
Annals of Fuzzy Mathematics and Informatics

Volume 11, No. 2, (February 2016), pp. 183–195

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Fuzzy metric space and generating space of
quasi-metric family

G. Rano, T. BAG, S. K. Samanta

Received 6 May 2015; Revised 30 June 2015; Accepted 10 August 2015

Abstract. The skeleton of this work consists of a relation between fuzzy
metric space and generating space of quasi-metric family (GSQMF). Here
we have attempted to establish two decomposition theorems. In the first
theorem, we deduce GSQMF from a fuzzy metric space. In the second
theorem, from a GSQMF, fuzzy metric space is derived. Lastly we try to
show that under certain conditions these two fuzzy metrics are similar.

2010 AMS Classification: 54E70, 54H25, 47H10, 54C60

Keywords: Fuzzy metric, Quasi-metric family, t-norm.

Corresponding Author: Gobardhan Rano (gobardhanr@gmail.com)

1. Introduction

L .A. Zadeh [15] first introduced an idea of fuzzy set in 1965. After that, in
1975, Kramosil and Michalek [7] have presented a concept of fuzzy metric space
which is very similar to that of generalized Menger space [4]. In 1984, Kaleva and
Seikkala [5] introduced a concept of fuzzy metric space which generalizes the notion
of a metric space by setting the distance between two points by a nonnegative
fuzzy number proving some fixed point theorems. Many authors [1, 2, 8, 9, 10, 13]
have developed fuzzy metric space theory in different ways. Chang et al.[3] gave
a definition of generating space of quasi-metric family which is a most generalized
structure unifying those of fuzzy metric space in the sense of Kaleva & Seikkala [5]
and Menger probabilistic metric spaces [14]. They [3, 12] also established several
fixed point theorems and minimization theorems in complete generating space of
quasi-metric family. In this paper, we have attempted to establish two decomposition
theorems. In the first theorem, we deduce GSQMF from a fuzzy metric space and
in the second theorem, from a GSQMF we deduce fuzzy metric space.

The organization of the paper is as follows:
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A brief introduction of the work is given in section 1. Section 2 comprises some
preliminary results. GSQMF from fuzzy metric space is deduced in section 3. A
fuzzy metric space is derived from a GSQMF in the spectrum of the section 4. In
section 5, it has been proved that under certain conditions two fuzzy metrics are
identical. A brief conclusion of this manuscript is given in section 6. Throughout
this paper straightforward proofs are omitted.

2. Preliminaries

In this section some preliminary results are given which will be used in this paper.

Definition 2.1 ([6]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called t-norm
if the following axioms are satisfied for all a, b, d ∈ [0, 1]:

(T1) a ∗ 1 = a (boundary condition),
(T2) b ≤ d implies a ∗ b ≤ a ∗ d (monotonicity),
(T3) a ∗ b = b ∗ a (commutativity),
(T4) a ∗ (b ∗ d) = (a ∗ b) ∗ d (associativity).

Definition 2.2 ([6]). ∗ is said to be continuous if for any sequences {an}, {bn} in
[0, 1] with lim

n→∞
an = a and lim

n→∞
bn = b implies lim

n→∞
(an ∗ bn) = (a ∗ b).

Definition 2.3 ([9]). The 3-tuple (X, M, ∗) is said to be a fuzzy metric space if
X is a nonempty arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × [0,∞) satisfying the following conditions :

(M1) M(x, y, 0) = 0,
(M2) M(x, y, t) = 1 ∀ t > 0 iff x = y,
(M3) M(x, y, t) = M(y, x, t) ∀x, y ∈ X, ∀ t ∈ [0,∞),
(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(M5) lim

t→∞
M(x, y, t) = 1.

Definition 2.4 ([11]). Let X be a nonempty set and {dα : α ∈ (0, 1)} be a
family of mappings from X × X into [0, ∞). Then (X, dα : α ∈ (0, 1)) is called
a generating space of quasi-metric family if it satisfies the following conditions :

(QM1) dα(x, y) = 0 ∀α ∈ (0, 1) iff x = y,
(QM2) dα(x, y) = dα(y, x) ∀x, y ∈ X and ∀α ∈ (0, 1),
(QM3) for any α ∈ (0, 1) there exists a β ∈ (0, α] such that

dα(x, y) ≤ dβ(x, z) + dβ(z, y) for all x, y, z ∈ X,
(QM4) for any x, y ∈ X, dα(x, y) is non-increasing in α.

Definition 2.5 ([11]). Let (X, dα : α ∈ (0, 1)) be a generating space of
quasi-metric family, then it is called a generating space of sub-strong quasi-metric
family, strong quasi-metric family and semi-metric family respectively, if (QM3) is
strengthened to (QM3u), (QM3t) and (QM3e), where

(QN3u) for any α ∈ (0, 1) there exists β ∈ (0, α] such that

dα(xm, xm+p) ≤
p−1∑
i=0

dβ(xm+i, xm+i+1)

for any p ∈ Z+ and xm+i ∈ X(i = 1, 2, ...., p− 1),
(QM3t) for any α ∈ (0, 1) there exists a β ∈ (0, α] such that
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dα(x, z) ≤ dα(x, y) + dβ(y, z)

for x, y, z ∈ X,
(QM3e) for any α ∈ (0, 1), it holds that

dα(x, z) ≤ dα(x, y) + dα(y, z)

for x, y, z ∈ X.

Definition 2.6 ([11]). Let (X, dα : α ∈ (0, 1)) be a generating space of semi-
metric family, where (dα : α ∈ (0, 1)) satisfies the following additional condition :
If x 6= y in X, then dα(x, y) > 0 ∀α ∈ (0, 1).
Then (X, dα : α ∈ (0, 1)) is called a generating space of metric family and
(dα : α ∈ (0, 1)) is called a metric family on X.

3. Decomposition theorem and examples

In this section, we deduce GSQMF from fuzzy metric space.

Theorem 3.1. Let (X, M, ∗) be a fuzzy metric space.
For α ∈ (0, 1) we define

dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}.

Then {dα : α ∈ (0, 1)} is a quasi-metric family on X and (X, dα : α ∈ (0, 1)) is
a generating space of quasi-metric family.

Proof. (QM1) Let x = y. Then M(x, y, t) = 1, ∀t > 0. Thus dα(x, y) = 0 ∀α ∈
(0, 1). Conversely if dα(x, y) = 0 ∀α ∈ (0, 1), then M(x, y, t) ≥ (1 − α) ∀t >
0 ∀α ∈ (0, 1). Thus M(x, y, t) = 1 ∀t > 0. So x = y.

(QM2) Since M satisfies (M3), (QM2) holds from definition.
(QM3) Since ∗ is continuous, for any α ∈ (0, 1) there exists a β ∈ (0, α] such

that (1− β) ∗ (1− β) = (1− α).
Now

dβ(x, y) + dβ(y, z)

=
∧
{t > 0 : M(x, y, t) ≥ (1− β)}+

∧
{s > 0 : M(y, z, s) ≥ (1− β)}

≥
∧
{t+ s > 0 : M(x, y, t) ≥ (1− β), M(y, z, s) ≥ (1− β)}.

On the other hand, M(x, y, t) ≥ (1− β), M(y, z, s) ≥ (1− β). Thus

M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s) ≥ (1− β) ∗ (1− β) = (1− α).

So dβ(x, y) + dβ(y, z) ≥
∧
{t+ s > 0 : M(x+ z, t+ s) ≥ (1− α)} = dα(x, z).

(QM4) Clearly dα(x, y) is non-increasing for α ∈ (0, 1) from definition. Hence
(X, dα : α ∈ (0, 1)) is a generating space of quasi-metric family. �

Note 3.2. If ∗ satisfies the condition given by :
(T5) ∀ α, β ∈ (0, 1), α ∗ β > 0,

then, from Theorem 3.1, it is clear that

d(1−(1−α)∗(1−β))(x, z) ≤ dα(x, y) + dβ(y, z) ∀ x, y, z ∈ X, ∀ α, β ∈ (0, 1).
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Note 3.3. In Theorem 3.1, if we take the continuous t-norm ∗ defined by a ∗ b =
min{a, b} ∀ a, b ∈ [0, 1] then (X, dα : α ∈ (0, 1)) is a generating space of
semi-metric family.

Theorem 3.4. Let (X, M, min) be a fuzzy metric space.
For α ∈ (0, 1) we define

dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}.

Then (X, dα : α ∈ (0, 1)) is a generating space of metric family iff M(x, y, t) is
continuous at t = 0 for all x, y( 6= x) ∈ X.

Proof. From Theorem 3.1, (X, dα : α ∈ (0, 1)) is a generating space of semi-metric
family. For complete the proof, we need to show that
dα(x, y) > 0 ∀α ∈ (0, 1) and for all x, y(6= x) in X.

If possible let ∃ x, y(6= x) ∈ X such that dα0
(x, y) = 0 for some α0 ∈ (0, 1).

Then M(x, y, t) ≥ (1 − α0) ∀ t > 0. But M(x, y, 0) = 0, which contradicts the
fact that M(x, y, t) is continuous at t = 0 for all x, y(6= x) ∈ X.

Conversely supposeM does not satisfy the condition (M6). Then ∃ x, y( 6= x) ∈ X
for which N(x, y, .) is not continuous at t = 0.
i.e. ∃ α0 ∈ (0, 1) such that M(x, y, t) ≥ (1− α0) ∀ t > 0. Thus dα0(x, y) = 0.
Hence the is complete. �

Example 3.5. Let X = R2. For x = (x1, x2), y = (y1, y2) ∈ X and t ∈ [0, ∞)
define

M(x, y, t) =

{
t2

(t+|x1−y1|)(t+|x2−y2|) for t > 0

0 for t = 0

Then (X, M, ∗) is a fuzzy metric space for the continuous t-norm ∗ defined by
a ∗ b = a.b ∀ a, b ∈ [0, 1].

Proof. (M1) M(x, y, 0) = 0 (from definition).
(M2) ∀ t > 0, M(x, y, t) = 1

⇒ t2

(t+|x1−y1|)(t+|x2−y2|) = 1

⇒ t2 = t2 + t(|x1 − y1|+ |x2 − y2|) + |x1 − y1||x2 − y2|
⇒ t(|x1 − y1|+ |x2 − y2|) + |x1 − y1||x2 − y2| = 0 ∀ t > 0
⇒ |x1 − y1| = 0 and |x2 − y2| = 0.
i.e. x1 = y1 and x2 = y2 ⇒ x = y.
Conversely if x = y then M(x, y, t) = 1 ∀t > 0 (from definition).

(M3) Follows from definition.
(M4)

M(x, z, t+ s) =
(t+ s)2

(t+ s+ |x1 − z1|)(t+ s+ |x2 − z2|)

≥ (t+ s)2

((t+ s) + |x1 − y1|+ |y1 − z1|)((t+ s) + |x2 − y2|+ |y2 − z2|)
and

M(x, y, t) ∗M(y, z, s) =
t2s2

(t+ |x1 − y1|)(t+ |x2 − y2|)(s+ |y1 − z1|)(s+ |y2 − z2|)
,
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and it is not difficult to verify that

(t+ s)2(t+ |x1 − y1|)(t+ |x2 − y2|)(s+ |y1 − z1|)(s+ |y2 − z2|)
≥ t2s2((t+ s) + |x1 − y1|+ |y1 − z1|)((t+ s) + |x2 − y2|+ |y2 − z2|).

So M(4) holds.
(M5) lim

t→∞
M(x, y, t) = 1.

Hence (X, M, ∗) is a fuzzy metric space.
In the above example, if we take ∗ =′ min′, then (X, M, ∗) is not a fuzzy metric

space as illustrated below :
Let x = (0, 0), y = (0, 1), z = (1, 1) and t = s = 1.
Then M(x, y, t) = 1

2 , M(y, z, s) = 1
2 and M(x, z, t+ s) = 4

9 .
So M does not satisfies (M4) for ∗ =′ min′.

In this example define

dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}.

Then (X, dα : α ∈ (0, 1)) is a generating space of quasi-metric family. but
not a generating space of semi-metric family although M(x, y, .) is continuous at
t = 0, ∀ x, y(6= x) ∈ X.

Solution:

M(x, y, t) =

{
t2

(t+|x1−y1|)(t+|x2−y2|) for t > 0

0 for t = 0

Now, M(x, y, t) ≥ (1− α)

⇒ t2

(t+|x1−y1|)(t+|x2−y2|) ≥ (1− α)

⇒ t2 ≥ (1− α)t2 + t(1− α)(|x1 − y1|+ |x2 − y2|) + (1− α)|x1 − y1||x2 − y2|
⇒ α t2 − t(1− α)(|x1 − y1|+ |x2 − y2|)− (1− α)|x1 − y1||x2 − y2| ≥ 0
⇒ α (t− a)(t− b) ≥ 0,
where

a( =
(1−α)(|x1−y1|+|x2−y2|)+

√
(1−α)2(|x1−y1|+|x2−y2|)2+4α(1−α)|x1−y1||x2−y2|

2α )

and

b(=
(1−α)(|x1−y1|+|x2−y2|)−

√
(1−α)2(|x1−y1|+|x2−y2|)2+4α(1−α)|x1−y1||x2−y2|

2α )

are the roots of the equation

α t2 − t(1− α)(|x1 − y1|+ |x2 − y2|)− (1− α)|x1 − y1||x2 − y2| = 0.

By Descartes’s rule of sign, this equation has only one positive real root a.
So, ∀α ∈ (0, 1),

dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}

=
1

2α
[(1− α)(|x1 − y1|+ |x2 − y2|)

+
√

(1− α)2(|x1 − y1|+ |x2 − y2|)2 + 4α(1− α)|x1 − y1||x2 − y2|].
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By Theorem 3.1, {dα : α ∈ (0, 1)} is a quasi-metric family onX and (X, dα : α ∈ (0, 1))
is a generating space of quasi-metric family.

Next we shall show {dα : α ∈ (0, 1)} is not a semi-metric family.
Take x = (0, 0), y = (1, 0) and z = (1, 1).
Then, ∀α ∈ (0, 1),

dα(x, y) = (1−α)
α , dα(y, z) = (1−α)

α

and

dα(x, z) =
(1−α)+

√
(1−α)(1+3α)

α for α ∈ (0, 1).

Now

dα(x, y) + dα(y, z) =
2(1− α)

α

=
(1− α) + (1− α)

α
<

(1− α) +
√

(1− α)(1 + 3α)

α
= dα(x, z) , ∀α ∈ (0, 1).

Thus dα fails to satisfy the triangle inequality. So (X, dα : α ∈ (0, 1)) is a
generating space of quasi-metric family but not a generating space of semi-metric
family. �

4. Construction of fuzzy metric space from GSQMF

In this section, we construct a fuzzy metric space from a GSQMF, under certain
condition.

Theorem 4.1. Let (X, dα : α ∈ (0, 1)) is a generating space of quasi-metric
family.
We assume that
d(1−(1−α)∗(1−β))(x, z) ≤ dα(x, y) + dβ(y, z) ∀ x, y, z ∈ X, ∀ α, β ∈ (0, 1).
with respect to some continuous t-norm ∗ satisfying (T5). Now we define a function
M ′ : X2 × [0, ∞)→ [0, 1] as

M ′(x, y, t) =

{ ∨
{α ∈ (0, 1) : d(1−α)(x, y) ≤ t} for t > 0

0 for t = 0

Then (X, M ′, ∗) is a fuzzy metric space with respect to the t-norm ∗.

Proof. (M1) It is immediate from definition.
(M2) Let ∀ t > 0, M ′(x, y, t) = 1.

For any t > 0 and any ε ∈ (0, 1), ∃ α(t, ε) > ε such that d(1−α(t, ε))(x, y) ≤ t.
Since t > 0 is arbitrary, d(1−ε)(x, y) = 0 ∀ ε ∈ (0, 1).
⇒ x = y(By (QM1)).
Conversely if x = y, then for t > 0
d(1−α)(x, y) = 0 ≤ t ∀α ∈ (0, 1).
So M ′(x, y, t) = 1 ∀ t > 0.
Thus ( ∀t > 0, M ′(x, y, t) = 1) iff x = y.

(M3) Follows from definition.
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(M4) we have to show that ∀s, t ∈ [0, ∞)
M ′(x, z, s+ t) ≥ M ′(x, y, s) ∗ M ′(y, z, t) ∀ x, y, z ∈ X.
If M ′(x, y, s) = 0 or M ′(y, z, t) = 0 then the relation is obvious.
Let s > 0, t > 0, 0 < M ′(x, y, s), 0 < M ′(y, z, t).
Let α, β ∈ (0, 1) such that 0 < (1−α) < M ′(x, y, s), 0 < (1−β) < M ′(y, z, t)
Then dα(x, y) ≤ s and dβ(y, z) ≤ t.
Since d(1−(1−α)∗(1−β))(x, z) ≤ dα(x, y) + dβ(y, z) ≤ t+ s
∀ x, y, z ∈ X, ∀ α, β ∈ (0, 1).
Therefore M ′(x, z, s+ t) ≥ (1− α) ∗ (1− β).
Since α, β ∈ (0, 1) is arbitrary and ∗ is continuous,
M ′(x, z, s+ t) ≥ M ′(x, y, s) ∗ M ′(y, z, t)

(M5) Follows from definition.
Thus (X, M ′, ∗) is a fuzzy metric for continuous t-norm satisfying (T5).

Now a natural question that may arise is- What is the relation between M and
M ′?
In the following Section we discuss this issue. �

5. Relation between M and M ′

In this section we established a relation between equipotent fuzzy metric and their
corresponding quasi-metric families. Finally we show that under certain condition
two fuzzy metrics M and M ′ are identical.

Definition 5.1. Let X be any nonempty set and M a fuzzy metric on X. We define

M(x, y, t+) = M+(x, y, t) = lim
s↓t

M(x, y, s)

and

M(x, y, t−) = M−(x, y, t) = lim
s↑t

M(x, y, s).

Theorem 5.2. Let X be any nonempty set and M1, M2 be two fuzzy metrics on
X.Then ∀x, y ∈ X, ∀t ∈ [0, ∞), M1(x, y, t+) = M2(x, y, t+) and
M1(x, y, t−) = M2(x, y, t−) iff d1α(x, y) = d2α(x, y),
∀α ∈ (0, 1), where {d1α : α ∈ (0, 1)} and {d2α : α ∈ (0, 1)} denote the
corresponding quasi-metric families of M1 and M2 respectively.

Proof. First we suppose that d1α(x, y) = d2α(x, y) ∀α ∈ (0, 1).
If possible, suppose for some t = t0 ∈ [0, ∞), M1(x, y, t0+) 6= M2(x, y, t0+).
Without loss of generality, we may assume that

(5.1) M1(x, y, t0+) < M2(x, y, t0+).

Choose β ∈ (0, 1) such that M1(x, y, t0+) < (1− β) < M2(x, y, t0+). Note that

(5.2) d1α(x, y) =
∧
{t > 0 : M1(x, y, t) ≥ (1− α)}, α ∈ (0, 1)

and

(5.3) 2
α(x, y) =

∧
{t > 0 : M2(x, y, t) ≥ (1− α)}, α ∈ (0, 1).

Now M1(x, y, t0) ≤ M1(x, y, t0+) < (1− β) < M2(x, y, t0+) implies that
∃ ε(β) > 0 such that M1(x, y, t0 + ε) < 1 − β. By using (5.1), (5.2) and (5.3) we
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have d2β(x, y) ≤ t0, d1β(x, y) ≥ t0 + ε, which is a contradiction to the hypothesis.

Therefore M1(x, y, t+) = M2(x, y, t+) ∀t ∈ [0, ∞).
Similarly M1(x, y, t−) = M2(x, y, t−) ∀t ∈ [0, ∞).

Conversely suppose that M1(x, y, t+) = M2(x, y, t+), M1(x, y, t−) =
M2(x, y, t−) hold ∀t ∈ [0, ∞).
We have to show that d1α(x, y) = d2α(x, y) ∀α ∈ (0, 1).
If possible suppose that ∃α0 ∈ (0, 1) such that d1α0

(x, y) 6= d2α0
(x, y).

Without loss of generality, we may suppose that

(5.4) d1α0
(x, y) > d2α0

(x, y).

Choose k1, k2, k3 such that d1α0
(x, y) > k1 > k2 > k3 > d2α0

(x, y). Then, by using
(5.2), we have,

(5.5) M1(x, y, k1) < (1− α0), M2(x, y, k3) ≥ (1− α0).

Now from (5.4) and (5.5), we get

(1− α0) > M1(x, y, k1) ≥M1(x, y, k2+)

and

M2(x, y, k2−) ≥M2(x, y, k3) ≥ (1− α0).

Combining the above two results we have
M1(x, y, k2+) < (1− α0) ≤M2(x, y, k2−) ≤M2(x, y, k2+)
⇒M1(x, y, k2+) < M2(x, y, k2+) a contradiction to the assumption.
Thus d1α(x, y) = d2α(x, y) ∀α ∈ (0, 1) ∀x, y ∈ X.
This completes the proof. �

Example 5.3. Let X = R2 and x = (x1, x2), y = (y1, y2) ∈ X and d(x, y) =√
(x1 − y1)2 + (x2 − y2)2.

Define M1, M2 : X2 × [0,∞)→ [0, 1] by

M1(x, y, t) =

{ t
t+d(x,y) for t > 0

0 for t = 0.

and

M2(x, y, t) =

{ t
t+2d(x,y) for t > 0

0 for t = 0.

Then (X, M1, ∗) and (X, M2, ∗) are two fuzzy metric spaces and d1α(x, y) =
(1−α)
α d(x, y) and d2α(x, y) = 2(1−α)

α d(x, y) ∀α ∈ (0, 1).
Here if x 6= y , M1(x, y, t+) 6= M2(x, y, t+) and
M1(x, y, t−) 6= M2(x, y, t−) ∀t > 0 and d1α(x, y) 6= d2α(x, y), ∀α ∈ (0, 1).
Again if x = y , M1(x, y, t+) = M2(x, y, t+) and
M1(x, y, t−) = M2(x, y, t−) ∀t > 0 and d1α(x, y) = d2α(x, y), ∀α ∈ (0, 1).

Definition 5.4. Let X be any nonempty set and M1, M2 be two fuzzy metrics
on X. M1 and M2 are said to be equipotent if M1(x, y, t−) = M2(x, y, t−) and
M1(x, y, t+) = M2(x, y, t+), ∀x, y ∈ X, ∀t ∈ [0, ∞).

Note 5.5. It can be easily verified that the above relation is an equivalence relation.
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Theorem 5.6. Let (X, M, ∗) be a fuzzy metric space for a continuous t-norm ∗
satisfying (T5) and

dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}, α ∈ (0, 1).

Let M ′ : X2 × [0, ∞) → [0, 1] as

M ′(x, y, t) =

{ ∨
{α ∈ (0, 1) : d(1−α)(x, y) ≤ t} for t > 0

0 for t = 0

Then M ′ is a fuzzy metric on X and M and M ′ are equipotent.

Proof. By Theorem 4.1, it follows that M ′ is a fuzzy metric on X. Then we have

(5.6) dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}, α ∈ (0, 1).

Now we have to show that,
M(x, y, t−) = M ′(x, y, t−) andM(x, y, t+) = M ′(x, y, t+), ∀x ∈ X, ∀t ∈ [0, ∞).

If possible, suppose that for some t = t0 ∈ [0, ∞) and some x, y ∈ X,
M(x, y, t0−) 6= M ′(x, y, t0−).
Without loss of generality, we may suppose that M(x, y, t0−) < M ′(x, y, t0−).
Choose β such that M(x, y, t0−) < (1− β) < M ′(x, y, t0−). Then ∃ ε > 0 such
that

t0 − ε < t < t0 , M(x, y, t) < (1− β) < M ′(x, y, t).

Now for t0 − ε < t < t0, M(x, y, t) < (1− β) ⇒ dβ(x, y) ≥ t0 by using 5.6.
M ′(x, y, t) > (1 − β) ⇒ dβ(x, y) ≤ t, where t ∈ (t0 − ε, t0) ( by using definition
of M ′ ).
Thus we arrive at a contradiction. So M(x, y, t0−) = M ′(x, y, t0−). Similarly we
can verify that M(x, y, t+) = M ′(x, y, t+). Hence M and M ′ are equipotent. �

Example 5.7. Let X = l∞ be the sequence space. Define

d′(x, y) = Sup{|xn − yn|} , d(x, y) = Sup{ |xn−yn|
2 },

where x = (x1, x2, ........, xn, ........) and y = (y1, y2, ........., yn, .....).
We now define M : X2 × [0, ∞)→ [0, 1] by

M(x, y, t) =

 1 if t > d′(x, y)
1
2 if d(x, y) < t ≤ d′(x, y)
0 if t ≤ d(x, y).

Then (X, M, ∗ = min) is a fuzzy metric space and for α ∈ (0, 1)

dα(x, y) =

{
d′(x, y) if 0 < α < 1

2
d(x, y) if 1

2 ≤ α < 1

and

M ′(x, y, t) =

 1 if t ≥ d′(x, y)
1
2 if d(x, y) ≤ t < d′(x, y)
0 if t < d(x, y).

Here (X, M ′, ∗ = min) is also a fuzzy metric space but M and M ′ are not equal
though they are equipotent.
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If we assume, for x, y(6= x), M(x, y, .) is a continuous function on [0, ∞) then
the relation between M and M ′ becomes the relation of identity. In fact, we have
the following theorem:

Theorem 5.8. Let (X, M, ∗) be a fuzzy metric space for a continuous t-norm ∗
satisfying (T5). We assume that, M(x, y, .) is a continuous function on [0, ∞) for
all x, y(6= x) ∈ X.
Let us define

dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}, α ∈ (0, 1)

and M ′ : X2 × [0, ∞) → [0, 1] be a function defined by

M ′(x, y, t) =

{ ∨
{α ∈ (0, 1) : d(1−α)(x, y) ≤ t} for t > 0.

0 for t = 0

Then
(i) {dα : α ∈ (0, 1)} is a quasi-metric family on X.
(ii) M ′ is a fuzzy metric on X.
(iii) M ′ = M .

Proof. Proof of (i) and (ii) follows from Theorem 3.1 and Theorem 4.1 respectively.
To prove (iii), first we prove the following lemma. �

Lemma 5.9. Let (X, M, ∗) be a fuzzy metric space, x0, y0(6= x0) ∈ X and {dα :
α ∈ (0, 1)} be the corresponding quasi-metric family on X corresponding to the fuzzy
metric M .

(1) If M(x0, y0, .) is upper semi continuous and if for t0 > 0, M(x0, y0, t0) =
(1− α0) ∈ (0, 1), then M(x0, y0, dα0

(x0, y0)) = (1− α0).
(2) If M(x0, y0, .) is continuous, then for any α ∈ (0, 1), M(x0, y0, dα(x0, y0)) =

(1− α).
(3) If M(x0, y0, .) is continuous and strictly increasing for t > 0,

then M(x0, y0, t) = (1− α)⇔ dα(x0, y0) = t.

Proof. (1) From definition,

(5.7) dα0
(x0, y0) =

∧
{s > 0 : M(x0, y0, s) ≥ (1− α0)}.

Since M(x0, y0, t0) = (1− α0), from (5.7), we get

(5.8) dα0
(x0, y0) ≤ t0.

Since M(x0, y0, .) is nondecreasing, from (5.8), we have

(5.9) (1− α0) = M(x0, y0, t0) ≥ M(x0, y0, dα0
(x0, y0)).

Thus M(x0, y0, dα0
(x0, y0)) ≤ (1− α0).

If possible suppose that M(x0, y0, dα0
(x0, y0)) < (1−α0). Then by the upper semi

continuity of M(x0, y0, .), ∃t′ > dα0
(x0, y0) such that M(x0, y0, t

′) < (1− α0).
Thus

dα0
(x0, y0) =

∧
{s > 0 : M(x0, y0, s) ≥ (1− α0)} ≥ t′ > dα0

(x0, y0).

192



G. Rano et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 2, 183–195

This is a contradiction. So, from (5.9), M(x0, y0, dα0(x0, y0)) = (1− α0).
(2) Since M(x0, y0, .) is continuous, by (M1) and (M5), for each α ∈ (0 , 1), ∃t >

0 such that M(x0, y0, t) = (1− α).
Then by (1), the proof follows.

(3) It follows from (1) and (2), by using the strict increasing property ofM(x0, y0, .).
Now we prove the Theorem 5.6(iii).

We consider the following cases.
Let (x0, y0, t0) ∈ X2 × [0, ∞) and M(x0, y0, t0) = (1− α0).

Case I: Let t0 ≤ 0.
Then, M(x0, y0, t0) = M ′(x0, y0, t0) = 0.

Case II: x0 = y0, t0 > 0.
Then M(x0, y0, t0) = M ′(x0, y0, t0) = 1.

Case III: x0 6= y0 and t0 ∈ [0, ∞) such that M(x0, y0, t0) = 0.

For α ∈ (0, 1), dα(x0, y0) =
∧
{t > 0 : M(x0, y0, t) ≥ (1− α)}.

By Lemma 5.7(2), we have M(x0, y0, dα(x0, y0)) = (1− α) ∀α ∈ (0, 1).
Since M(x0, y0, t0) = 0 < (1− α), it follows that t0 < dα(x0, y0) ∀α ∈ (0, 1).

So M ′(x0, y0, t0) =
∨
{α ∈ (0, 1) : dα(x0, y0) ≤ t0} =

∨
φ = 0.

Therefore M(x0, y0, t0) = M ′(x0, y0, t0) = 0.
Case IV: Suppose x0 6= y0 and t0 > 0 such that 0 < M(x0, y0, t0) < 1.

Let M(x0, y0, t0) = (1− α0). Then 0 < α0 < 1. Now

(5.10) M ′(x, y, t) =
∨
{α ∈ (0, 1) : d(1−α)(x, y) ≤ t}

and

(5.11) dα(x, y) =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}.

Since M(x0, y0, t0) = (1− α0), from (5.11) ,we have

(5.12) dα0(x0, y0) ≤ t0.
Using (5.12), from (5.10), we get

(5.13) M ′(x0, y0, t0) ≥ (1− α0).

Thus M ′(x0, y0, t0) ≥ M(x0, y0, t0). For α ∈ (0, α0), let dα(x0, y0) = t′. By
lemma 5.7(2), M(x0, y0, t

′) = (1− α). So M(x0, y0, t
′) = (1− α) > (1− α0) =

M(x0, y0, t0). Since M(x0, y0, .) is monotonically increasing, M(x0, y0, t
′) >

M(x0, y0, t0) implies that t′ > t0. Hence, for α ∈ (0, α0), dα(x0, y0) = t′ 6≤ t0.
Therefore

(5.14) M ′(x0, y0, t0) ≤ (1− α0) = M(x0, y0, t0.

By (5.13) and (5.14), we have M ′(x0, y0, t0) = M(x0, y0, t0).
Case V: Suppose x0 6= y0 and t0 ∈ [0, ∞) such that M(x0, y0, t0) = 1.

Note that for each α ∈ (0 , 1) and for any x, y ∈ X,

M ′(x, y, t) =

{ ∨
{α ∈ (0, 1) : d(1−α)(x, y) ≤ t} for t > 0

0 for t = 0

and

(5.15) dα =
∧
{t > 0 : M(x, y, t) ≥ (1− α)}.
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From (5.15), we have d(1−α)(x0, y0) ≤ t0 ∀α ∈ (0, 1). Thus M ′(x0, y0, t0) = 1. So
M(x0, y0, t0) = M ′(x0, y0, t0) = 1. Hence M(x, y, t) = M ′(x, y, t) ∀(x, y, t) ∈
X2 × [0, ∞). �

6. Conclusion

Though the decomposition theorems play a pivotal role in the development of
fuzzy functional analysis, but it is observed that the validity of this theorems requires
a stringent restriction on the underlying t-norm in the definition of fuzzy metric.To
retain the generality of t-norm, the concept of Generating space of quasi-metric
family comes in front. GSQMF has the common characteristic properties of both
fuzzy metric space in the sense of Kaleva & Seikkala [5] and Menger probabilistic
metric space [14]. So the GSQMF is more general concept than that of fuzzy metric
but in a restricted situation these two spaces are similar.
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