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1. Introduction

The notion of fuzzy relation equations was first introduced by Sanchez[11](1976)
and it was developed by Zimmermann[14](1991), Higashi and Klir[8](1984), Yager[13]
(1979) etc.,

Sanchez[11] studied the methods to resolve the fuzzy relations on fuzzy sets and
some theorems were established to determine the solutions. Many researchers have
tried to deal such problems and develop the procedures [2, 4, 5, 6]. S. Abbasbandy
et al.,[1] formulated a condition for linear system of equations over max-min algebra
to have not a unique solution by using fuzzy determinant. Masoud Allame, Benhnaz
Vatankhahan [3] introduced iteration algorithms for solving the linear systems whose
elements are from a Brouwerian lattice. Mohsen Hekmatnia et al., [7] investigated
possibilisic linear programming and offered a new method to achieve optimal value
of necessary degree of constaints for decision maker in fuzzy linear problem with
fuzzy technological coefficients and solve problem by that value.

In this paper we propose a new method namely maximizing a linear objective
function under min-T conorm method for finding an optimal solution to fuzzy rela-
tion equations(FRE) constraints problems.
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Also a method is developed to solve a fuzzy linear programming problem with
fuzzy relation equation and a numerical example is solved using the procedure de-
veloped.

2. Preliminaries

In this section we present basic definitions and some properties of min-t conorm.

Definition 2.1 ([7]). A fuzzy union / t-conorm is a binary operation on the unit
interval that satisfies the following axioms : for all a, b, d ∈ [0, 1],

1. T (a, 0) = a (boundary condition),
2. b ≤ d implies T (a, b) ≤ j(a, d) (monotonicity),
3. T (a, b) = T (b, a) (commutativity),
4. T [a, T (b, d)] = T [T (a, b), d] (associativity).

Definition 2.2. Fuzzy LPP with fuzzy relation equation constraints
Maximize

Z(p) =
n∑

i=1

cipi (1)

subject to
p ◦Q = r (2)

where p ∈ [0, 1]m, ci ∈ R is the coefficient associated with variable pi,
Q = [qij ] is an m × n matrix with qij ≤ 1, r is an n dimensional vector with

0 ≤ rj ≤ 1 and the operation ”o” represents the min − T composition operator.
where T is a continuous Archimedean triangular conorm.

Definition 2.3. Let S(Q, r) = { p ∈ [0, 1]m|p ◦ Q = r} denote the solution set of
(2) and let I = { 1, 2, 3, ...,m} and J = { 1, 2, 3, ..., n} be two index sets. Then,
the solution vectors [p ∈ [0, 1]m of the given problem (2) is obtained by

min
i∈I

{T (pi, Qij)} = rj ,∀j ∈ J. (3)

3. Conditions for optimality

Proposition 3.1. If S(Q, r) ̸= ϕ, then the minimal solutionof the problem (2) can
be obtained by the following operation

p = max
j∈J

{uj(qij , rj)} (4)

where uj(qij , rj) = inf{ p ∈ [0, 1]|T (p, qij) ≥ rj} .

Definition 3.2. If S(Q, r) ̸= ϕ and p = (p1, p2, p3, ..., pm) be any solution of (2),
then pi is said to be a locking variable if T (pi, qij) = rj for some j ∈ J . The locking
set of pi is denoted by

J(pi) = { j ∈ J |T (pi, qij) = rj} . (5)

Lemma 3.3. Let T be the continuous Archimedean t-conorm and if qij > rj for
each i ∈ I for any equation in (2) then the solution set S(Q, r) = ϕ.

Proof. Given that qij > rj for each i ∈ I. Then, by definion,

T (pi, qij) ≥ maxj∈J (pi, qij) > rj ,∀i ∈ I.
64
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Thus mini∈I{ T (pi, qij)} > rj which is a contradiction to (3) and so there exists no
variable pi satisfying any equation in (2). Hence S(Q, r) = ϕ. □

Note: From Lemma 3.3, S(Q, r) ̸= ϕ ,then if the condition qij ≤ rj is satisfied
by one equation in (2) and in this case pi is a locking variable.

Lemma 3.4. Let T be the continuous Archimedean t-conorm and p = (p
i
)(i ∈ I)

be the minimal solution and p = (pi)(i ∈ I) be any solution of (3). If pi is locking

in the jth equation, then p
i
is also locking. If p

i
is not a locking variable, then for

pi is also nonlocking.

Proof. Let p = (pi)i∈I be any solution of (2). Then mini∈I{ T (pi, qij)} = rj∀j ∈ J .
Since p = (p

i
)i∈I is the minimal solution, from Definition 3.1,

T (p
i
, qij) ≥ rj , j ∈ J .

Suppose pi is locking variable in the jth equation. Then j ∈ J(pi) and T (pi, qij) =
rj ,∀j ∈ J .

By the monotonicity of T-conorm, we obtain

rj = T (pi, qij) ≥ T (p
i
, qij) ≥ rj .

Thus T (p
i
, qij) = rj . So p

i
is a locking variable in the jth equation.

Again if p
i
is not a locking for any j ∈ J , then T (p

i
, qij) ≥ rj , j ∈ J . Since

T (pi, qij) ≥ T (p
i
, qij) > rj , T (pi, qij) > rj , j ∈ J . And so pi is also not a locking

variable. □
Lemma 3.5. Let T be a continuous t-conorm, and S(Q, r) ̸= ϕ in (2). If rj=1 for
some j ∈ J , then all variables pi, ∀i ∈ I are locking in the jth equation.

Proof. Let p = (pi)i∈I be any solution of (2) Then mini∈I{ T (pi, qij)} = rj ,where
rj ∈ [0,1].

Suppose rj = 1 for some j ∈ J . Then mini∈I{ T (pi, qij)} =1. Since T (pi, qij) ∈
[0, 1], we get T (pi, qij) = 1, ∀i ∈ I. Hence T (pi, qij) = rji ∈ I and pi is the locking
variable. □
Lemma 3.6. Let T be a continuous Archemeadian t-conorm and p = (pi)i∈I be any
solution of (2). If pi is only locking in equations with rj = 1, then pi can take any
value in [p

i
, 1].

Proof. Assume pi is locking in equation (2) with rj = 1. By definition, T (pi, qij) =
1, j ∈ J(pi). If p = (p

i
)i∈I is the minimal solution, then, By lemma 3.4, p

i
is also

locking in equations with rj = 1. Thus T (p
i
, qij) = 1, ∀j ∈ J(p

i
).

If 1 ≥ pi ≥ p
i
, then, Since T is monotonic,

1 = T (1, qij) ≥ T (pi, qij) ≥ T (p
i
, qij) = 1.

Hence T (pi, qij)=1 for all pi ∈ [p
i
, 1]. □
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Lemma 3.7. Let T be a continuous t-conorm and p = (p
i
)i∈I be the minimal

solution. If ci ≤ 0, ∀i ∈ I the cost coefficient in the objective function , then p
i
is an

optimal solution .

Proof. Assume p = (p
i
)i∈I ∈ S(Q, r) to be the minimal solution and p = (pi)i∈I be

any solution, then p
i
≤ pi, ∀i. If ci ≤ 0, ∀i ∈ I, then

∑m
i=1 cipi ≥

∑m
i=1 cipi. Thus p

is an optimal solution of the given problem. □

Lemma 3.8. Let T be a continuous t-conorm. If ci ≥ 0, ∀i ∈ I and S̄(Q, r) be the
set of all maximal solutions of (2). Then any one of the solutions in S̄(Q, r) is an
optimal solution of the given problem.

Proof. We know that if S(Q, r) ̸= ϕ, then

S(Q, r) =
∪

p̄∈S̄(Q,r){ p ∈ [0, 1]m|p̄ ≥ p ≥ p}.

Consider the set { p|p̄ ≥ p ≥ p} , we have
∑m

i=1 cip̄i ≥
∑m

i=1 cipi ≥
∑m

i=1 cipi.

Therefore if p̄ = (p̄i)i∈I is the maximal solution, then it gives the greatest objective
value. Since there are only finite number of maximal solution, the maximal solution
which gives the greatest objective function is the optimal solution. □

4. Properties of continuous Archimedean t-conorm

Theorem 4.1 (Schweizer and Sklar,1963 [12]; Ling 1965 [10]). Let T be a binary
operation on the unite interval. Then T is an Archimedean t- conorm iff there exists
an increasing generator such that T (a, b) = g(−1)(g(a) + g(b)) where g(−1) is the
pseudo inverse of an increasing generator g is a function from R to [0,1] defined by

g(−1)(a) =

{
g(−1)(a), for a ≤ g(1);

1, otherwise.

Theorem 4.2. Let T be a continuous Archimedean t-conorm, r = (rj)j∈J be a
vector with 0 ≤ rj < 1 with S(Q, r) ̸= ϕ and p = (p

i
)i∈I ∈ S(Q, r) be the minimal

solution. If pi is a locking variable, for any solution p = (pi)i∈I , then pi = p
i
.

Proof. Since p = (pi)i∈I is any solution of the given problem, by definition,

mini∈I{ T (pi, qij) = ri} , ∀j ∈ J .

Also pi is a locking variable. Thus, by the definition,

T (pi, qij) = rjforsomej ∈ J. (6)

By Lemma 3.4, p
i
is also locking in the jth equation. So we have

T (p
i
, qij) = rj . (7)

Suppose that pi > p
i
. Since rj < 1, by Theorem 3.9, we have

g(pi) + g(qij) ≤ g(1), T (pi, qij) = g(−1)(g(pi) + g(qij)).
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Since pi > p
i
and g is an increasing generator g(pi) > g(p

i
),

g(pi) + g(qij) > g(p
i
) + g(qij) and T (p

i
, qij) = g(−1)(g(p

i
) + g(qij)). (8)

From equations (6), (7) and (8), we have
1 > rj = T (pi, qij)

= g(−1)(g(pi) + g(qij)).

> g(−1)(g(p
i
) + g(qij))

= T (p
i
, qij)

= rj ,
i.e., rj = T (pi, qij) > T (p

i
, qij) = rj

which is impossible therefore pi = p
i
. □

Theorem 4.3. Let T be a continuous Archimedean t-conorm , 0 ≤ rj ≤ 1 and
p = (p

i
)i∈I ∈ S(Q, r) be the minimal solution. If p̄ = (p̄i)i∈I is a maximal solution,

then either p̄i = 1 or p̄i = p
i
for each i ∈ I.

Proof. Let p̄ = (p̄i)i∈I be amaximal solution of (2). Each variable p̄i ∈ p̄ is either a
locking or not a locking variable.

Assume that p
i
is not a locking variable and p̄i < 1. Let p = (pi)i∈I be any

solution in S(Q, r) such that pi = 1 and pk = p̄k for all k ∈ I and k ̸= i. Then we
can construct a solution p such that p ≥ p̄. Thus p̄ is not a maximal solution. This
is a contradiction. So if p̄i is not a locking variable, then p̄i = 1.

Suppose that p̄i is a locking variable. Since 0 ≤ rj ≤ 1 and p = (p
i
)i∈I is a

minimalsolution,
If rj < 1, then, by Theorem 3.10, the maximal solution p̄ = (p̄i)i∈I exists such

that p̄i is a locking variable then p̄i = p
i
.

If rj = 1, then, by Lemma 3.6, if pi is only locking in equations with rj = 1, then
pi can take any value in [p

i
, 1].

Thus, in the maximal solution p̄ = (p̄i)i∈I , p̄i is only locking in equations with
rj = 1. So p̄i = 1. □

Theorem 4.4. Let T be a continuous Archimedean t-conorm, r be a vector with
0 ≤ rj ≤ 1 for all j ∈ J and p = (p

i
)i∈I be the minimal solution. If S̄(Q, r) be

the set of all maximal solutions of (2) then any one of the solutions in S̄(Q, r) with
p̄i = 1 or p̄i = p

i
for each i ∈ I is an optimal solution of the given problem.

Proof. If ci ≥ 0,∀i ∈ I, then, by Lemma 3.8, any one of the solutions in S̄(Q, r) is
an optimal solution of the given problem. Also by Theorem 3.11, if p̄ = (p̄i)i∈I is a
maximal solution, then either p̄i = 1 or p̄i = p

i
for each i ∈ I.

One of the maximal solution p̄ = (p̄i)i∈I ∈ S̄(Q, r) with p̄i = 1 or p̄i = p
i
for each

i ∈ I is an optimal solution of the given problem. □

5. Method of finding an optimal solution

Let us split the fuzzy LPP into two sub problems
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(i) Maximize Z1(p) =

m∑
i=1

c1pi

subject to p ◦Q = r

 (9)

(ii) Maximize Z2(p) =
m∑
i=1

c2pi

subject to p ◦Q = r

 (10)

where c1i =

{
0 if ci < 0

ci if ci ≥ 0
and c2i =

{
0 if ci < 0

ci if ci ≥ 0
∀j ∈ J.

The constraint equations of the problems (9) and (10) are the same as in the
problem (2).

In the original problem ci = c1i + c2i , ∀i ∈ I by Lemma 3.7, the minimal solution
p ∈ S(Q, r) is an optimal solution for the problem (9), because ci < 0 in (9). Then

the optimal value is Z1(p).

By Lemma 3.8, if ci ≥ 0 ∀i ∈ I, then one of the solutions in S̄(Q, r) is an optimal
solution of the problem (10), therefore the optimal value is Z2(p̄).

Now, let us define

p1 =

{
p
i

if ci < 0

p̄i if ci ≥ 0.

Hence, p1 is a solution of the problem (2) with objective value
Z(p1) = Z1(p) + Z2(p̄).
Also, in the given problem

Z(p) =

m∑
i=1

cipi

=
m∑
i=1

(c1i + c2i )pi

=
m∑
i=1

c1i pi +
m∑
i=1

c2i pi

≤
m∑
i=1

c1i pi +
m∑
i=1

c2i pi

≤
m∑
i=1

c1i pi +

m∑
i=1

c2i p̄i

= Z1(p+ Z2(p̄))

= Z(p1).

Therefore p1 is an optimal solution of the original problem with optimal value Z(p1).
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6. Rules to reduce the problem size

For the givenmatrix Q, we define, the following index sets.
Ji(Q) = { j ∈ J |pi ◦ qij = rj} , ∀i ∈ I and Ij = { i ∈ I|pi ◦ qij = rj} , ∀j ∈ J the

index set ji(Q) is nothing but the locking set J(p̄i) of (2).
Rule 1 If ci ≤ 0, then any optimal solution p̄ = (p̄i)i∈I has p̄i = p

i
.

Proof. By Lemma 3.7, the proof is trivial.
Based on Rule 1, the row corresponding to pi in Q can be deleted, Also if pi is

locking in some equations j ∈ J , then the columns corresponding to these equations
can also be deleted from the matrix Q. □

Rule 2 If Ij(Q) is singheton set for some j ∈ J , ie., Ij(Q) = t, then p̄i = p
t
where

p̄t ∈ (p̄i)i∈I .

Proof. Since Ij(Q) = { t} . ∴ theJthequation can be satisfied by the variable pt.
If p = (pi)i∈I be any solution of (2). Then the tthcomponent of this solution

must be locking in the jth equation. By Lemma 3.5.
If rj = 1 for some j ∈ J , then all variables pi∀i ∈ I are locking in the jth equation.

Thus Ij(Q) is not a singleton set.
If rj < 1, then by Theorem 3.10 we have p̄t = p

t
.

If we apply Rule 2, the jth column of Q with j ∈ Jt(Q) can be deleted. The row
corresponding to pt can also be deleted from matrix Q. □

Rule 3 If Ip(Q) ⊇ Iq(Q) for some p, q ∈ J in the matrix Q, then the qth column
of Q can be deleted.

Rule 4 If Js(Q) ̸= ϕ and Js(Q) ⊆ Jt(Q) for some s and t in set I with
csps < ctpt < 1 and cs > ct > 0, then any optimal solution p̄ = (p̄i)i∈I has p̄s = 1.

Proof. Since Js(Q) ⊆ Jt(Q), J(p
s
) ⊆ J(p

t
).

If p̄s = 1, then, since p̄ = (p̄i)i∈I is an optimal solution, there is nothing to prove.
If p̄s ̸= 1, i.e., p̄s < 1, then, by Theorem 3.10, p̄s is a locking variable with p̄s = p

s
and J(p

s
, qsj) = rj∀j ∈ J(p

s
).

Case (i) Assume that the optimal solution p̄ = (p̄i)i∈I contains p̄s = p
s
< 1 and

p̄t = 1. Then the vector p′ = p can be constructed except that p′s = 1 and p′t = p
t
.

Since T (p
t
, qtj) = rj for all j ∈ J(p

t
).

Since J(p
s
) ⊆ J(p

t
), the constraints satisfied by p′s = p

s
can be sustained by

p′t = p
t
.

Therefore p′ is a solution of the problem.

Also

Z(p̄)− Z(p′) =
m∑
i=1

cipi +
m∑
i=1

cipi

= (csps + ct)− (cs + ctpt)

= (csps − ctpt) + (ct − cs) < 0.
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Thus

Z(p̄)− Z(p′) < 0

Z(p̄) < Z(p′)

This is a contradiction to our assumption that p̄ = (p̄i)i∈I is an optimal solution.
Therefore 1 > ctpt > csps and cs > ct > 0 then p̄ is an optimal solution with p̄s = 1.

Case (ii)
Suppose the optimal solution p̄ = (p̄i)i∈I contains p̄s = p

s
< 1 and p̄t = p

t
< 1

then the vector p′ = p can be constructed except that p′s = 1 and p′ = p
t
< 1. Also

T (p
t
, qtj) = rj for all j ∈ J(p

t
).

Since J(p
s
)J(p

t
), the constraints satisfied by p′s = p

s
can be sustained by p′t = p

t
.

Since p′ is a solution of the problem

Z(p̄)− Z(p′) =

m∑
i=1

cipi +

m∑
i=1

cipi

= csps − ctpt − cs − ctpt
= csps − cs < 0 since 0 < p

s
< 1

Z(p̄)− Z(p′) < 0

Z(p̄) < Z(p′)

This is a contradiction. Therefore p̄ is an optimal solution with p̄s = 1 □

Rule 4.1 Let I ′ ⊆ I,
∪

i ∈ IJi(Q) = J ′ and r ∈ I, r /∈ I ′ then the following three
results an true from rule 4.

[i ] If Jr(Q) ⊆ J ′, 1 >
∑

i∈I′ > crpr and cr >
∑

i∈I′ ci then any optimal

solution p̄ = (p̄i)i∈I has p̄r = 1.
[ii ] If Jr(Q) ⊇ J ′, 1 > crpr >

∑
i∈I′ > cipi and

∑
i∈I′ ci > cr then any optimal

solution p̄ = (p̄i)i∈I has p̄i = 1 for all i ∈ I ′.
[iii ] If Jr(Q) = J ′, 1 > crpr =

∑
i∈I′ > cipi and

∑
i∈I′ ci = cr then any optimal

solution p̄ = (p̄i)i∈I has either p̄i = 1 for all i ∈ I ′ or p̄r = 1.

Rule 5 If Jk(Q) = ϕ for some k ∈ I, then any optimal solution p̄ = (p̄i)i∈I has
p̄k = 1.

Proof. since Jk(Q) = ϕ for some k ∈ I, pk cannot be a locking in any equation.
Also since ck ≥ 0 due to get a maximal solution we assigned pk = 1 in any optimal
solution.

If we apply Rule 5, then we delete the rows corresponding to the variable pk. □

7. Algorithm

Step 1 Find the minimal solution p = (p
i
)i∈I of the given problem by (4)

Step 2 If p ◦ Q = r , then go to step 3, otherwise stop the process. The given
problem has no solution. i.e., S(Q, r) = ϕ.

Step 3 Form two sub problems as (9) and (10).
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Step 4 Compute index sets Ij and Ji(orJ(pi)) for the given matrix Q. Find the

optimal solution of the problem (9) by rule 1. Delete the corresponding row
and columns in Q.

Step 5 Consider the remaining matrix Q, apply Rules 2-5 to determine the optimal
solution of the problem (10).

Step 6 From optimal solutions of the problems (9) and (10) we find optimal solutions
of the original problem by (11).

8. NumericalL example

Consider the following optimization problem with continuous Archimedean t-
conorm fuzzy relational equations constraint.

Maximize Z(p) = 6p1 + 2p2 + 2p3 + 3p4 + 4p5 + 4p6 + 2p7 − 2p8 + p9
Subject to p ◦Q = r
where T (p, q) = min(1, p+ q), a continuous Archimedean t-conorm.

Q =



0.98 0.42 0.38 0.35 0.49 0.58 0.30 026 0.44
0.80 0.30 0.01 0.29 0.31 0.40 0.40 0.42 0.26
0.95 0.35 0.15 0.25 0.46 0.56 0.37 0.35 0.40
0.78 0.48 0.48 0.45 0.52 0.38 0.32 0.28 0.45
0.88 0.58 0.60 0.18 0.62 0.48 0.45 0.16 0.52
0.90 0.38 0.10 0.30 0.40 0.50 0.307 0.18 0.36
0.96 0.45 0.16 0.26 0.46 0.58 0.28 0.24 0.42
0.93 0.33 0.13 0.32 0.44 0.54 0.25 0.22 0.40
0.85 0.27 0.15 0.28 0.42 0.55 0.20 0.18 0.42


r =

(
1.00 0.40 0.20 0.30 0.50 0.60 0.32 0.28 0.45

)
Step 1: Find the minimal solution by (4)

i.e., p =
(
0.02 0.20 0.05 0.22 0.12 0.10 0.04 0.07 0.15

)
Step 2: Since p ◦Q = r, go to the next step.
Step 3: Form two sub problems
(1)Maximize Z1(p) = −2p8

subject to p ◦Q = r
(2) Maximize Z2(p) = 6p1 + 2p2 + 2p3 + 3p4 + 4p5 + 4p6 + 2p7 + 0p8 + p9

subject to p ◦Q = r
Step 4: Compute index sets Ij and Ji (or J(pi)) for the given matrix Q and

find the optimal solution of the problem 1 by Rule 1.

J(p
1
) = 1, 6, 7, 8

J(p
2
) = {1, 6}

J(p
3
) = {1, 2, 3, 4, 9}

J(p
4
) = {1, 6}

J(p
5
) = {1, 4, 6, 8}

J(p
6
) = {1, 3, 5, 6, 8}

J(p
7
) = {1, 3, 4, 5, 7, 8}

J(p
8
) = {1, 2, 3, 7}

J(p
9
) = {1}

I1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}
I2 = {3, 8}
I3 = {3, 6, 7, 8}
I4 = {3, 5, 7}
I5 = {6, 7}
I6 = {1, 2, 4, 5, 6}
I7 = {1, 7, 8}
I8 = {1, 5, 6, 7}
I9 = {3}
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In the given problem c8 ≤ 0, then by rule1, the optimal solution p = (p̄i)i∈I has
p̄8 = p

8
. p8 is also locking in equations 1,2,3,7. Hence these columns and the

corresponding row of p8 can be deleted from matrix Q.
Step 5: Consider the remaining matrix Q, apply Rules 2-5 to find the optimal

solution of the problem 2.

Q =



p1 0.35 0.49 0.58 0.26 0.44
p2 0.29 0.31 0.40 0.42 0.26
p3 0.25 0.46 0.56 0.35 0.40
p4 0.45 0.52 0.38 0.28 0.45
p5 0.18 0.62 0.48 0.16 0.52
p6 0.30 0.40 0.50 0.18 0.36
p7 0.26 0.46 0.58 0.24 0.42
p9 0.28 0.42 0.55 0.18 0.42



Index sets for the reduced matrix Q are

J(p
1
) = {6, 8}

J(p
2
) = {6}

J(p
3
) = {4, 9}

J(p
4
) = {6}

J(p
5
) = {4, 6, 8}

J(p
6
) = {5, 6, 8}

J(p
7
) = {4, 5, 8}

J(p
9
) = {ϕ}

I4 = {3, 5, 7}
I5 = {6, 7}
I6 = {1, 2, 4, 5, 6}
I8 = {1, 5, 6, 7}
I9 = {3}

Since J(p
9
) = {ϕ}, then by rule 5 any optimal solution has p

9
= 1, the corresponding

row of variable p9 can be deleted from matrix Q. Also I9 = {3} imlies that the
variable p3 is the only locking variable in the 9th equation. By rule 2 any optimal
solution has p̄3 = p

3
. p

3
is also locking in equation 4. Hence these columns and the

corresponding row of p9 and p3 can be deleted from matrix Q.
The reduced matrix Q becomes

Q =


p1 0.49 0.58 0.26
p2 0.31 0.40 0.42
p4 0.52 0.38 0.28
p5 0.62 0.48 0.16
p6 0.40 0.50 0.18
p7 0.46 0.58 0.24


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The index sets of Q are

J(p
1
) = {6, 8}

J(p
2
) = {6}

J(p
4
) = {6}

J(p
5
) = {6, 8}

J(p
6
) = {5, 6, 8}

J(p
7
) = {5, 8}

I5 = {6, 7}
I6 = {1, 2, 4, 5, 6}
I8 = {1, 5, 6, 7}

Since I5 ⊆ I8, column 5 of Q can be deleted by Rule 3.
Also J(p

1
) = J(p

5
) with c1p1 < c5p5

J(p
2
) = J(p

4
) with c4p4 < c2p2

Therefore we set p̄1 = 1, p̄4 = 1 in any optimal solution by Rule 4.
Rows corresponding to p1 and p4 can be deleted from matrix Q.

The reduced matrix Q becomes

Q =


p1 0.40 0.42
p2 0.48 0.16
p3 0.50 0.18
p4 0.58 0.24


The index sets are

J(p
2
) = {6}

J(p
5
) = {6, 8}

J(p
6
) = {6, 8}

J(p
7
) = {8}

I6 = {2, 5, 6}
I8 = {5, 6, 7}

Since J(p
5
) = J(p

6
) with c6p6 < c5p5. Therefore we set p̄6 = 1 by rule 4.

The row corresponding to p6 can be deleted from Q.
The reduced matrix becomes

Q =

p2 0.40 0.42
p5 0.48 0.16
p7 0.58 0.24


The index sets are

J(p
2
) = {6}

J(p
5
) = {6, 8}

J(p
7
) = {8}

I6 = {2, 5, 6}
I8 = {5, 6, 7}

Since J(p
5
) = J(p

2
) ∪ J(p

7
) and also c5p5 = c2p2 + c7p7. Therefore we set p

5
= 1,

or p
2
= 1, p

7
= 1 by Rule 4.1.

If p̄5 = 1 then in order to satisfy 6th and 8th equation we set p̄2 = p
2
and p̄7 = p

7
.

If p
2
= 1, p

7
= 1 then p5 is the only variable to satisfy 6th and 8th equation.

∴ we set p̄5 = p
5
.

73



Thangaraj Beaula et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 1, 63–74

From the above discussion, all the decision variables have been determined goto
the next step.

Step 6: Since we get two optimal solutions p1 and p2 as follows

p1 =
(
1, 0.2, 0.05, 1, 1, 1, 0.04, 0.07, 1

)
and

p2 =
(
1, 1, 0.05, 1, 0.12, 1, 1, 0.07, 1

)
The optimal value is Z(p1) = Z(p2) = 18.44
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