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1. Introduction

Rough set theory was firstly proposed by Pawlak [10]. It is an extension of set
theory for the analysis of a vague and inexact description of objects. This theory is
widely applied to feature selection, rule extraction, decision supporting, data mining
and knowledge discovery from large data sets [8, 11, 13, 16]. The foundation of its
object classification is equivalence relation. The upper and lower approximation
operators are two core notions in rough set theory. In real world databases, data
sets usually take on variant forms. Pawlak rough approximations are based on
equivalence relations, which is not suitable in several situations. So from the angle
of applications, it is found to be more important to look into situations where the
binary relation may not be an equivalence relation but only an arbitrary. To address
this issue, many researchers have recently proposed several data processing methods
using generalized rough set models [2, 6, 7, 8, 9].

Topology is an important mathematical tool for the study of information sys-
tems, which has independent theoretical framework, background and broad appli-
cations [3]. We can introduce topological methods to rough set theory and study
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the relationship between topological theory and rough set theory, which has a deep
theoretical and practical significance beyond doubt. Some researchers carried out
this exploration[4, 5, 13, 14, 15, 20]. Kortelainen [5] considered relationships among
modified sets, topological spaces and rough sets based on a pre-order. Kondo [4]
proved that every reflexive relation in a set can induce a topology and proposed a
kind of compactness condition. Besides he got that a topology which satisfies the
compactness condition can determine the lower and upper approximation operators
induced by a similarity relation. In addition, connections between fuzzy rough set
theory and fuzzy topology were also investigated [1, 15].

However, the relationship between general rough sets and topologies need to be
further studied. Pawlak [10] indicated that T = {X ⊆ U |R(X) = X = R(X)} is a
clopen topology on U , where R(X) and R(X) are Pawlak rough lower and upper
approximations of X. In fact, there are some equivalent representations for the above
T .

T ={X ⊆ U |X ⊆ R(X)}
={X ⊆ U |X ⊇ R(X)}
={X ⊆ U |X = R(X)}
={X ⊆ U |X = R(X)}.

(1.1)

Generally, if we replace the equivalence relation with a general binary relation in the
above four sets, they are no longer equivalent. In addition, for generalized rough sets
induced by binary relations, Yao [19] gave an element-based definition, and Zhang
et al. [21] gave a granule-based definition. So by the formula (1.1), we can propose
eight types of sets based on the above two definitions. Obviously, they may not be
equivalent. Naturally, we need to study the eight sets. Is it possible for each of the
eight sets to be a topology induced by binary relations? What are the conditions
for them to generate a topology respectively? What’s the relationship among the
eight topologies? No doubt, these are interesting problems which need to be further
discussed. In this paper, we shall present some answers to these questions.

The remaining part of this paper is organized as follows. In Section 2, some
basic concepts and results about generalized rough sets and topology are reviewed.
In Section 3, we investigate four topological structures of generalized rough sets.
Meanwhile, different relations inducing the same topology are explored. Conclusion
is in Section 4.

2. Preliminaries

In this section, we shall briefly review basic concepts and results of the relation
based rough sets and topology. For more details, we refer to [7, 17, 20, 21].

In this paper, we always assume that U is a finite universe, R is a binary relation
on U .

∀x, y ∈ U , if (x, y) ∈ R, then x is the predecessor of y and y is the successor of x.
The sets

Rs(x) = {y ∈ U | (x, y) ∈ R}, Rp(x) = {y ∈ U | (y, x) ∈ R}
are called the successor and predecessor neighborhood of x respectively.
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R is called serial if ∀x ∈ U , ∃y ∈ U such that y ∈ Rs(x); R is called inverse serial
if ∀x ∈ U , ∃y ∈ U such that y ∈ Rp(x); R is called reflexive if ∀x ∈ U such that
x ∈ Rs(x); R is called symmetric if ∀x, y ∈ U , x ∈ Rs(y) implies y ∈ Rs(x); R is
called transitive if ∀x, y, z ∈ U , y ∈ Rs(x) and z ∈ Rs(y) imply z ∈ Rs(x).

Definition 2.1 ([7, 18, 21]). Let U be a universe and R be a binary relation on
U . The pair (U,R) is called a generalized approximation space. For any subset X
of U , two types of generalized rough lower and the upper approximations of X are
defined by the following:
Element-based definition:

apr′
R
(X) = {x ∈ U | Rs(x) ⊆ X}, apr′R(X) = {x ∈ U | Rs(x) ∩X ̸= ∅};

Granule-based definition:
apr′′

R
(X) =

∪
{Rs(x) | Rs(x) ⊆ X}, apr′′R(X) =

∪
{Rs(x) | Rs(x) ∩X ̸= ∅}.

When there is no confusion, we omit the lowercase R. For example, we denote
apr′

R
(X) by apr′(X).

Proposition 2.2 ([7, 20, 21]). In a generalized approximation space (U,R), the
lower approximation apr′(X) and the upper approximation apr′(X) of X satisfy the
following properties: ∀X,Y ⊆ U ,

(1) apr′({x}) = Rp(x) for all x ∈ U ;
(2) apr′(U) = U , apr′(∅) = ∅;

(3) apr′(X) =∼ apr′(∼ X), apr′(X) =∼ apr′(∼ X);

(4) X ⊆ Y ⇒ apr′(X) ⊆ apr′(Y ), apr′(X) ⊆ apr′(Y );

(5) apr′(X ∩ Y ) = apr′(X) ∩ apr′(Y ), apr′(X ∪ Y ) = apr′(X) ∪ apr′(Y );

(6) apr′(X ∪ Y ) ⊇ apr′(X) ∪ apr′(Y ), apr′(X ∩ Y ) ⊆ apr′(X) ∩ apr′(Y );
where ∼ X is the complement of X with respect to U .

Proposition 2.3 ([21]). In a generalized approximation space (U,R), the lower
approximation apr′′(X) and the upper approximation apr′′(X) of X satisfy the fol-
lowing properties: ∀X,Y ⊆ U ,

(1) apr′′(∅) = ∅;
(2) apr′′(X) ⊆ X;

(3) apr′′(X) = apr′′apr′′(X), apr′′(X) ⊆ apr′′apr′′(X);

(4) X ⊆ Y ⇒ apr′′(X) ⊆ apr′′(Y ), apr′′(X) ⊆ apr′′(Y );

(5) apr′′(X ∩ Y ) ⊆ apr′′(X) ∩ apr′′(Y ), apr′′(X ∩ Y ) ⊆ apr′′(X) ∩ apr′′(Y );

(6) apr′′(X ∪ Y ) ⊇ apr′′(X) ∪ apr′′(Y ), apr′′(X ∪ Y ) = apr′′(X) ∪ apr′′(Y );

(7) If R is inverse serial, then apr′′(U) = U , X ⊆ apr′′(X).

Proposition 2.4 ([21]). Let R be a binary relation on U . R is inverse serial if and
only if Rs(U) =

∪
x∈U Rs(x) = U .

Proposition 2.5 ([21]). Let R be a binary relation on U . The following conditions
are equivalent: ∀X ⊆ U ,

(1) R is reflexive; (2) apr′(X) ⊆ X; (3) X ⊆ apr′(X).

Proposition 2.6 ([21]). Let R be a binary relation on U . The following conditions
are equivalent: ∀X ⊆ U ,

(1) R is transitive; (2) apr′(X) ⊆ apr′(apr′(X)); (3) apr′(apr′(X)) ⊆ X.
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The basic concepts of topology have been widely used in many areas.

Definition 2.7 ([14, 17]). Let U be a non-empty set. T is a family of subsets of U ,
which satisfies the three conditions:

(T1) ∅, U ∈ T ;
(T2) If A,B ∈ T , then A ∩B ∈ T ;
(T3) If A ⊆ T , then

∪
A∈A A ∈ T ;

then we call T is a topology on U .
The pair (U, T ), or briefly, U is called a topological space.

Definition 2.8 ([14, 17]). An operator I: P(U) → P(U) is called an interior
operator on U if it satisfies the following conditions: ∀A,B ⊆ U ,

(I1) I(U) = U ;
(I2) I(A) ⊆ A;
(I3) I(I(A)) = I(A);
(I4) I(A ∩B) = I(A) ∩ I(B).

Definition 2.9 ([14, 17]). An operator C: P(U) → P(U) is called a closure operator
on U if it satisfies the following conditions: ∀A,B ⊆ U ,

(C1) C(∅) = ∅;
(C2) A ⊆ C(A);
(C3) C(C(A)) = C(A);
(C4) C(A ∪B) = C(A) ∪ C(B).

3. Major section

In this section, we will investigate the connection between four types of topological
structures and two classes of rough set models based on arbitrary binary relations.

According to Definition 2.1 and the formula (1.1), we can define eight sets as
follow.

(3.1)

{
T ′
1 = {X|X ⊆ apr′(X)},

T ′
2 = {X|X ⊇ apr′(X)}.

(3.2)

{
T ′
3 = {X|X = apr′(X)},

T ′
4 = {X|X = apr′(X)}.

(3.3)

{
T ′′
1 = {X|X ⊆ apr′′(X)},

T ′′
2 = {X|X ⊇ apr′′(X)}.

(3.4)

{
T ′′
3 = {X|X = apr′′(X)},

T ′′
4 = {X|X = apr′′(X)}.

T ′
3 was demonstrated in [4]. Obviously, we have the following relations: T ′

3 ⊆ T ′
1,

T ′
4 ⊆ T ′

2, T
′′
3 ⊆ T ′′

1 , T
′′
4 ⊆ T ′′

2 .
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3.1. The conditions under which T ′
1, T ′

2, T ′
3 and T ′

4 are topologies respec-
tively.

In this subsection, we will discuss the relationship between topology T ′
i (for

i = 1, 2, 3, 4) and binary relations. The following proposition illustrates that T ′
1 and

T ′
2 are topologies for arbitrary binary relations.

Proposition 3.1. Let (U,R) be a generalized approximation space. Then T ′
1 and

T ′
2 are topologies respectively.

Proof. In order to prove T ′
1 is a topology on U , we only need to show that T ′

1 which
is in the formula (3.1) satisfies the conditions of Definition 2.7.

(T1) It is easy to verify that ∅ ∈ T ′
1 and U ∈ T ′

1.
(T2) Suppose thatX,Y ∈ T ′

1, that is, X ⊆ apr′(X), Y ⊆ apr′(Y ). By Proposition
2.2, we have apr′(X ∩ Y ) = apr′(X)∩ apr′(Y ). Thus X ∩ Y ⊆ apr′(X ∩ Y ), that is,
X ∩ Y ∈ T ′

1.
(T3) ∀A ⊆ T ′

1, we shall show that
∪

A∈A A ∈ T ′
1. By the formula (3.1), we only

need to prove
∪

A∈A A ⊆ apr′(
∪

A∈A A). ∀x ∈
∪

A∈A A, ∃A ∈ A such that x ∈ A.
By A ⊆ T ′

1, then A ∈ T ′
1, which implies x ∈ A ⊆ apr′(A). Thus Rs(x) ⊆ A ⊆∪

A∈A A. So x ∈ apr′(
∪

A∈A A). This shows that
∪

A∈A A ⊆ apr′(
∪

A∈A A), that is,∪
A∈A A ∈ T ′

1.
In summary, T ′

1 is a topology.
We can prove that T ′

2 is also a topology on U in the same way. □

However, for a binary relation R, T ′
3 or T ′

4 may not be a topology. When R is
a reflexive relation, T ′

3 and T ′
4 are topologies [4]. The following example illustrates

that reflexive relation is only a sufficient condition.

Example 3.2. Let U = {a, b, c} and R = {(a, c), (b, a), (b, b), (b, c), (c, c)}. Then R
is not a reflexive relation, and Rs(a) = {c}, Rs(b) = {a, b, c}, Rs(c) = {c}. Hence
T ′
3 = {∅, {a, c}, U}, T ′

4 = {∅, {b}, U}. Clearly, both T ′
3 and T ′

4 are topologies on U .

Now we will give a necessary condition under which T ′
3 and T ′

4 are topologies
respectively.

Proposition 3.3. Let (U,R) be a generalized approximation space. The following
results hold.

(1) If T ′
3 is a topology, then R is a serial relation;

(2) If T ′
4 is a topology, then R is a serial relation.

Proof. (1) Since T ′
3 is a topology, then ∅ ∈ T ′

3. By the formula (3.2), apr′(∅) = ∅.
If R is not serial, then ∃x ∈ U such that Rs(x) = ∅ ⊆ ∅. Hence x ∈ apr′(∅) and
this implies a contradiction.

(2) Since T ′
4 is a topology, then U ∈ T ′

4. By the formula (3.2), apr′(U) = U . If
R is not serial , then ∃x ∈ U such that Rs(x) = ∅. So Rs(x) ∩ U = ∅. Hence
x /∈ apr′(U) and this implies a contradiction. □

Proposition 3.3 demonstrates that serial relation is a necessary condition under
which T ′

3 and T ′
4 are topologies. Whether serial relation is a sufficient condition or

not? The following example gives a negative answer.
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Example 3.4. Let U = {a, b, c} and R = {(a, a), (b, b), (c, a), (c, b)}. Then R is
a serial relation, and Rs(a) = {a}, Rs(b) = {b}, Rs(c) = {a, b}. Hence T ′

3 =
{∅, {a}, {b}, U} and T ′

4 = {∅, {a, c}, {b, c}, U}. Clearly, both T ′
3 and T ′

4 are not
topologies on U .

In the next section, we shall give a sufficient and necessary condition under which
both of them are topologies.

Let T ⊆ P(U), where P(U) is the power set of U . We define the set TC as follows:
TC = {∼ X|X ∈ T}.
Proposition 3.5. Let (U,R) be a generalized approximation space. T ′

3 is a topology
if and only if T ′

4 is a topology.

Proof. If X ∈ T ′
3, by the formula (3.2), apr′(X) = X. By Proposition 2.2, we have

apr′(∼ X) =∼ apr′(X) =∼ X. So ∼ X ∈ T ′
4. Hence T ′

4 = T ′C
3 . In the same way,

we have T ′
3 = T ′C

4 .
For the necessity, it is need to prove that T ′

4 satisfies the conditions of Definition
2.7.

(T1) Since T ′
3 is a topology, then ∅, U ∈ T ′

3. Hence ∅, U ∈ T ′
4.

(T2) If X,Y ∈ T ′
4, then ∼ X,∼ Y ∈ T ′

3. By the formula (3.2), apr′(X ∩ Y ) =∼
apr′(∼ X∪ ∼ Y ) =∼ (∼ X∪ ∼ Y ) = X ∩ Y . Hence X ∩ Y ∈ T ′

4.

(T3) ∀X,Y ∈ T ′
4, then ∼ X,∼ Y ∈ T ′

3. By the formula (3.2), apr′(X ∪ Y ) =∼
apr′(∼ X∩ ∼ Y ) =∼ (∼ X∩ ∼ Y ) = X ∪ Y . Since U is a finite universe, then T ′

4

distributes over arbitrary unions of subsets.
In summary, T ′

4 is a topology.
We can prove the sufficient condition in the same way. □
From the above propositions, we have investigated connections between topology

T ′
i (for i = 1, 2, 3, 4) and the first pair of approximation operators apr′ and apr′.

In the following subsection, we will study the topological structures induced by the
second pair of approximation operators apr′′ and apr′′.

3.2. The conditions under which T ′′
1 , T

′′
2 , T

′′
3 and T ′′

4 are topologies respec-
tively.

Proposition 3.6. Let (U,R) be a generalized approximation space and R be a re-
flexive and transitive relation on U . Then apr′(X) = apr′′(X) for each X ⊆ U . In
this case, T ′′

1 = T ′
1 and thus T ′′

1 is a topology.

Proof. ∀x ∈ apr′(X), we have Rs(x) ⊆ X. Since R is reflexive, then x ∈ Rs(x),
which implies x ∈ apr′′(X). On the other hand, ∀x ∈ apr′′(X), ∃y ∈ U such that
x ∈ Rs(y) and Rs(y) ⊆ X. Since R is transitive, then Rs(x) ⊆ X and x ∈ apr′(X).
Therefore, we have apr′(X) = apr′′(X). According to Proposition 3.1, T ′′

1 = T ′
1 and

thus T ′′
1 is a topology. □

This result illustrates that T ′′
1 is a topology when R is a reflexive and transitive

relation. However, it is not a necessary condition. Now we shall give a necessary
condition.

Proposition 3.7. Let (U,R) be a generalized approximation space. Then R is
inverse serial if and only if apr′′(U) = U .
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Proof. R is inverse serial ⇔
∪

x∈U Rs(x) = U ⇔
∪
{Rs(x) | Rs(x) ⊆ U} = U ⇔

apr′′(U) = U , by Proposition 2.4. □

Proposition 3.8. Let (U,R) be a generalized approximation space. If T ′′
1 is a topol-

ogy, then R is a inverse serial relation.

Proof. It is obvious by Propositions 2.2 and 3.7. □

However, inverse serial relation may not be a sufficient condition.

Example 3.9. Let U = {a, b, c, d} and R = {(a, a), (a, b), (b, c), (b, d), (c, a), (c, c)}.
Then R is a inverse serial relation, and Rs(a) = {a, b}, Rs(b) = {c, d}, Rs(c) =
{a, c}, Rs(d) = ∅. Hence T ′′

1 = {∅, {a, b}, {a, c}, {c, d}, {a, c, d}, U}. Clearly, T ′′
1 is

not a topology on U .

According to Proposition 2.3(2), we have T ′′
3 = T ′′

1 . Thus, we will get the following
results: (1) A reflexive and transitive relation can induce topology T ′′

3 . (2) Inverse
serial relation is only a necessary condition under which T ′′

3 is a topology.

Proposition 3.10. Let (U,R) be a generalized approximation space. Then T ′′
2 is a

topology.

Proof. We only need to show that T ′′
2 which is in the formula (3.3) satisfies the

conditions of Definition 2.7.
(T1) Obviously, apr′′(U) ⊆ U and apr′′(∅) = ∅ ⊆ ∅. Then ∅, U ∈ T ′′

2 .
(T2) If X,Y ∈ T ′′

2 , that is, apr
′′(X) ⊆ X and apr′′(Y ) ⊆ Y . By Proposition 2.3,

we have apr′′(X ∩ Y ) ⊆ apr′′(X) ∩ apr′′(Y ) ⊆ X ∩ Y . Thus X ∩ Y ∈ T ′′
2 .

(T3) ∀A ⊆ T ′′
2 , we shall show that

∪
A∈A A ∈ T ′′

2 . By the formula (3.3), we
only need to prove apr′′(

∪
A∈A A) ⊆

∪
A∈A A. ∀x ∈ apr′′(

∪
A∈A A), ∃y ∈ U such

that x ∈ Rs(y) and Rs(y) ∩ (
∪

A∈A A) ̸= ∅. Thus ∃A ∈ A and Rs(y) ∩ A ̸= ∅.
So x ∈ apr′′(A). By A ⊆ T ′′

2 , then A ∈ T ′′
2 , which implies apr′′(A) ⊆ A. So

x ∈
∪

A∈A A. It follows that apr′′(
∪

A∈A A) ⊆
∪

A∈A A. Hence
∪

A∈A A ∈ T ′′
2 .

In summary, T ′′
2 is a topology on U . □

However, for a binary relation R on U , T ′′
4 may not be a topology. The following

example will demonstrates this conclusion.

Example 3.11. Let U = {a, b, c} and R = {(a, a), (b, a), (c, b)}. Then R is a binary
relation andRs(a) = {a}, Rs(b) = {a}, Rs(c) = {b}. Hence, T ′′

4 = {∅, {a}, {b}, {a, b}}.
Obviously, T ′′

4 is not a topology.

A natural question thus arises: What’s the condition under which T ′′
4 is a topol-

ogy? Next, we shall give a sufficient and necessary condition.

Proposition 3.12. Let (U,R) be a generalized approximation space. Then
∪
{Rs(x) |

Rs(x) ∩ U ̸= ∅} =
∪

x∈U Rs(x).

Proof. Clearly,
∪
{Rs(x) | Rs(x) ∩ U ̸= ∅} ⊆

∪
x∈U Rs(x). On the other hand,

∀x ∈ U and x ∈
∪

x∈U Rs(x), then ∃Rs(y) such that x ∈ Rs(y) and Rs(y) ∩ U ̸= ∅.
Thus x ∈

∪
{Rs(x) | Rs(x) ∩ U ̸= ∅}. Hence

∪
x∈U Rs(x) ⊆

∪
{Rs(x) | Rs(x) ∩ U ̸=

∅}. □
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Proposition 3.13. Let (U,R) be a generalized approximation space. T ′′
4 is a topol-

ogy if and only if R is a inverse serial relation.

Proof.
Since T ′′

4 is a topology, then U ∈ T ′′
4 . By the formula (3.4), we have apr′′(U) = U .

Then
∪
{Rs(x) | Rs(x)∩U ̸= ∅} = U . By Proposition 3.12, we have

∪
x∈U Rs(x) =

U . Hence R is inverse serial.
Conversely, we only need to prove that T ′′

4 satisfies the conditions of Definition
2.7.

(T1) Clearly, apr′′(∅) = ∅. Hence ∅ ∈ T ′′
4 . Since R is inverse serial, by Proposi-

tion 3.13 and Definition 2.1, then apr′′(U) = U . Hence U ∈ T ′′
4 .

(T2) If X,Y ∈ T ′′
4 , we have apr′′(X ∩ Y ) ⊆ apr′′(X) ∩ apr′′(Y ) = X ∩ Y , by

Proposition 2.3. ∀x ∈ X ∩ Y , that is, x ∈ apr′′(X) ∩ apr′′(Y ). Since x ∈ apr′′(X),
∃y ∈ U such that x ∈ Rs(y). So Rs(y)∩(X∩Y ) ̸= ∅, which implies x ∈ apr′′(X∩Y ).
Thus X ∩ Y ⊆ apr′′(X ∩ Y ). Hence X ∩ Y ∈ T ′′

4 .
(T3) If ∀A ⊆ T ′′

4 , we shall show that
∪

A∈A A ∈ T ′′
4 . By the formula (3.4), we

only need to prove apr′′(
∪

A∈A A) =
∪

A∈A A. ∀x ∈ apr′′(
∪

A∈A A), ∃y ∈ U such
that x ∈ Rs(y) and Rs(y) ∩ (

∪
A∈A A) ̸= ∅. Thus ∃A ∈ A and Rs(y) ∩ A ̸= ∅. So

x ∈ apr′′(A). By A ⊆ T ′′
4 , A ∈ T ′′

4 , which implies apr′′(A) = A. Hence x ∈ A, and
thus x ∈

∪
A∈A A. On the other hand, since R is inverse serial and Proposition 2.3,

we have
∪

A∈A A ⊆ apr′′(
∪

A∈A A). Therefore, apr′′(
∪

A∈A A) =
∪

A∈A A. Hence∪
A∈A A ∈ T ′′

4 .
In summary, T ′′

4 is a topology on U . □

3.3. The relationships among these topologies.
According to Definition 2.1, if R is an equivalent relation, the two forms of

approximation operators are equivalent. Obviously, we have T ′
1 = T ′′

1 = T ′
2 = T ′′

2 =
T ′
3 = T ′′

3 = T ′
4 = T ′′

4 . This subsection discusses the relationship among the eight sets
which are induced by arbitrary binary relations.

Proposition 3.14. Let (U,R) be a generalized approximation space. Then
(1) T ′

1 = T ′
3 if and only if R is a reflexive relation;

(2) T ′
2 = T ′

4 if and only if R is a reflexive relation.

Proof. It is obvious by Proposition 2.5. □

According to Proposition 2.3(2), we know that T ′′
1 = T ′′

3 for a binary relation on
U . Whether T ′′

2 and T ′′
4 are equal for a binary relation? However, the following

example shows that they are not necessary equal.

Example 3.15. In Example 3.11, we can get

T ′′
2 = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, U}.

Obviously, T ′′
2 ̸= T ′′

4 .

So we have the following proposition.

Proposition 3.16. Let (U,R) be a generalized approximation space. T ′′
2 = T ′′

4 if
and only if R is a inverse serial relation.
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Proof. Since T ′′
2 = T ′′

4 , we have U ⊆ apr′′(U) ⊆ U . Then apr′′(U) = U . So∪
{Rs(x) | Rs(x) ∩X ̸= ∅} =

∪
x∈U Rs(x) = U . According to Proposition 2.4, R is

a inverse serial relation.
Conversely, it is obvious that T ′′

4 ⊆ T ′′
2 . ∀X ∈ T ′′

2 , by the formula (3.3), we have
apr′′(X) ⊆ X. If R is a inverse serial relation, then X ⊆ apr′′(X), by Proposition
2.3. Thus X ∈ T ′′

4 . Hence T ′′
2 = T ′′

4 . □

For general binary relations, the two forms of generalized rough approximation
pairs (apr′, apr′) and (apr′′, apr′′) are different, but they are closely related. If R is
a reflexive and transitive relation on U , we have T ′

1 = T ′′
1 = T ′

3 = T ′′
3 by Propositions

3.6 and 3.14. The following proposition illustrates the relationship among T ′
2, T

′′
2 ,

T ′
4, and T ′′

4 .

Proposition 3.17. Let (U,R) be a generalized approximation space. If R is a
symmetric and transitive relation, then T ′

2 = T ′′
2 and T ′

4 = T ′′
4 .

Proof. In order to prove the result, we only need to show apr′(X) = apr′′(X).
∀x ∈ apr′(X), then Rs(x) ∩ X ̸= ∅. Suppose that x /∈ apr′′(X), then ∀y such

that x ∈ Rs(y) and Rs(y) ∩ X = ∅. Since R is transitive, then Rs(x) ⊆ Rs(y).
Hence Rs(x) ∩X = ∅ and this implies a contradiction, which implies x ∈ apr′′(X).

On the other hand, ∀x ∈ apr′′(X), ∃y such that x ∈ Rs(y) and Rs(y) ∩X ̸= ∅.
Suppose that x /∈ apr′(X), then Rs(x) ∩ X = ∅. Since R is a symmetric and
transitive relation, then y ∈ Rs(x) and Rs(y) ⊆ Rs(x). Hence Rs(y) ∩X = ∅ and
this implies a contradiction, which implies x ∈ apr′(X).

Therefore, we have apr′(X) = apr′′(X). Hence T ′
2 = T ′′

2 , T
′
4 = T ′′

4 . □

In summary, we have two tables. The following table 1 gives a summary of
relationships between generalized rough sets and topologies (T ′

i and T ′′
i ) (for i =

1, 2, 3, 4). Table 2 gives a summary of relationships among these topologies.
In the following tables, the abbreviation BR, SR, ISR, RR, RTR, STR and ER

stand for binary relation, serial relation, inverse serial relation, reflexive relation,
reflexive and transitive relation, symmetric and transitive relation and equivalence
relation respectively.

Table 1
The relationship between relations and topologies

R is a BR R is a SR R is a ISR R is a RR R is a RTR
T ′
1 topology topology topology topology topology

T ′
2 topology topology topology topology topology

T ′
3 not topology not topology not topology topology topology

T ′
4 not topology not topology not topology topology topology

T ′′
1 not topology not topology not topology not topology topology

T ′′
2 topology topology topology topology topology

T ′′
3 not topology not topology not topology not topology topology

T ′′
4 not topology not topology topology topology topology

Table 2
The relationship among topologies
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R is a BR R is a ISR R is a RR R is a RTR R is a STR R is a ER
T ′′
1 = T ′′

3 T ′′
2 = T ′′

4 T ′
1 = T ′

3 T ′
1 = T ′

3 T ′
2 = T ′′

2 T ′
i = T ′

j

T ′
2 = T ′

4 T ′
2 = T ′

4 T ′
4 = T ′′

4 T ′′
i = T ′′

j

T ′′
1 = T ′′

3 T ′′
1 = T ′′

3 T ′
i = T ′′

j

T ′′
2 = T ′′

4 T ′′
2 = T ′′

4 (i, j = 1, 2, 3, 4)
T ′
1 = T ′′

1

T ′
3 = T ′′

3

3.4. Different relations induce the same topology.
Yu [20] studied the lower approximation apr′(X) and proposed some conclusions.

In this section, we will show that there are some similar conclusions for the upper
approximation apr′(X).

Definition 3.18 ([20]). Let R be a binary relation on U . The smallest transitive
relation on U containing the relation R is called the transitive closure of R.

We denote the transitive closure of R by t(R).

Proposition 3.19 ([12]). Let R be a binary relation. Then t(R) = R ∪R2 ∪ · · · .

Proposition 3.20 ([20]). Let R be a reflexive relation. Then t(R) is also a reflexive
relation.

Let R be a reflexive relation. Denote: T ′
4 = T ′

4(R) = {X ⊆ U | apr′(X) = X}.

Proposition 3.21. Let R be a reflexive relation. Then T ′
4(R) = T ′

4(t(R)).

Proposition 3.22. Let R be a reflexive relation and S be a binary relation on U .
If R ⊆ S ⊆ t(R), then T ′

4(R) = T ′
4(S) = T ′

4(t(R)).

Proof. By Proposition 3.21, it’s obvious. □

Proposition 3.23 ([14]). Let R be a binary relation. The following conditions are
equivalent:

(1) R is a reflexive and transitive relation;
(2) apr′ is a closure operator on (U, T ′

3);
(3) apr′ is an interior operator on (U, T ′

3).

Corollary 3.24. If R is a reflexive and transitive relation, then apr′ and apr′ are
interior operator and closure operator on (U, T ′

i )(i = 1, 2, 4), respectively.

Proof. By Propositions 2.2, 2.5, 2.6 and 3.14, it’s obvious. □

Let (U, T ) be a topological space and I and C be interior operator and closure
operator, respectively. We may define the relation R(T ′

4) on U as follows:

(3.5) ∀x, y ∈ U, (x, y) ∈ R(T ′
4) ⇔ x ∈ C({y}).

Proposition 3.25. Let R be a reflexive and transitive relation, then R(T ′
4(R)) = R.

Proof. By Proposition 2.2 and Corollary 3.24, ∀(x, y) ∈ R(T ′
4(R)) ⇔ x ∈ apr′{y} =

Rp(y) ⇔ (x, y) ∈ R. □
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Proposition 3.26. Let R be a reflexive relation on U and

ΣR = {S|S is a reflexive relation on U and T ′
4(S) = T ′

4(R)}.
Then we have

(1) t(R) ∈ ΣR;
(2) t(R) is the greatest element of ΣR.

At the end of this section, we will explore relations between the granule-based
approximation operators and interior and closure operators.

Proposition 3.27. Let (U,R) be a generalized approximation space. If R is a
reflexive and transitive relation, then apr′′ is an interior operator.

Proof. By Propositions 3.6 and 3.23, it’s obvious. □

Remark 3.28. If R is a reflexive and transitive relation, then the lower approxi-
mation apr′′(X) of X satisfies: ∀X,Y ⊆ U , apr′′(X ∩ Y ) = apr′′(X) ∩ apr′′(Y ).

However, for a reflexive and transitive relation, apr′′ may not be a closure oper-
ator. The following example illustrates this result.

Example 3.29. Let U = {a, b, c, d} and let

R = (a, a), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d).

ThenR is a reflexive and transitive relation, andRs(a) = {a, d}, Rs(b) = {b, c, d}, Rs(c) =
{c, d}, Rs(d) = {d}. Thus apr′′({a}) = {a, d}, apr′′({a, d}) = U . Hence apr′′(apr′′({a})) ̸=
apr′′({a}). So apr′′ does not satisfy (C3) in Proposition 2.9.

4. Conclusions

In this paper, we studied two types of generalized rough sets induced by arbitrary
binary relations. The four classes of topological structures induced by the element
and granule-based rough sets were introduced. Furthermore we investigated the re-
lationship among them. Two distinct binary relations generating the same topology
was shown in the last part. We believe that these results will be very useful for the
research of covering rough sets and the promotion of rough set theory. In the future,
we will do some research on extending rough set models by means of topological
method.
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