Annals of Fuzzy Mathematics and Informatics Volume 11, No. 2, (February 2016), pp. 183–195

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Fuzzy metric space and generating space of quasi-metric family

G. RANO, T. BAG, S. K. SAMANTA

Received 6 May 2015; Revised 30 June 2015; Accepted 10 August 2015

ABSTRACT. The skeleton of this work consists of a relation between fuzzy metric space and generating space of quasi-metric family (GSQMF). Here we have attempted to establish two decomposition theorems. In the first theorem, we deduce GSQMF from a fuzzy metric space. In the second theorem, from a GSQMF, fuzzy metric space is derived. Lastly we try to show that under certain conditions these two fuzzy metrics are similar.

2010 AMS Classification: 54E70, 54H25, 47H10, 54C60 Keywords: Fuzzy metric, Quasi-metric family, t-norm.

Corresponding Author: Gobardhan Rano (gobardhanr@gmail.com)

1. Introduction

A. Zadeh [15] first introduced an idea of fuzzy set in 1965. After that, in 1975, Kramosil and Michalek [7] have presented a concept of fuzzy metric space which is very similar to that of generalized Menger space [4]. In 1984, Kaleva and Seikkala [5] introduced a concept of fuzzy metric space which generalizes the notion of a metric space by setting the distance between two points by a nonnegative fuzzy number proving some fixed point theorems. Many authors [1, 2, 8, 9, 10, 13] have developed fuzzy metric space theory in different ways. Chang et al.[3] gave a definition of generating space of quasi-metric family which is a most generalized structure unifying those of fuzzy metric space in the sense of Kaleva & Seikkala [5] and Menger probabilistic metric spaces [14]. They [3, 12] also established several fixed point theorems and minimization theorems in complete generating space of quasi-metric family. In this paper, we have attempted to establish two decomposition theorems. In the first theorem, we deduce GSQMF from a fuzzy metric space and in the second theorem, from a GSQMF we deduce fuzzy metric space.

The organization of the paper is as follows:

A brief introduction of the work is given in section 1. Section 2 comprises some preliminary results. GSQMF from fuzzy metric space is deduced in section 3. A fuzzy metric space is derived from a GSQMF in the spectrum of the section 4. In section 5, it has been proved that under certain conditions two fuzzy metrics are identical. A brief conclusion of this manuscript is given in section 6. Throughout this paper straightforward proofs are omitted.

2. Preliminaries

In this section some preliminary results are given which will be used in this paper.

Definition 2.1 ([6]). A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called t-norm if the following axioms are satisfied for all $a, b, d \in [0, 1]$:

- (T1) a * 1 = a (boundary condition),
- (T2) $b \le d$ implies $a * b \le a * d$ (monotonicity),
- (T3) a * b = b * a (commutativity),
- (T4) a * (b * d) = (a * b) * d (associativity).

Definition 2.2 ([6]). * is said to be continuous if for any sequences $\{a_n\}$, $\{b_n\}$ in [0, 1] with $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ implies $\lim_{n\to\infty} (a_n * b_n) = (a * b)$.

Definition 2.3 ([9]). The 3-tuple (X, M, *) is said to be a fuzzy metric space if X is a nonempty arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions:

- (M1) M(x, y, 0) = 0,
- (M2) $M(x, y, t) = 1 \quad \forall t > 0 \text{ iff } x = y,$
- (M3) $M(x, y, t) = M(y, x, t) \quad \forall x, y \in X, \forall t \in [0, \infty),$
- $({\rm M4})\ M(x,\ y,\ t)*M(y,\ z,\ s) \leq M(x,\ z,\ t+s),$
- (M5) $\lim_{t \to \infty} M(x, y, t) = 1.$

Definition 2.4 ([11]). Let X be a nonempty set and $\{d_{\alpha} : \alpha \in (0, 1)\}$ be a family of mappings from $X \times X$ into $[0, \infty)$. Then $(X, d_{\alpha} : \alpha \in (0, 1))$ is called a generating space of quasi-metric family if it satisfies the following conditions:

- (QM1) $d_{\alpha}(x, y) = 0 \quad \forall \alpha \in (0, 1) \text{ iff } x = y,$
- (QM2) $d_{\alpha}(x, y) = d_{\alpha}(y, x) \ \forall x, y \in X \text{ and } \forall \alpha \in (0, 1),$
- (QM3) for any $\alpha \in (0, 1)$ there exists a $\beta \in (0, \alpha]$ such that
- $d_{\alpha}(x, y) \leq d_{\beta}(x, z) + d_{\beta}(z, y)$ for all $x, y, z \in X$,
 - (QM4) for any $x, y \in X$, $d_{\alpha}(x, y)$ is non-increasing in α .

Definition 2.5 ([11]). Let $(X, d_{\alpha} : \alpha \in (0,1))$ be a generating space of quasi-metric family, then it is called a generating space of sub-strong quasi-metric family, strong quasi-metric family and semi-metric family respectively, if (QM3) is strengthened to (QM3u), (QM3t) and (QM3e), where

(QN3u) for any $\alpha \in (0, 1)$ there exists $\beta \in (0, \alpha]$ such that

$$d_{\alpha}(x_m, x_{m+p}) \le \sum_{i=0}^{p-1} d_{\beta}(x_{m+i}, x_{m+i+1})$$

for any $p \in Z^+$ and $x_{m+i} \in X (i = 1, 2, ..., p - 1)$,

(QM3t) for any $\alpha \in (0, 1)$ there exists a $\beta \in (0, \alpha]$ such that

$$d_{\alpha}(x, z) \leq d_{\alpha}(x, y) + d_{\beta}(y, z)$$

for $x, y, z \in X$,

(QM3e) for any $\alpha \in (0, 1)$, it holds that

$$d_{\alpha}(x, z) \leq d_{\alpha}(x, y) + d_{\alpha}(y, z)$$

for $x, y, z \in X$.

Definition 2.6 ([11]). Let $(X, d_{\alpha} : \alpha \in (0, 1))$ be a generating space of semimetric family, where $(d_{\alpha} : \alpha \in (0, 1))$ satisfies the following additional condition: If $x \neq y$ in X, then $d_{\alpha}(x, y) > 0 \ \forall \alpha \in (0, 1)$.

Then $(X, d_{\alpha} : \alpha \in (0, 1))$ is called a generating space of metric family and $(d_{\alpha} : \alpha \in (0, 1))$ is called a metric family on X.

3. Decomposition theorem and examples

In this section, we deduce GSQMF from fuzzy metric space.

Theorem 3.1. Let (X, M, *) be a fuzzy metric space. For $\alpha \in (0, 1)$ we define

$$d_{\alpha}(x, y) = \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \alpha)\}.$$

Then $\{d_{\alpha} : \alpha \in (0, 1)\}$ is a quasi-metric family on X and $(X, d_{\alpha} : \alpha \in (0, 1))$ is a generating space of quasi-metric family.

Proof. (QM1) Let x=y. Then $M(x,\ y,\ t)=1,\ \forall t>0$. Thus $d_{\alpha}(x,\ y)=0\ \forall \alpha\in(0,\ 1)$. Conversely if $d_{\alpha}(x,\ y)=0\ \forall \alpha\in(0,\ 1)$, then $M(x,\ y,\ t)\geq(1-\alpha)\ \forall t>0\ \forall \alpha\in(0,\ 1)$. Thus $M(x,\ y,\ t)=1\ \forall t>0$. So x=y.

(QM2) Since M satisfies (M3), (QM2) holds from definition.

(QM3) Since * is continuous, for any $\alpha \in (0, 1)$ there exists a $\beta \in (0, \alpha]$ such that $(1 - \beta) * (1 - \beta) = (1 - \alpha)$. Now

$$d_{\beta}(x, y) + d_{\beta}(y, z)$$

$$= \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \beta)\} + \bigwedge \{s > 0 : M(y, z, s) \ge (1 - \beta)\}$$

$$\ge \bigwedge \{t + s > 0 : M(x, y, t) \ge (1 - \beta), M(y, z, s) \ge (1 - \beta)\}.$$

On the other hand, $M(x, y, t) \ge (1 - \beta)$, $M(y, z, s) > (1 - \beta)$. Thus

$$M(x, z, t+s) \ge M(x, y, t) * M(y, z, s) \ge (1-\beta) * (1-\beta) = (1-\alpha).$$

So $d_{\beta}(x, y) + d_{\beta}(y, z) \ge \bigwedge \{t + s > 0 : M(x + z, t + s) \ge (1 - \alpha)\} = d_{\alpha}(x, z)$. (QM4) Clearly $d_{\alpha}(x, y)$ is non-increasing for $\alpha \in (0, 1)$ from definition. Hence $(X, d_{\alpha}: \alpha \in (0, 1))$ is a generating space of quasi-metric family.

Note 3.2. If * satisfies the condition given by :

(T5)
$$\forall \alpha, \beta \in (0, 1), \alpha * \beta > 0,$$

then, from Theorem 3.1, it is clear that

$$d_{(1-(1-\alpha)*(1-\beta))}(x, z) \le d_{\alpha}(x, y) + d_{\beta}(y, z) \quad \forall x, y, z \in X, \ \forall \alpha, \beta \in (0, 1).$$

Note 3.3. In Theorem 3.1, if we take the continuous t-norm * defined by a*b= $min\{a, b\} \ \forall a, b \in [0, 1] \ then (X, d_{\alpha}: \alpha \in (0, 1)) \ is \ a \ generating \ space \ of$ semi-metric family.

Theorem 3.4. Let (X, M, min) be a fuzzy metric space. For $\alpha \in (0, 1)$ we define

$$d_{\alpha}(x, y) = \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \alpha)\}.$$

Then $(X, d_{\alpha}: \alpha \in (0, 1))$ is a generating space of metric family iff M(x, y, t) is continuous at t = 0 for all $x, y \neq x \in X$.

Proof. From Theorem 3.1, $(X, d_{\alpha}: \alpha \in (0, 1))$ is a generating space of semi-metric family. For complete the proof, we need to show that

 $d_{\alpha}(x, y) > 0 \ \forall \alpha \in (0, 1) \text{ and for all } x, y \neq x \text{ in } X.$

If possible let $\exists x, y (\neq x) \in X$ such that $d_{\alpha_0}(x, y) = 0$ for some $\alpha_0 \in (0, 1)$. Then $M(x, y, t) \ge (1 - \alpha_0) \ \forall \ t > 0$. But M(x, y, 0) = 0, which contradicts the fact that M(x, y, t) is continuous at t = 0 for all $x, y \neq x \in X$.

Conversely suppose M does not satisfy the condition (M6). Then $\exists x, y (\neq x) \in X$ for which N(x, y, .) is not continuous at t = 0.

i.e. $\exists \alpha_0 \in (0, 1)$ such that $M(x, y, t) \geq (1 - \alpha_0) \forall t > 0$. Thus $d_{\alpha_0}(x, y) = 0$. Hence the is complete.

Example 3.5. Let $X = \mathbb{R}^2$. For $x = (x_1, x_2), y = (y_1, y_2) \in X$ and $t \in [0, \infty)$ define

$$M(x, y, t) = \begin{cases} \frac{t^2}{(t+|x_1-y_1|)(t+|x_2-y_2|)} & for \ t > 0\\ 0 & for \ t = 0 \end{cases}$$

Then (X, M, *) is a fuzzy metric space for the continuous t-norm * defined by $a * b = a.b \ \forall \ a, \ b \in [0, \ 1].$

Proof. (M1) M(x, y, 0) = 0 (from definition).

$$(M2) \ \forall \ t > 0, \ M(x, y, t) =$$

- $(M2) \forall t > 0, M(x, y, t) = 1$ $\Rightarrow \frac{t^2}{(t+|x_1-y_1|)(t+|x_2-y_2|)} = 1$ $\Rightarrow t^2 = t^2 + t(|x_1-y_1| + |x_2-y_2|) + |x_1-y_1||x_2-y_2|$
- $\Rightarrow t(|x_1 y_1| + |x_2 y_2|) + |x_1 y_1||x_2 y_2| = 0 \ \forall \ t > 0$
- $\Rightarrow |x_1 y_1| = 0 \text{ and } |x_2 y_2| = 0.$
- i.e. $x_1 = y_1$ and $x_2 = y_2 \implies x = y$.

Conversely if x = y then $M(x, y, t) = 1 \ \forall t > 0$ (from definition).

(M3) Follows from definition.

(M4)

$$M(x, z, t+s) = \frac{(t+s)^2}{(t+s+|x_1-z_1|)(t+s+|x_2-z_2|)}$$

$$\geq \frac{(t+s)^2}{((t+s)+|x_1-y_1|+|y_1-z_1|)((t+s)+|x_2-y_2|+|y_2-z_2|)}$$

and

$$M(x, y, t) * M(y, z, s) = \frac{t^2 s^2}{(t + |x_1 - y_1|)(t + |x_2 - y_2|)(s + |y_1 - z_1|)(s + |y_2 - z_2|)},$$

and it is not difficult to verify that

$$(t+s)^{2}(t+|x_{1}-y_{1}|)(t+|x_{2}-y_{2}|)(s+|y_{1}-z_{1}|)(s+|y_{2}-z_{2}|)$$

$$\geq t^{2}s^{2}((t+s)+|x_{1}-y_{1}|+|y_{1}-z_{1}|)((t+s)+|x_{2}-y_{2}|+|y_{2}-z_{2}|).$$

So M(4) holds.

(M5)
$$\lim_{t \to \infty} M(x, y, t) = 1.$$

Hence (X, M, *) is a fuzzy metric space.

In the above example, if we take *='min', then (X, M, *) is not a fuzzy metric space as illustrated below:

Let
$$x = (0, 0)$$
, $y = (0, 1)$, $z = (1, 1)$ and $t = s = 1$.

Then
$$M(x, y, t) = \frac{1}{2}$$
, $M(y, z, s) = \frac{1}{2}$ and $M(x, z, t + s) = \frac{4}{9}$. So M does not satisfies (M4) for $*='min'$.

In this example define

$$d_{\alpha}(x, y) = \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \alpha)\}.$$

Then $(X, d_{\alpha}: \alpha \in (0, 1))$ is a generating space of quasi-metric family. but not a generating space of semi-metric family although M(x, y, .) is continuous at $t = 0, \ \forall \ x, \ y(\neq x) \in X.$

Solution:

$$M(x, y, t) = \begin{cases} \frac{t^2}{(t+|x_1-y_1|)(t+|x_2-y_2|)} & for \ t > 0\\ 0 & for \ t = 0 \end{cases}$$

Now,
$$M(x, y, t) \ge (1 - \alpha)$$

 $\Rightarrow \frac{t^2}{(t+|x_1-y_1|)(t+|x_2-y_2|)} \ge (1 - \alpha)$
 $\Rightarrow t^2 \ge (1 - \alpha)t^2 + t(1 - \alpha)(|x_1 - y_1| + |x_2 - y_2|) + (1 - \alpha)|x_1 - y_1||x_2 - y_2|$
 $\Rightarrow \alpha t^2 - t(1 - \alpha)(|x_1 - y_1| + |x_2 - y_2|) - (1 - \alpha)|x_1 - y_1||x_2 - y_2| \ge 0$
 $\Rightarrow \alpha (t - a)(t - b) \ge 0$, where

$$a(=\frac{(1-\alpha)(|x_1-y_1|+|x_2-y_2|)+\sqrt{(1-\alpha)^2(|x_1-y_1|+|x_2-y_2|)^2+4\alpha(1-\alpha)|x_1-y_1||x_2-y_2|}}{2\alpha})$$

and

$$b \left(= \frac{(1-\alpha)(|x_1-y_1|+|x_2-y_2|) - \sqrt{(1-\alpha)^2(|x_1-y_1|+|x_2-y_2|)^2 + 4\alpha(1-\alpha)|x_1-y_1||x_2-y_2|}}{2\alpha} \right)$$

are the roots of the equation

$$\alpha t^{2} - t(1 - \alpha)(|x_{1} - y_{1}| + |x_{2} - y_{2}|) - (1 - \alpha)|x_{1} - y_{1}||x_{2} - y_{2}| = 0.$$

By Descartes's rule of sign, this equation has only one positive real root a. So, $\forall \alpha \in (0, 1)$,

$$d_{\alpha}(x, y) = \bigwedge \{t > 0: M(x, y, t) \ge (1 - \alpha)\}$$

$$= \frac{1}{2\alpha} [(1 - \alpha)(|x_1 - y_1| + |x_2 - y_2|) + \sqrt{(1 - \alpha)^2(|x_1 - y_1| + |x_2 - y_2|)^2 + 4\alpha(1 - \alpha)|x_1 - y_1||x_2 - y_2|]}$$

By Theorem 3.1, $\{d_{\alpha} : \alpha \in (0, 1)\}$ is a quasi-metric family on X and $(X, d_{\alpha} : \alpha \in (0, 1))$ is a generating space of quasi-metric family.

Next we shall show $\{d_{\alpha} : \alpha \in (0, 1)\}$ is not a semi-metric family.

Take x = (0, 0), y = (1, 0) and z = (1, 1).

Then, $\forall \alpha \in (0, 1)$,

$$d_{\alpha}(x, y) = \frac{(1-\alpha)}{\alpha}, d_{\alpha}(y, z) = \frac{(1-\alpha)}{\alpha}$$

and

$$d_{\alpha}(x,\ z) = \frac{(1-\alpha) + \sqrt{(1-\alpha)(1+3\alpha)}}{\alpha} \text{ for } \alpha \in (0,\ 1).$$

Now

$$d_{\alpha}(x, y) + d_{\alpha}(y, z) = \frac{2(1-\alpha)}{\alpha}$$

$$= \frac{(1-\alpha) + (1-\alpha)}{\alpha} < \frac{(1-\alpha) + \sqrt{(1-\alpha)(1+3\alpha)}}{\alpha}$$

$$= d_{\alpha}(x, z), \forall \alpha \in (0, 1).$$

Thus d_{α} fails to satisfy the triangle inequality. So $(X, d_{\alpha} : \alpha \in (0, 1))$ is a generating space of quasi-metric family but not a generating space of semi-metric family.

4. Construction of fuzzy metric space from GSQMF

In this section, we construct a fuzzy metric space from a GSQMF, under certain condition

Theorem 4.1. Let $(X, d_{\alpha} : \alpha \in (0, 1))$ is a generating space of quasi-metric family.

We assume that

 $d_{(1-(1-\alpha)*(1-\beta))}(x, z) \leq d_{\alpha}(x, y) + d_{\beta}(y, z) \ \forall x, y, z \in X, \ \forall \alpha, \beta \in (0, 1).$ with respect to some continuous t-norm * satisfying (T5). Now we define a function $M': X^2 \times [0, \infty) \to [0, 1]$ as

$$M'(x, y, t) = \begin{cases} \bigvee \{\alpha \in (0, 1) : d_{(1-\alpha)}(x, y) \le t\} & for \ t > 0 \\ 0 & for \ t = 0 \end{cases}$$

Then (X, M', *) is a fuzzy metric space with respect to the t-norm *.

Proof. (M1) It is immediate from definition.

(M2) Let
$$\forall t > 0$$
, $M'(x, y, t) = 1$.

For any t > 0 and any $\epsilon \in (0, 1)$, $\exists \alpha(t, \epsilon) > \epsilon$ such that $d_{(1-\alpha(t, \epsilon))}(x, y) \leq t$. Since t > 0 is arbitrary, $d_{(1-\epsilon)}(x, y) = 0 \ \forall \epsilon \in (0, 1)$.

 $\Rightarrow x = y(\text{By }(\text{QM1})).$

Conversely if x = y, then for t > 0

 $d_{(1-\alpha)}(x, y) = 0 \le t \ \forall \alpha \in (0, 1).$

So $M'(x, y, t) = 1 \ \forall t > 0$.

Thus $(\forall t > 0, M'(x, y, t) = 1)$ iff x = y.

(M3) Follows from definition.

(M4) we have to show that $\forall s, t \in [0, \infty)$

 $M'(x, z, s+t) \ge M'(x, y, s) * M'(y, z, t) \ \forall x, y, z \in X.$

If M'(x, y, s) = 0 or M'(y, z, t) = 0 then the relation is obvious.

Let s > 0, t > 0, 0 < M'(x, y, s), 0 < M'(y, z, t).

Let $\alpha, \beta \in (0, 1)$ such that $0 < (1 - \alpha) < M'(x, y, s), 0 < (1 - \beta) < M'(y, z, t)$

Then $d_{\alpha}(x, y) \leq s$ and $d_{\beta}(y, z) \leq t$.

Since $d_{(1-(1-\alpha)*(1-\beta))}(x, z) \le d_{\alpha}(x, y) + d_{\beta}(y, z) \le t + s$

 $\forall x, y, z \in X, \forall \alpha, \beta \in (0, 1).$

Therefore $M'(x, z, s+t) \ge (1-\alpha)*(1-\beta)$.

Since α , $\beta \in (0, 1)$ is arbitrary and * is continuous,

 $M'(x, z, s+t) \ge M'(x, y, s) * M'(y, z, t)$

(M5) Follows from definition.

Thus (X, M', *) is a fuzzy metric for continuous t-norm satisfying (T5).

Now a natural question that may arise is- What is the relation between M and M'?

In the following Section we discuss this issue.

5. Relation between M and M'

In this section we established a relation between equipotent fuzzy metric and their corresponding quasi-metric families. Finally we show that under certain condition two fuzzy metrics M and M' are identical.

Definition 5.1. Let X be any nonempty set and M a fuzzy metric on X. We define

$$M(x, y, t+) = M_{+}(x, y, t) = \lim_{s \downarrow t} M(x, y, s)$$

and

$$M(x, y, t-) = M_{-}(x, y, t) = \lim_{s \uparrow t} M(x, y, s).$$

Theorem 5.2. Let X be any nonempty set and M_1 , M_2 be two fuzzy metrics on X. Then $\forall x, y \in X$, $\forall t \in [0, \infty)$, $M_1(x, y, t+) = M_2(x, y, t+)$ and $M_1(x, y, t-) = M_2(x, y, t-)$ iff $d_{\alpha}^1(x, y) = d_{\alpha}^2(x, y)$, $\forall \alpha \in (0, 1)$, where $\{d_{\alpha}^1 : \alpha \in (0, 1)\}$ and $\{d_{\alpha}^2 : \alpha \in (0, 1)\}$ denote the corresponding quasi-metric families of M_1 and M_2 respectively.

Proof. First we suppose that $d_{\alpha}^{1}(x, y) = d_{\alpha}^{2}(x, y) \ \forall \alpha \in (0, 1)$. If possible, suppose for some $t = t_{0} \in [0, \infty)$, $M_{1}(x, y, t_{0}+) \neq M_{2}(x, y, t_{0}+)$. Without loss of generality, we may assume that

$$(5.1) M_1(x, y, t_0+) < M_2(x, y, t_0+).$$

Choose $\beta \in (0, 1)$ such that $M_1(x, y, t_0+) < (1-\beta) < M_2(x, y, t_0+)$. Note that

(5.2)
$$d_{\alpha}^{1}(x, y) = \bigwedge \{t > 0 : M_{1}(x, y, t) \ge (1 - \alpha)\}, \ \alpha \in (0, 1)$$

and

(5.3)
$${}^{2}_{\alpha}(x, y) = \bigwedge \{t > 0: M_{2}(x, y, t) \ge (1 - \alpha)\}, \ \alpha \in (0, 1).$$

Now $M_1(x, y, t_0) \le M_1(x, y, t_0+) < (1-\beta) < M_2(x, y, t_0+)$ implies that $\exists \epsilon(\beta) > 0$ such that $M_1(x, y, t_0+\epsilon) < 1-\beta$. By using (5.1), (5.2) and (5.3) we

have $d_{\beta}^{2}(x, y) \leq t_{0}$, $d_{\beta}^{1}(x, y) \geq t_{0} + \epsilon$, which is a contradiction to the hypothesis. Therefore $M_1(x, y, t+) = M_2(x, y, t+) \ \forall t \in [0, \infty).$

Similarly $M_1(x, y, t-) = M_2(x, y, t-) \ \forall t \in [0, \infty).$

Conversely suppose that $M_1(x, y, t+) = M_2(x, y, t+), M_1(x, y, t-) =$ $M_2(x, y, t-) \text{ hold } \forall t \in [0, \infty).$

We have to show that $d^1_{\alpha}(x, y) = d^2_{\alpha}(x, y) \ \forall \alpha \in (0, 1)$.

If possible suppose that $\exists \alpha_0 \in (0, 1)$ such that $d_{\alpha_0}^1(x, y) \neq d_{\alpha_0}^2(x, y)$.

Without loss of generality, we may suppose that

(5.4)
$$d_{\alpha_0}^1(x, y) > d_{\alpha_0}^2(x, y).$$

Choose k_1, k_2, k_3 such that $d_{\alpha_0}^1(x, y) > k_1 > k_2 > k_3 > d_{\alpha_0}^2(x, y)$. Then, by using (5.2), we have,

(5.5)
$$M_1(x, y, k_1) < (1 - \alpha_0), M_2(x, y, k_3) \ge (1 - \alpha_0).$$

Now from (5.4) and (5.5), we get

$$(1-\alpha_0) > M_1(x, y, k_1) \ge M_1(x, y, k_2+)$$

and

$$M_2(x, y, k_2-) \ge M_2(x, y, k_3) \ge (1-\alpha_0).$$

Combining the above two results we have

 $M_1(x, y, k_2+) < (1-\alpha_0) \le M_2(x, y, k_2-) \le M_2(x, y, k_2+)$

 $\Rightarrow M_1(x, y, k_2+) < M_2(x, y, k_2+)$ a contradiction to the assumption.

Thus $d^1_{\alpha}(x, y) = d^2_{\alpha}(x, y) \ \forall \alpha \in (0, 1) \ \forall x, y \in X$.

This completes the proof.

Example 5.3. Let $X = R^2$ and $x = (x_1, x_2), y = (y_1, y_2) \in X$ and $d(x, y) = (y_1, y_2) \in X$ $\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$.

Define M_1 , $M_2: X^2 \times [0, \infty) \rightarrow [0, 1]$ by

$$M_1(x, y, t) = \begin{cases} \frac{t}{t+d(x,y)} & \text{for } t > 0\\ 0 & \text{for } t = 0. \end{cases}$$

and

$$M_2(x, y, t) = \begin{cases} \frac{t}{t + 2d(x,y)} & \text{for } t > 0 \\ 0 & \text{for } t = 0. \end{cases}$$

Then $(X, M_1, *)$ and $(X, M_2, *)$ are two fuzzy metric spaces and $d^1_\alpha(x, y) = \frac{(1-\alpha)}{\alpha}d(x,y)$ and $d^2_\alpha(x,y) = \frac{2(1-\alpha)}{\alpha}d(x,y) \ \forall \alpha \in (0, 1).$ Here if $x \neq y$, $M_1(x, y, t+) \neq M_2(x, y, t+)$ and

 $M_1(x, y, t-) \neq M_2(x, y, t-) \ \forall t > 0 \text{ and } d^1_{\alpha}(x, y) \neq d^2_{\alpha}(x, y), \ \forall \alpha \in (0, 1).$

Again if x = y, $M_1(x, y, t+) = M_2(x, y, t+)$ and

 $M_1(x, y, t-) = M_2(x, y, t-) \quad \forall t > 0 \text{ and } d^1_{\alpha}(x, y) = d^2_{\alpha}(x, y), \ \forall \alpha \in (0, 1).$

Definition 5.4. Let X be any nonempty set and M_1 , M_2 be two fuzzy metrics on X. M_1 and M_2 are said to be equipotent if $M_1(x, y, t-) = M_2(x, y, t-)$ and $M_1(x, y, t+) = M_2(x, y, t+), \ \forall x, y \in X, \ \forall t \in [0, \infty).$

Note 5.5. It can be easily verified that the above relation is an equivalence relation.

Theorem 5.6. Let (X, M, *) be a fuzzy metric space for a continuous t-norm * satisfying (T5) and

$$d_{\alpha}(x, y) = \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \alpha)\}, \ \alpha \in (0, 1).$$

Let $M': X^2 \times [0, \infty) \rightarrow [0, 1]$ as

$$M'(x,\ y,\ t) = \left\{ \begin{array}{ll} \bigvee \{\alpha \in (0,\ 1):\ d_{(1-\alpha)}(x,\ y) \leq \ t\} & for \ \ t > 0 \\ 0 & for \ \ t = 0 \end{array} \right.$$

Then M' is a fuzzy metric on X and M and M' are equipotent.

Proof. By Theorem 4.1, it follows that M' is a fuzzy metric on X. Then we have

(5.6)
$$d_{\alpha}(x, y) = \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \alpha)\}, \alpha \in (0, 1).$$

Now we have to show that,

M(x, y, t-) = M'(x, y, t-) and $M(x, y, t+) = M'(x, y, t+), \forall x \in X, \forall t \in [0, \infty).$ If possible, suppose that for some $t = t_0 \in [0, \infty)$ and some $x, y \in X$,

 $M(x, y, t_0-) \neq M'(x, y, t_0-).$

Without loss of generality, we may suppose that $M(x, y, t_0-) < M'(x, y, t_0-)$. Choose β such that $M(x, y, t_0-) < (1-\beta) < M'(x, y, t_0-)$. Then $\exists \epsilon > 0$ such that

$$t_0 - \epsilon < t < t_0$$
, $M(x, y, t) < (1 - \beta) < M'(x, y, t)$.

Now for $t_0 - \epsilon < t < t_0$, $M(x, y, t) < (1 - \beta) \Rightarrow d_{\beta}(x, y) \ge t_0$ by using 5.6. $M'(x, y, t) > (1 - \beta) \Rightarrow d_{\beta}(x, y) \le t$, where $t \in (t_0 - \epsilon, t_0)$ (by using definition of M').

Thus we arrive at a contradiction. So $M(x, y, t_0-) = M'(x, y, t_0-)$. Similarly we can verify that M(x, y, t+) = M'(x, y, t+). Hence M and M' are equipotent. \square

Example 5.7. Let $X = l^{\infty}$ be the sequence space. Define

$$d'(x, y) = Sup\{|x_n - y_n|\}, \quad d(x, y) = Sup\{\frac{|x_n - y_n|}{2}\},$$

where $x = (x_1, x_2, \dots, x_n, \dots)$ and $y = (y_1, y_2, \dots, y_n, \dots)$. We now define $M: X^2 \times [0, \infty) \to [0, 1]$ by

$$M(x, y, t) = \begin{cases} 1 & \text{if } t > d'(x, y) \\ \frac{1}{2} & \text{if } d(x, y) < t \le d'(x, y) \\ 0 & \text{if } t \le d(x, y). \end{cases}$$

Then (X, M, * = min) is a fuzzy metric space and for $\alpha \in (0, 1)$

$$d_{\alpha}(x, y) = \begin{cases} d'(x, y) & \text{if } 0 < \alpha < \frac{1}{2} \\ d(x, y) & \text{if } \frac{1}{2} \le \alpha < 1 \end{cases}$$

and

$$M'(x, y, t) = \begin{cases} 1 & \text{if } t \ge d'(x, y) \\ \frac{1}{2} & \text{if } d(x, y) \le t < d'(x, y) \\ 0 & \text{if } t < d(x, y). \end{cases}$$

Here (X, M', * = min) is also a fuzzy metric space but M and M' are not equal though they are equipotent.

If we assume, for x, $y(\neq x)$, M(x, y, .) is a continuous function on $[0, \infty)$ then the relation between M and M' becomes the relation of identity. In fact, we have the following theorem:

Theorem 5.8. Let (X, M, *) be a fuzzy metric space for a continuous t-norm * satisfying (T5). We assume that, M(x, y, .) is a continuous function on $[0, \infty)$ for all $x, y \neq x \in X$. Let us define

$$d_{\alpha}(x, y) = \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \alpha)\}, \ \alpha \in (0, 1)$$

and $M': X^2 \times [0, \infty) \rightarrow [0, 1]$ be a function defined by

$$M'(x,\ y,\ t) = \left\{ \begin{array}{ll} \bigvee \{\alpha \in (0,\ 1):\ d_{(1-\alpha)}(x,\ y) \leq\ t\} & for \ t>0. \\ 0 & for \ t=0 \end{array} \right.$$

Then

- (i) $\{d_{\alpha} : \alpha \in (0, 1)\}$ is a quasi-metric family on X.
- (ii) M' is a fuzzy metric on X.
- (iii) M' = M.

Proof. Proof of (i) and (ii) follows from Theorem 3.1 and Theorem 4.1 respectively. To prove (iii), first we prove the following lemma.

Lemma 5.9. Let (X, M, *) be a fuzzy metric space, $x_0, y_0 (\neq x_0) \in X$ and $\{d_\alpha : \alpha \in (0, 1)\}$ be the corresponding quasi-metric family on X corresponding to the fuzzy metric M.

- (1) If $M(x_0, y_0, .)$ is upper semi continuous and if for $t_0 > 0$, $M(x_0, y_0, t_0) = (1 \alpha_0) \in (0, 1)$, then $M(x_0, y_0, d_{\alpha_0}(x_0, y_0)) = (1 \alpha_0)$.
- (2) If $M(x_0, y_0, .)$ is continuous, then for any $\alpha \in (0, 1)$, $M(x_0, y_0, d_{\alpha}(x_0, y_0)) = (1 \alpha)$.
- (3) If $M(x_0, y_0, .)$ is continuous and strictly increasing for t > 0, then $M(x_0, y_0, t) = (1 \alpha) \Leftrightarrow d_{\alpha}(x_0, y_0) = t$.

Proof. (1) From definition,

(5.7)
$$d_{\alpha_0}(x_0, y_0) = \bigwedge \{s > 0 : M(x_0, y_0, s) \ge (1 - \alpha_0)\}.$$

Since $M(x_0, y_0, t_0) = (1 - \alpha_0)$, from (5.7), we get

$$(5.8) d_{\alpha_0}(x_0, y_0) \le t_0.$$

Since $M(x_0, y_0, .)$ is nondecreasing, from (5.8), we have

$$(5.9) (1 - \alpha_0) = M(x_0, y_0, t_0) \ge M(x_0, y_0, d_{\alpha_0}(x_0, y_0)).$$

Thus $M(x_0, y_0, d_{\alpha_0}(x_0, y_0)) \leq (1 - \alpha_0)$.

If possible suppose that $M(x_0, y_0, d_{\alpha_0}(x_0, y_0)) < (1-\alpha_0)$. Then by the upper semi continuity of $M(x_0, y_0, .)$, $\exists t' > d_{\alpha_0}(x_0, y_0)$ such that $M(x_0, y_0, t') < (1-\alpha_0)$. Thus

$$d_{\alpha_0}(x_0, y_0) = \bigwedge \{s > 0: M(x_0, y_0, s) \ge (1 - \alpha_0)\} \ge t' > d_{\alpha_0}(x_0, y_0).$$

This is a contradiction. So, from (5.9), $M(x_0, y_0, d_{\alpha_0}(x_0, y_0)) = (1 - \alpha_0)$.

(2) Since $M(x_0, y_0, .)$ is continuous, by (M1) and (M5), for each $\alpha \in (0, 1), \exists t > 0$ such that $M(x_0, y_0, t) = (1 - \alpha)$.

Then by (1), the proof follows.

(3) It follows from (1) and (2), by using the strict increasing property of $M(x_0, y_0, .)$. Now we prove the Theorem 5.6(iii).

We consider the following cases.

Let $(x_0, y_0, t_0) \in X^2 \times [0, \infty)$ and $M(x_0, y_0, t_0) = (1 - \alpha_0)$.

Case I: Let $t_0 \leq 0$.

Then, $M(x_0, y_0, t_0) = M'(x_0, y_0, t_0) = 0.$

Case II: $x_0 = y_0, t_0 > 0.$

Then $M(x_0, y_0, t_0) = M'(x_0, y_0, t_0) = 1$.

Case III: $x_0 \neq y_0$ and $t_0 \in [0, \infty)$ such that $M(x_0, y_0, t_0) = 0$.

For $\alpha \in (0, 1)$, $d_{\alpha}(x_0, y_0) = \bigwedge \{t > 0 : M(x_0, y_0, t) \ge (1 - \alpha)\}.$

By Lemma 5.7(2), we have $M(x_0, y_0, d_{\alpha}(x_0, y_0)) = (1 - \alpha) \ \forall \alpha \in (0, 1).$

Since $M(x_0, y_0, t_0) = 0 < (1 - \alpha)$, it follows that $t_0 < d_{\alpha}(x_0, y_0) \ \forall \alpha \in (0, 1)$.

So
$$M'(x_0, y_0, t_0) = \bigvee \{\alpha \in (0, 1) : d_{\alpha}(x_0, y_0) \le t_0\} = \bigvee \phi = 0.$$

Therefore $M(x_0, y_0, t_0) = M'(x_0, y_0, t_0) = 0.$

Case IV: Suppose $x_0 \neq y_0$ and $t_0 > 0$ such that $0 < M(x_0, y_0, t_0) < 1$.

Let $M(x_0, y_0, t_0) = (1 - \alpha_0)$. Then $0 < \alpha_0 < 1$. Now

(5.10)
$$M'(x, y, t) = \bigvee \{\alpha \in (0, 1) : d_{(1-\alpha)}(x, y) \le t\}$$

and

(5.11)
$$d_{\alpha}(x, y) = \bigwedge \{t > 0 : M(x, y, t) \ge (1 - \alpha)\}.$$

Since $M(x_0, y_0, t_0) = (1 - \alpha_0)$, from (5.11) ,we have

$$(5.12) d_{\alpha_0}(x_0, y_0) \le t_0.$$

Using (5.12), from (5.10), we get

$$(5.13) M'(x_0, y_0, t_0) \ge (1 - \alpha_0).$$

Thus $M'(x_0, y_0, t_0) \ge M(x_0, y_0, t_0)$. For $\alpha \in (0, \alpha_0)$, let $d_{\alpha}(x_0, y_0) = t'$. By lemma 5.7(2), $M(x_0, y_0, t') = (1 - \alpha)$. So $M(x_0, y_0, t') = (1 - \alpha) > (1 - \alpha_0) = M(x_0, y_0, t_0)$. Since $M(x_0, y_0, t)$ is monotonically increasing, $M(x_0, y_0, t') > M(x_0, y_0, t_0)$ implies that $t' > t_0$. Hence, for $\alpha \in (0, \alpha_0)$, $d_{\alpha}(x_0, y_0) = t' \not\le t_0$. Therefore

$$(5.14) M'(x_0, y_0, t_0) \le (1 - \alpha_0) = M(x_0, y_0, t_0).$$

By (5.13) and (5.14), we have $M'(x_0, y_0, t_0) = M(x_0, y_0, t_0)$.

Case V: Suppose $x_0 \neq y_0$ and $t_0 \in [0, \infty)$ such that $M(x_0, y_0, t_0) = 1$. Note that for each $\alpha \in (0, 1)$ and for any $x, y \in X$,

$$M'(x, y, t) = \begin{cases} \bigvee \{\alpha \in (0, 1) : d_{(1-\alpha)}(x, y) \le t\} & for \ t > 0 \\ 0 & for \ t = 0 \end{cases}$$

and

(5.15)
$$d_{\alpha} = \bigwedge \{ t > 0 : M(x, y, t) \ge (1 - \alpha) \}.$$

From (5.15), we have $d_{(1-\alpha)(x_0, y_0)} \leq t_0 \ \forall \alpha \in (0, 1)$. Thus $M'(x_0, y_0, t_0) = 1$. So $M(x_0, y_0, t_0) = M'(x_0, y_0, t_0) = 1$. Hence $M(x, y, t) = M'(x, y, t) \ \forall (x, y, t) \in X^2 \times [0, \infty)$.

6. Conclusion

Though the decomposition theorems play a pivotal role in the development of fuzzy functional analysis, but it is observed that the validity of this theorems requires a stringent restriction on the underlying t-norm in the definition of fuzzy metric. To retain the generality of t-norm, the concept of Generating space of quasi-metric family comes in front. GSQMF has the common characteristic properties of both fuzzy metric space in the sense of Kaleva & Seikkala [5] and Menger probabilistic metric space [14]. So the GSQMF is more general concept than that of fuzzy metric but in a restricted situation these two spaces are similar.

Acknowledgements. The authors are grateful to the referees for their valuable suggestions in rewriting the paper in the present form. The authors are also thankful to the Editor-in-Chief of the journal (AFMI) for their specious comments which enrich us to revise the paper.

References

- S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung and S. M. Kang, Coincidence point theorems and minimization theorems in fuzzy metric spaces, Fuzzy Sets and Systems 88 (1997) 119–127.
- [2] Reny George and S. M. Kang, Dislocated fuzzy quazi metric spaces and common fixed points, Ann. Fuzzy Math. Inform. 5 (1) (2013) 1–13.
- [3] J. S. Jung, B. S. Lee and Y. J. Cho, Some minimization theorems in generating spaces of quasi-metric family and applications, Bull. Korean Math. Soc. 33 (4) (1996) 565–586.
- [4] I. Istratescu, On some fixed point theorems in generalized Menger spaces, Boll. Un. Mat. Ital. 5(13-A)(1976) 95-100.
- [5] O. Kaleva and S. Seikkala, On Fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215–229.
- [6] George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic, Prentice-Hall of India Private Limited, New Delhi-110001 1997.
- [7] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica (1975) 326–334.
- [8] Krishnapada Das, Binayak S. Choudhury and Pritha Bhattacharyya, A common fixed point theorem for cyclic contractive mappings in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 9 (4) (2015) 581–592.
- [9] G. Rano, T. Bag and S. K. Samanta, Some results on fuzzy metric spaces, J. Fuzzy Math. 19 (4) (2011) 925–938.
- [10] G. Rano and T. Bag, A fixed point theorem in Dislocated fuzzy quasi-metric spaces, Int. J. Math. Sci. Comput. 3 (1) (2013) 1–3.
- [11] G. Rano, T. Bag and S. K. Samanta, Fixed point theorems in generating spaces of quasi-metric family, Int. J. Math. Sci. Comput. 2 (2) (2012) 50–53.
- [12] G. Rano, T. Bag and S. K. Samanta, Asymptotically regular mapping and fixed point theorems in generating spaces of semi-norm family, Ann. Fuzzy Math. Inform. 8 (6) (2014) 977–986.
- [13] S. H. Rasouli and A. Ghorbani, A new fixed point theorem for nonlinear constructions of Alber-Guerre Delabriere type in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 9 (4) (2015) 573–579.
- [14] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J.Math. 10 (1960) 313–334.
- [15] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.

GOBARDHAN RANO (gobardhanr@gmail.com)

Research Schalar, Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India

$\underline{TARAPADA\ BAG}\ (\texttt{tarapadavb@gmail.com})$

Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India

SYAMAL KUMAR SAMANTA (syamal_123@yahoo.co.in)

Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India