

√
m2(t, α)t0 + 1√

m2(α)
(b4 − αrã

η ) cos
√
m2(α)t0

c3 = (a4 − αrã
η ) cos

√
m2(t, α)t0 − 1√

m2(α)
(b4 − αrã

η ) sin
√
m2(α)t0

m1(α) = m1 + αlm̃
η and m2(α) = m4 − αrm̃

η

Where η = min{ω, λ}

4. Numerical example

Example 4.1: Solve d2x(t)
dt2 = x(t) with x(0.5) = 1̃,x

′
(0.5) = 0, where 1̃ =

(0.8, 1, 1.3, 1.6; 1)

Solution: When x(t) and dx(t)
dt are both (i)-gH or, (ii)-gH differentiable the so-

lution is

x1(t, α) = 1
2 (0.8 + 0.2α)(et−0.5 + e−t+0.5)

x2(t, α) = 1
2 (1.6− 0.3α)(et−0.5 − e−t+0.5)

Table 1. Solution for t = 2

α x1(t, α; 0.7) x2(t, α; 0.7)
0 1.8819 3.4068

0.1 1.9290 3.3430
0.2 1.9760 3.2791
0.3 2.0231 3.2152
0.4 2.0701 3.1513
0.5 2.1172 3.0875
0.6 2.1642 3.0236
0.7 2.2113 2.9597
0.8 2.2583 2.8958
0.9 2.3054 2.8319
1 2.3524 2.7681

Remarks: From the above table and graph we conclude that x1(t, α) is increas-
ing and x2(t, α) decreasing function. Hence we conclude that the solution is a strong
solution.

Example 4.2: Solve d2x(t)
dt2 = −4x(t) with x(0) = 1̃,x

′
(0) = 0, where 1̃ =

(0.8, 1, 1.3, 1.5; 0.8)
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Figure 3. Graph of solutions for t=2

Solution: When x(t) and dx(t)
dt are both (i)-gH or, (ii)-gH differentiable the so-

lution is

x1(t, α) = 1
4 (−0.7 + 0.5α)(e2t + e−2t) + 1.15 cos 2t

x2(t, α) = − 1
4 (−0.7 + 0.5α)(e2t + e−2t) + 1.15 cos 2t

Table 2. Solution for t = 2

α x1(t, α; 0.7) x2(t, α; 0.7)
0 0.6097 1.6899

0.1 0.6483 1.6513
0.2 0.6869 1.6127
0.3 0.7255 1.5742
0.4 0.7641 1.5356
0.5 0.8026 1.4970
0.6 0.8412 1.4584
0.7 0.8798 1.4199
0.8 0.9184 1.3813

Remarks: From the above table and graph we conclude that x1(t, α) is increas-
ing and x2(t, α) decreasing function. Hence we conclude that the solution is a strong
solution.

When x(t) is (i)-gH and dx(t)
dt is (ii)-gH or, x(t) is (ii)-gH and dx(t)

dt is (i)-gH dif-
ferentiable the the solution is

x1(t, α) = (0.8 + 0.25α) cos 2t and x2(t, α) = (1.3− 0.25α) cos 2t
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Figure 4. Graph of solutions for t=2

Table 3. Solution for t = 2

α x1(t, α; 0.7) x2(t, α; 0.7)
0 0.7999 1.2998

0.1 0.8249 1.2748
0.2 0.8499 1.2498
0.3 0.8749 1.2248
0.4 0.8999 1.1998
0.5 0.9249 1.1748
0.6 0.9499 1.1498
0.7 0.9749 1.1248
0.8 0.9998 1.0998

Remarks: From the above table and graph we conclude that x1(t, α) is increas-
ing and x2(t, α) decreasing function. Hence we conclude that the solution is a strong
solution.

5. Application

An 8-lb weight is placed upon the lower end of a coil spring suspended from
the ceiling. The weight comes to rest in its equilibrium position, thereby stretch-

ing the spring 1
2 ft. The weight is then pulled down about 1̃

4 ft [i.e.,( 1
8 ,

1
4 ,

1
2 ,

3
4 ; 1) ft]

bellow its equilibrium position and released at t=0 with an initial velocity 1 ft/sec
[i.e.,( 1

2 , 1, 2,
5
2 ) ft/sec], directed downward. Neglecting the resistance of the medium

and assuming that no external forces are present, solve the model.

Solution: By Hooks law F = KS, which gives 8 = K 1
2 and so K = 16 lb/ft.

Also m = m
g = 8

32
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Figure 5. Graph of solutions for t=2

The differential equation is

d2x(t)
dt2 = −64x(t), x(0) = ( 1

8 ,
1
4 ,

1
2 ,

3
4 ; 1) and x

′
(0) = (1

2 , 1, 2,
5
2 )

The solution when x(t) is (i)-gH differentiable and dx(t)
dt is (ii)-gH differentiable

or, x(t) is (ii)-gH differentiable and dx(t)
dt is (i)-gH differentiable then from (5.1) we

have

d2x2(t, α)

dt2
= −64x2(t, α)(5.1)

and

d2x1(t, α)

dt2
= −64x1(t, α)(5.2)

With, x1(0, α) = 1+α
8 and x2(0, α) = 3−α

4 , dx1(0,α)
dt = 1+α

2 and dx2(0,α)
dt = 5−α

2

Solving we get

x1(t, α) = 1+α
32 cos 8t+ 3(1+α)

32 sin 8t

and
x2(t, α) = 7−3α

32 cos 8t+ 17−5α
32 sin 8t

Remarks: From the above table and graph we conclude that x1(t, α) is increas-
ing and x2(t, α) decreasing function. Hence we conclude that the solution is a strong
solution.
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Table 4. Solution for t = 0.05

α x1(t, α; 0.7) x2(t, α; 0.7)
0 0.0653 0.4084

0.1 0.0718 0.3936
0.2 0.0783 0.3789
0.3 0.0849 0.3642
0.4 0.0914 0.3495
0.5 0.0979 0.3348
0.6 0.1045 0.3200
0.7 0.1110 0.3053
0.8 0.1175 0.2906
0.9 0.1241 0.2759
1 0.1306 0.2612

Figure 6. Graph of solutions for t=0.05

6. Conclusion

In this paper the solution of a second order differential equation in fuzzy environ-
ments are described. It is discussed for three different cases: Only initial condition,
coefficient and both initial condition and coefficient are taken as fuzzy numbers. Here
fuzzy numbers are taken as Generalized Trapezoidal Fuzzy Numbers (GTrFNs). The
result are very useful in the field of fuzzy differential equation in theoretical and ap-
plied sense. In future research we solve n-th order differential equation with different
type fuzzy environments and applied the results in different field like economics, en-
gineering and sciences.
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