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Abstract. Clustering plays an important role in data mining tech-
niques for medical diagnosis. Clustering can be considered as the most
important un-supervised learning technique. Most of the clustering meth-
ods of group data based on distance and few are based on similarity. The
clustering algorithms classify gene expression data into clusters and the
functionally related genes are grouped together in an efficient manner. The
groupings are constructed such that the degree of relationship is strong
among members of the same cluster and weak among members of different
clusters. In this paper, we introduced a similarity measure of intuitionistic
fuzzy sets(IFSs) and developed a clustering algorithm based on similarity
measure of IFSs. Also an application of similarity measure between two
IFSs in a decision making problem is illustrated and also shown that our
proposed method and previously defined method are giving similar results
using same example. The aim of this paper is to introduce a simple method
of finding cluster(s) making use of Similarity Measure.
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1. Introduction

Cluster analysis or clustering is the task of grouping a set of objects in such a
way that objects in the same group (called a cluster) are more similar (in some sense
or another) to each other than to those in other groups (clusters). It is a main task
of exploratory data mining, and a common technique for statistical data analysis,
used in many fields, including machine learning, pattern recognition, image analysis,
information retrieval, and bioinformatics.
Cluster analysis itself is not one specific algorithm, but the general task to be solved.
It can be achieved by various algorithms that differ significantly in their notion
of what constitutes a cluster and how to efficiently find them. Popular notions of
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clusters include groups with small distances among the cluster members, dense areas
of the data space, intervals or particular statistical distributions. Clustering can
therefore be formulated as a multi-objective optimization problem. The appropriate
clustering algorithm and parameter settings (including values such as the distance
function to use, a density threshold or the number of expected clusters) depend on
the individual data set and intended use of the results. Cluster analysis as such is
not an automatic task, but an iterative process of knowledge discovery or interactive
multi-objective optimization that involves trial and failure. It will often be necessary
to modify data preprocessing and model parameters until the result achieves the
desired properties.

Similarity measure between two fuzzy sets( interval-valued fuzzy sets, intuition-
istic fuzzy sets, interval-valued intuitionistic fuzzy sets) have been defined by many
authors [2, 3, 5, 8].There are several techniques for defining similarity measure in such
cases. Some of them are based on distances and some others are based on matching
function. There are techniques based on set-theoretic approach also. Some proper-
ties are common to these measures and some are not, which influence the choice of
the measure to be used in several applications.In [4] , seven similarity measures of
fuzzy soft sets are introduced, which are based on the normalized Hamming distance,
the normalized Euclidean distance, the generalized normalized distance, the Type-
2 generalized normalized distance, the Type-2 normalized Euclidean distance, the
Hausdorff distance and the Chebyshev distance. One of the significant differences
between similarity measure based on matching function S and similarity measure S

′

based on distance is that if A
⋂

B =∅ , then S(A,B) = 0 but S
′

(A,B) may not be
equal to zero, where A and B are two fuzzy sets. But it is easier to calculate the
intermediate distance between two fuzzy sets or soft sets. We also developed a new
Similarity measure denoted by SMp(A,B), where A and B are IFSs.
Cluster analysis or clustering is the task of grouping a set of objects in such a way
that objects in the same group (called a cluster) are more similar (in some sense or
another) to each other than to those in other groups (clusters). It is a main task
of exploratory data mining, and a common technique for statistical data analysis,
used in many fields, including machine learning, pattern recognition, image analysis,
information retrieval, and bioinformatics.
Cluster analysis itself is not one specific algorithm, but the general task to be solved.
It can be achieved by various algorithms that differ significantly in their notion of
what constitutes a cluster and how to efficiently find them. Popular notions of clus-
ters include groups with small distances among the cluster members, dense areas of
the data space, intervals or particular statistical distributions.
We have extended these concepts of similarity measure of IFS in clustering. The
aim of this paper is to introduce the clustering using Similarity Measure and show
its application.

2. Preliminaries

In this section we briefly review some basic definitions which will be used in the
rest of the paper.
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Definition 2.1 ([14]). Let us consider a non empty collection of objects denoted by
X. Then a fuzzy set (FS for short)α in X is a set of ordered pairs having the form
α = {(x, µα(x) : xεX}
where the function µα : X−→[0,1] is called the membership function or grade of
membership (also degree of compatibility or degree of truth) of X in α. The interval
M = [0,1] is called membership space.

Definition 2.2 ([1]). The intuitionistic fuzzy sets (IFS) introduced by Atanassov(1983)
are an extension of the theory of fuzzy sets created by L.A Zadeh as an adequate
mathematical description of imprecision and uncertainty in nature.
Let X be a non empty set. Then an intuitionistic fuzzy set (IFS) A is a set having
the form
A={(x, µA(x), γA(x) : xεX}
where the functions µA : X−→[0,1] and γA : X−→[0,1] represents the degree of
membership and the degree of non-membership respectively of each element xεX
and πA(x) = 1− (µA(x) + γA(x)) is called the hesitancy degree.

Definition 2.3 ([8]). Distance Measures : Let X = x1, x2, x3, ....., xn be a discrete
universe of discourse. Consider that the elements xi(i = 1, 2, 3, , ..., n), with wi ≥ 0,
i=1,2,3,...,n and

∑n
i=1 wi = 1 , then we have for any two IFSs A and B ,

(1) The weighted Hamming distance :
d(A,B) = 1

2

∑n
i=1 wi(|µA(xi)− µB(xi)|+ |γA(xi)− γB(xi)|+ |πA(xi)− πB(xi)|).

(2) The normalized Hamming distance :
d(A,B) = 1

2n

∑n
i=1(|µA(xi)−µB(xi)|+ |γA(xi)−γB(xi)|+ |πA(xi)−πB(xi)|), where

w = ( 1
n ,

1
n , ...,

1
n ).

(3) The weighted Euclidean distance :
d2(A,B) = 1

2

∑n
i=1 wi((µA(xi)−µB(xi))

2+(γA(xi)−γB(xi))
2+(πA(xi)−πB(xi))

2).
(4) The normalized Euclidean distance :
d2(A,B) = 1

2n

∑n
i=1((µA(xi)−µB(xi))

2 + (γA(xi)− γB(xi))
2 + (πA(xi)− πB(xi))

2)

where w = ( 1
n ,

1
n , ...,

1
n ).

Definition 2.4. Let A and B be two IFS-sets over U. Then using the Hamming
distance(1) , Similarity measure of A and B is defined as follows :

(5) SM(A,B) =
1

1 + d(A,B)
.

3. Clustering algorithm

For any two IFS-sets A and B over U we defined the Similarity Measure as

(6) SMp(A,B) =
1

1 +
√
d(A,B)

.

Given a collection of m IFSs Aj(j = 1, ...,m) . In the first stage each of the m IFSs
Aj(j = 1, ...,m) is considered as a unique cluster. Also we considered a ideal/expert
IFSs say X. The IFSs Aj(j=1,...,m) and X are then compared among themselves by
weighted Hamming/Euclidean or by normalized Hamming/Euclidean distance. Now
we find the Similarity Measure(using (6)) between the m IFSs Aj(j=1,...,m) and X.
Now the IFSs Aj(j=1,...,m) and X having similar(or nearly similar) Similarity Mea-
sure forms the desired cluster(s).
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The main steps for this algorithm are as follows :
Step 1. Consider each of the m IFSs Aj(j=1,...,m) as a unique cluster.
Step 2. Enter the number of variable and value of the weights.
Step 3. Enter the membership, non-membership and hesitancy of the expert i.e.
X.
Step 4. Enter the membership, non-membership and hesitancy of the m IFSs
Aj(j=1,...,m) .
Step 5. Calculate the distance between X and m IFSs Aj(j=1,...,m) using (1)
Step 6. Calculate the Similarity Measure between X and m IFSs Aj(j=1,...,m)
using (6) .

Similar algorithm will be followed for the measure defined in (5) .

Example 3.1. Suppose for the case of CANCER the symptoms are xi , i = 1,2,...,8
where x1 = lump, x2 = body pain, x3 = soreness, x4 = headache, x5 = loss of
appetite, x6 = weight loss, x7 = chest pain, x8 = fever . And we have 8 patients
say A1,A2,A3,A4,A5,A6,A7,A8. Let the expert set is X , where

X = {(x1, 0.63, 0.25), (x2, 0.72, 0.19), (x3, 0.84, 0.10), (x4, 0.51, 0.36), (x5, 0.39, 0.42),
(x6, 0.50, 0.50), (x7, 0.48, 0.30), (x8, 0.79, 0.11)}

A1 = {(x1, 0.20, 0.50), (x2, 0.10, 0.80), (x3, 0.50, 0.30), (x4, 0.90, 0.00), (x5, 0.40, 0.35),
(x6, 0.10, 0.90), (x7, 0.30, 0.50), (x8, 1.00, 0.00)}

A2 = {(x1, 0.50, 0.40), (x2, 0.60, 0.15), (x3, 1.00, 0.00), (x4, 0.15, 0.65), (x5, 0.00, 0.80),
(x6, 0.70, 0.15), (x7, 0.50, 0.30), (x8, 0.65, 0.20)}

A3 = {(x1, 0.45, 0.35), (x2, 0.60, 0.30), (x3, 0.90, 0.00), (x4, 0.10, 0.80), (x5, 0.20, 0.70),
(x6, 0.60, 0.20), (x7, 0.15, 0.80), (x8, 0.20, 0.65)}

A4 = {(x1, 1.00, 0.00), (x2, 1.00, 0.00), (x3, 0.85, 0.10), (x4, 0.75, 0.15), (x5, 0.20, 0.80),
(x6, 0.15, 0.85), (x7, 0.10, 0.70), (x8, 0.30, 0.70)}

A5 = {(x1, 0.90, 0.00), (x2, 0.90, 0.10), (x3, 0.80, 0.10), (x4, 0.70, 0.20), (x5, 0.50, 0.15),
(x6, 0.30, 0.65), (x7, 0.15, 0.75), (x8, 0.40, 0.30)}

A6 = {(x1, 0.30, 0.50), (x2, 0.30, 0.60), (x3, 0.40, 0.60), (x4, 0.50, 0.50), (x5, 0.70, 0.30),
(x6, 0.10, 0.90), (x7, 0.20, 0.70), (x8, 0.30, 0.30)}

A7 = {(x1, 0.35, 0.45), (x2, 0.20, 0.70), (x3, 0.40, 0.10), (x4, 0.50, 0.10), (x5, 1.00, 0.00),
(x6, 0.15, 0.25), (x7, 0.10, 0.30), (x8, 0.65, 0.15)}

A8 = {(x1, 1.00, 0.00), (x2, 0.10, 0.20), (x3, 0.40, 0.55), (x4, 0.25, 0.05), (x5, 0.15, 0.43),
(x6, 0.02, 0.10), (x7, 0.65, 0.06), (x8, 0.02, 0.01)}

Now for finding the distance we consider the weight
100
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w = {0.15, 0.10, 0.12, 0.15, 0.10, 0.13, 0.14, 0.11}

Step 1 In the first stage each IFSs Aj(j = 1, ..., 8) is considered as a unique clusters
i.e
{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}

Step 2

d(X,A1) = 0.3359 ; d(X,A2) = 0.2144
d(X,A3) = 0.3237 ; d(X,A4) = 0.3251
d(X,A5) = 0.2507 ; d(X,A6) = 0.36315
d(X,A7) = 0.3949 ; d(X,A8) = 0.5247

Step 3

SM(X,A1) = 0.75; SM(X,A2) = 0.82
SM(X,A3) = 0.76; SM(X,A4) = 0.75
SM(X,A5) = 0.80; SM(X,A6) = 0.73
SM(X,A7) = 0.72; SM(X,A8) = 0.66

Now,we take intervals [0,0.69], [0.70,0.79] and [0.80,1] which denotes cluster 1, clus-
ter 2 and cluster 3 respectively. Now by some expert knowledge we can conclude
that if SM(X,Ai),i=1,2,...,n lies in cluster 1 then the patient has no possibility of
having Cancer, if in cluster 2 then the patient has possibility of having Cancer, but
if in cluster 3 then the patient is surely suffering from Cancer. We find only A8

lies in the first cluster ; A1, A3, A4, A6, A7 lies in 2nd one and A2, A5 lies in the 3rd
cluster. Thus according to our proposed method A2 and A5 have more possibility
of having cancer(FIGURE 1).

Figure 1.

In this process of clustering, the number of clusters can be obtained according to
the problem to be solved.
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Similarity Measure for our proposed definition :

SMp(X,A1) = 0.63 ;SMp(X,A2) = 0.68
SMp(X,A3) = 0.64 ;SMp(X,A4) = 0.637
SMp(X,A5) = 0.67 ;SMp(X,A6) = 0.62
SMp(X,A7) = 0.61 ;SMp(X,A8) = 0.58

Now,we take intervals [0.55,0.59], [0.60,0.65] and [0.66,1] which denotes cluster 1,
cluster 2 and cluster 3 respectively. Now by some expert knowledge we can conclude
that if SMp(X,Ai),i=1,2,...,n lies in cluster 1 then the patient has no possibility of
having Cancer, if in cluster 2 then the patient has possibility of having Cancer, but
if in cluster 3 then the patient is surely suffering from Cancer. We find only A8

lies in the first cluster ; A1, A3, A4, A6, A7 lies in 2nd one and A2, A5 lies in the 3rd
cluster. Thus according to our proposed method A2 and A5 have more possibility
of having cancer(FIGURE 2).

Figure 2.

Example 3.2. Let us take another example of CHIKUNGUNYA where the expert
is X and the patients is A1,A2,A3,A4,A5,A6,A7,A8 having symptoms xi , i = 1,2,...,8
where x1 = fever, x2 = joint pain, x3 = headache, x4 = rash, x5 = muscle pain, x6
= nausea, x7 = back pain, x8 = fatigue . Let

X = {(x1, 0.50, 0.40), (x2, 0.60, 0.15), (x3, 1.00, 0.00), (x4, 0.15, 0.65), (x5, 0.00, 0.80),
(x6, 0.70, 0.15), (x7, 0.50, 0.30), (x8, 0.65, 0.20)}

A1 = {(x1, 0.20, 0.50), (x2, 0.10, 0.80), (x3, 0.50, 0.30), (x4, 0.90, 0.00), (x5, 0.40, 0.35),
(x6, 0.70, 0.15), (x7, 0.50, 0.30), (x8, 0.65, 0.20)}

A2 = {(x1, 0.45, 0.35), (x2, 0.60, 0.30), (x3, 0.90, 0.00), (x4, 0.10, 0.80), (x5, 0.20, 0.70),
(x6, 0.60, 0.20), (x7, 0.15, 0.80), (x8, 0.20, 0.65)}

A3 = {(x1, 1.00, 0.00), (x2, 1.00, 0.00), (x3, 0.85, 0.10), (x4, 0.75, 0.15), (x5, 0.20, 0.80),
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(x6, 0.15, 0.85), (x7, 0.10, 0.70), (x8, 0.30, 0.75)}

A4 = {(x1, 0.90, 0.00), (x2, 0.90, 0.10), (x3, 0.80, 0.10), (x4, 0.70, 0.20), (x5, 0.50, 0.15),
(x6, 0.30, 0.65), (x7, 0.15, 0.75), (x8, 0.40, 0.30)}

A5 = {(x1, 0.50, 0.20), (x2, 0.70, 0.00), (x3, 0.10, 0.60), (x4, 0.20, 0.40), (x5, 0.70, 0.10),
(x6, 0.60, 0.30), (x7, 0.30, 0.50), (x8, 0.80, 0.10)}

A6 = {(x1, 0.70, 0.20), (x2, 0.40, 0.20), (x3, 0.50, 0.20), (x4, 0.80, 0.10), (x5, 0.50, 0.40),
(x6, 0.25, 0.05), (x7, 0.15, 0.25), (x8, 0.65, 0.15)}

A7 = {(x1, 0.90, 0.10), (x2, 0.30, 0.60), (x3, 0.70, 0.10), (x4, 0.50, 0.10), (x5, 0.10, 0.10),
(x6, 0.20, 0.70), (x7, 0.80, 0.10), (x8, 0.10, 0.70)}

A8 = {(x1, 0.35, 0.45), (x2, 0.20, 0.70), (x3, 0.40, 0.10), (x4, 0.50, 0.01), (x5, 0.10, 0.00),
(x6, 0.10, 0.30), (x7, 0.65, 0.15), (x8, 0.30, 0.30)}

Step 1 In the first stage each IFSs Aj(j = 1, ..., 8) is considered as a unique clusters
i.e
{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}

Step 2

d(X,A1) = 0.3275 ; d(X,A2) = 0.2170
d(X,A3) = 0.4450 ; d(X,A4) = 0.4170
d(X,A5) = 0.3245 ; d(X,A6) = 0.3905
d(X,A7) = 0.4675 ; d(X,A8) = 0.4630

Step 3

SM(X,A1) = 0.753; SM(X,A2) = 0.822
SM(X,A3) = 0.69; SM(X,A4) = 0.71
SM(X,A5) = 0.75; SM(X,A6) = 0.72
SM(X,A7) = 0.681; SM(X,A8) = 0.683

Now,we take intervals [0,0.70], [0.71,0.80] and [0.81,1] which denotes cluster 1, clus-
ter 2 and cluster 3 respectively. Now by some expert knowledge we can conclude
that if SM(X,Ai),i=1,2,...,n lies in cluster 1 then the patient has no possibility of
having Chikungunya, if in cluster 2 then the patient may have the possibility of
having Chikungunya, but if in cluster 3 then the patient is surely suffering from
Chikungunya. We find only A3, A7, A8 lies in the cluster 1 ; A1, A4, A5, A6 lies
in 2nd one and A2 lies in the cluster 3. Thus A2 have more possibility of having
Chikungunya.(FIGURE 3)
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Figure 3.

Our proposed method

Step 1 In the first stage each IFSs Aj(j = 1, ..., 8) is considered as a unique clusters
i.e
{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}

Step 2√
d(X,A1) = 0.5723 ;

√
d(X,A2) = 0.4658√

d(X,A3) = 0.6671 ;
√
d(X,A4) = 0.6458√

d(X,A5) = 0.5696 ;
√
d(X,A6) = 0.6249√

d(X,A7) = 0.6837 ;
√
d(X,A8) = 0.6804

Step 3

SMp(X,A1) = 0.636 ;SMp(X,A2) = 0.682
SMp(X,A3) = 0.599 ;SMp(X,A4) = 0.61
SMp(X,A5) = 0.637 ;SMp(X,A6) = 0.62
SMp(X,A7) = 0.594 ;SMp(X,A8) = 0.595

Now,we take intervals [0,0.60], [0.61,0.65] and [0.66,1] which denotes cluster 1, cluster
2 and cluster 3 respectively. Now by some expert knowledge we can conclude that if
SMp(X,Ai),i=1,2,...,n lies in cluster 1 then the patient has no possibility of having
Chikungunya, if in cluster 2 then the patient has possibility of having Chikungunya,
but if in cluster 3 then the patient is surely suffering from Chikungunya. Now, we
find only A3, A7, A8 lies in the cluster 1 ; A1, A4, A5, A6 lies in 2nd one and A2 lies
in the cluster 3. Thus,according to our proposed method A2 have more possibility
of having Chikungunya than others.(FIGURE 4)

4. Conclusions and comparisons

In this paper, we have defined four types of distances between two IFS-sets and
proposed Similarity Measures of two IFS-sets. Then, we construct a decision making
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Figure 4.

method based on the similarity measures. Finally two simple examples are given
to show the possibility of using this method by using Hamming distance for diag-
nosis of diseases having some visible symptoms. In these examples, if we use the
other distances, we can obtain similar result. This method can be applied to prob-
lems that contain uncertainty such as problems in social, economic systems, pattern
recognition, medical diagnosis, game theory, coding theory and so on. In the fu-
ture we will investigate the activity patterns (e.g. grocery shopping paths, travel
behavior paths, tourist behavior paths, skiers paths, pedestrian activity paths, web
log paths, web content paths, eye tracking paths, mouse tracking paths and so on)
in which there are three main issues to address: the measurement of similarity be-
tween activity patterns, the detection of natural clusters of these patterns, and how
to take into account the order in which activities are executed, by using IFSs and
Similarity Measure. In [11] the authors defined the concepts of association ma-
trix and equivalent association matrix, and introduce some methods for calculating
the association coefficients of IFSs. Then, they propose a clustering algorithm for
IFSs. The algorithm uses the association coefficients of IFSs to construct an associ-
ation matrix, and utilizes a procedure to transform it into an equivalent association
matrix. In [16] the authors investigate graph theory-based clustering techniques for
Atanassov’s Intuitionistic fuzzy sets (A-IFSs) and interval-valued intuitionistic fuzzy
sets (IVIFSs). In [15] they propose a novel hesitant fuzzy agglomerative hierarchical
clustering algorithm for HFSs. The algorithm considers each of the given HFSs as
a unique cluster in the first stage, and then compares each pair of the HFSs by
utilising the weighted Hamming distance or the weighted Euclidean distance. The
two clusters with smaller distance are jointed. The procedure is then repeated time
and again until the desirable number of clusters is achieved. In [10] authors propose
a technique for clustering data with intuitionistic fuzzy information. They first de-
fine two new intuitionistic fuzzy similarity measures, and then use it to construct
an intuitionistic fuzzy similarity measure matrix, by which we present a spectral
algorithm to cluster intuitionistic fuzzy information. In [6] the authors investigate
the technique for clustering objects with intuitionistic fuzzy information. They first
propose a formula to derive the intuitionistic fuzzy similarity degree between two

105



Author 1 et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 1, 97–107

intuitionistic fuzzy sets and develop an approach to constructing an intuitionistic
fuzzy similarity matrix. In [7] they investigate the technique for clustering analysis
under intuitionistic fuzzy environment. They first develop an intuitionistic fuzzy
implication operator and extend the Lukasiewicz implication operator to intuition-
istic fuzzy environment, and then define an intuitionistic fuzzy triangle product and
an intuitionistic fuzzy square product. In [17] they develop a measure for calculat-
ing the association coefficient between Atanassov’s intuitionistic fuzzy sets (A-IFSs),
and show its desirable axiomatic properties. Then we present an algorithm for clus-
tering A-IFSs. The algorithm first utilizes the association coefficient of A-IFSs to
construct an association matrix, and then calculates the α− cutting matrix of the
association matrix no matter whether it is an equivalent matrix or not. After that,
the α−cutting matrix is used to cluster A-IFSs. In [9] an algorithm is introduced
for clustering IFSs, which is based on the traditional hierarchical clustering proce-
dure, the intuitionistic fuzzy aggregation operator, and the basic distance measures
between IFSs: the Hamming distance, normalized Hamming, weighted Hamming,
the Euclidean distance, the normalized Euclidean distance, and the weighted Eu-
clidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. In
[13] an intuitionistic fuzzy C-means algorithm to cluster IFSs is developed. In each
stage of the intuitionistic fuzzy C-means method the seeds are modified, and for
each IFS a membership degree to each of the clusters is estimated. In the end of the
algorithm, all the given IFSs, FSs are clustered according to the estimated mem-
bership degrees. In [12] an intuitionistic fuzzy vector, the inner and outer products
of intuitionistic fuzzy vectors, and study their properties. They put forward a new
method of constructing intuitionistic fuzzy similarity matrix. Based on the orthog-
onal of intuitionistic fuzzy vectors, proposed an orthogonal algorithm for clustering
intuitionistic fuzzy information. Whereas in our paper we introduced a similarity
measure of intuitionistic fuzzy sets(IFSs) and developed a clustering algorithm based
on similarity measure of IFSs. Also an application of similarity measure between
two IFSs in a decision making problem is illustrated.

Acknowledgements. The authors are thankful to the Reviewers for their
valuable suggestion to improve the paper.
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