Annals of Fuzzy Mathematics and Informatics Volume 11, No. 1, (January 2016), pp. 53–62 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fuzzy *e*-irresolute mappings on fuzzy topological spaces

R. V. M. Rangarajan , M. Chandrasekharan, A. Vadivel, M. Palanisamy

Received 11 January 2015; Revised 28 March 2015; Accepted 16 July 2015

ABSTRACT. In this paper, we study the characteristic properties of fuzzy e-irresolute mappings on fuzzy topological spaces.

2010 AMS Classification: 54A40, 03E72

Keywords: Fuzzy e-irresolute mapping, Fuzzy e-interior, Fuzzy e-closure.

Corresponding Author: A. Vadivel (avmaths@gmail.com)

1. INTRODUCTION

Weaker forms of fuzzy continuity on fuzzy topological spaces have been considered by many workers using the concepts of fuzzy semiopen sets and fuzzy preopen sets. Seenivasan [10] defined the concept of fuzzy *e*-open set and studied fuzzy *e*-continuous mappings on fuzzy topological spaces. Fuzzy *e*-open sets are weaker then fuzzy δ -preopen set, fuzzy δ -semiopen set and stronger then the fuzzy β -open sets. Using this notion, he studied fuzzy *e*-continuous (*e*-open, *e*-closed) mappings on fuzzy topological spaces. In this paper, using of fuzzy *e*-interiors and fuzzy *e*-closures we investigate the characteristic properties of fuzzy *e*-irresolute mappings on fuzzy topological spaces.

2. Preliminaries

Throughout this paper (X, T_1) and (Y, T_2) (or simply X and Y) represent nonempty fuzzy topological spaces. Let μ be a fuzzy subset of a space X. The fuzzy closure of μ and fuzzy interior of μ are denoted by $Cl(\mu)$ and $Int(\mu)$ respectively. A fuzzy subset μ of space X is called fuzzy regular open [2] (resp. fuzzy regular closed) if $\mu = Int(Cl(\mu))$ (resp. $\mu = Cl(Int(\mu))$). The fuzzy δ -interior of fuzzy subset μ of X is the union of all fuzzy regular open sets contained in A. A fuzzy subset μ is called fuzzy δ -open [15] if $\mu = Int_{\delta}(\mu)$. The complement of fuzzy δ -open set is called fuzzy δ -closed (i.e, $\mu = Cl_{\delta}(\mu)$). The fuzzy δ -closure of μ and the fuzzy δ -interior of μ are denoted by $Cl_{\delta}(\mu)$ and $Int_{\delta}(\mu)$.

A fuzzy subset μ of a space X is called fuzzy semi open [2] (resp. fuzzy β -open set [3], fuzzy pre-open set[4], fuzzy δ - preopen [1], fuzzy δ -semi open)[8] if $\mu \leq ClInt\mu$ (resp. $\mu \leq Cl(Int(Cl(\mu))); \ \mu \leq Int(Cl(\mu)); \ \mu \leq Int(Cl_{\delta}(\mu)), \ \mu \leq Cl(Int_{\delta}(\mu)))$. The complement of a fuzzy semiopen (resp. fuzzy preopen , fuzzy δ -semiopen, fuzzy δ -preopen set) is called fuzzy semiclosed (resp. fuzzy preclosed , fuzzy δ -semiclosed, fuzzy δ -preclosed). The union of all fuzzy δ -semi open (resp. fuzzy δ -preopen) sets contained in a fuzzy set μ in a fuzzy topological space X is called the fuzzy δ -semi interior [8] (resp. fuzzy δ -pre interior [1]) of μ and it is denoted by $sInt_{\delta}(\mu)$ (resp. $pInt_{\delta}(\mu)$). The intersection of all fuzzy δ -semi closed (resp. fuzzy δ -preclosed) sets containing a fuzzy set μ in a fuzzy topological space X is called the fuzzy δ semiclosure [8] (resp. fuzzy δ -preclosure [1]) of μ and it is denoted by $sCl_{\delta}(\mu)$ (resp. $pCl_{\delta}(\mu)$).

A fuzzy point in X with support $x \in X$ and value $(0 < \alpha \leq 1)$ is denoted by x_{α} . A fuzzy set λ in X is said to be q-coincident with a fuzzy set μ , denoted by $\lambda q\mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$ [9]. It is known [9] that $\lambda \leq \mu$ if and only if λ and $1 - \mu$ are not q-coincident, denoted by $\lambda \overline{q}(1 - \mu)$. The words 'neighborhood' and 'fuzzy topological space' will be abbreviated as 'nbd' and 'fts', respectively.

A mapping $f : X \to Y$ is said to be fuzzy continuous if $f^{-1}(\nu)$ is a fuzzy open set in X for any fuzzy open set ν in Y.

Definition 2.1 ([12]). Let μ ba a fuzzy set of a fuzzy topological space X. Then μ is said to be fuzzy semi δ -preopen set of X if $\mu \leq ClIntCl_{\delta}\mu$.

Definition 2.2 ([10]). Let μ be a fuzzy set of a topological space X. Then μ is called:

(i) a fuzzy *e*-open set of X if $\mu \leq Cl(Int_{\delta}\mu) \vee Int(Cl_{\delta}\mu)$,

(ii) a fuzzy *e*-closed set of X if $Cl(Int_{\delta}\mu) \wedge Int(Cl_{\delta}\mu) \leq \mu$.

Lemma 2.3 ([10]). (i) Any union of fuzzy e-open sets is a fuzzy e-open set. (ii) Any intersection of fuzzy e-closed sets is a fuzzy e-closed set.

Theorem 2.4. Let X and Y be fuzzy topological spaces such that X is product related to Y. Then the product $\mu \times \nu$ of a fuzzy e-open set μ in X and a fuzzy e-open set ν in Y is a fuzzy e-open set of the fuzzy product topological space $X \times Y$.

Definition 2.5 ([10]). Let μ be a fuzzy set of a fuzzy topological space X. (1) The fuzzy *e*-interior of μ is

 $eInt\mu = \lor \{\nu | \nu \le \mu, \nu \text{ is a fuzzy } e \text{-open set } \},$

(2) The fuzzy *e*-closure of μ is

 $eCl\mu = \wedge \{\nu | \nu \ge \mu, \nu \text{ is a fuzzy } e\text{-closed set } \}.$

Obviously, $eCl\mu$ is the smallest fuzzy *e*-closed set which contains μ , and $eInt\mu$ is the largest fuzzy *e*-open set which is contained in μ . Also, $eCl\mu = \mu$ for any fuzzy *e*-closed set μ and $eInt\mu = \mu$ for any fuzzy *e*-open set μ .

Theorem 2.6 ([10]). Let μ be a fuzzy set of a fuzzy topological space X. Then $eInt\mu^c = (eCl\mu)^c$ and $eCl\mu^c = (eInt\mu)^c$.

Definition 2.7 ([1, 2, 4, 8, 12, 10]). Let X and Y be fuzzy topological spaces and $f: X \to Y$ be a mapping. Then f is called:

- (i) a fuzzy semicontinuous mapping if $f^{-1}(\nu)$ is a fuzzy semiopen set in X for any fuzzy open set ν in Y,
- (ii) a fuzzy precontinuous mapping if $f^{-1}(\nu)$ is a fuzzy preopen set in X for any fuzzy open set ν in Y,
- (iii) a fuzzy δ -semicontinuous mapping if $f^{-1}(\nu)$ is a fuzzy δ -semiopen set in X for any fuzzy open set ν in Y,
- (iv) a fuzzy δ -precontinuous mapping if $f^{-1}(\nu)$ is a fuzzy δ -preopen set in X for any fuzzy open set ν in Y,
- (v) a fuzzy semi δ -precontinuous mapping if $f^{-1}(\nu)$ is a fuzzy semi δ -preopen set in X for any fuzzy open set ν in Y,
- (vi) a fuzzy *e*-continuous mapping if $f^{-1}(\nu)$ is a fuzzy *e*-open set in X for any fuzzy open set ν in Y.

Definition 2.8. Let $f: X \to Y$ be a mapping. Then f is called a fuzzy δ -irresolute mapping if $f^{-1}(\nu)$ is a fuzzy δ -open set in X for each fuzzy δ -open set ν in Y.

Definition 2.9 ([13]). Let $f: X \to Y$ be a mapping. Then f is called a fuzzy semi δ -preirresolute mapping if $f^{-1}(\nu)$ is a fuzzy semi δ -preopen set in X for each fuzzy semi δ -preopen set ν in Y.

Definition 2.10 ([14]). Let (X, τ) and (Y, σ) be fuzzy topological spaces. A fuzzy function $f: X \to Y$ is said to be fuzzy slightly *e*-continuous if for each fuzzy point $x_{\alpha} \in X$ and each fuzzy Clopen set λ in Y containing $f(x_{\alpha})$, there exists a fuzzy *e*-open set μ in X containing x_{α} such that $f(\mu) \leq \lambda$.

Definition 2.11 ([10]). A fuzzy topological space (X, τ) is said to be fuzzy $e T_1$ if for each pair of distinct points x and y of X, there exists fuzzy e-open sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$, $x \notin U_2$ and $y \notin U_1$.

Definition 2.12 ([10]). A fuzzy topological space (X, τ) is said to be fuzzy $e-T_2$ (i.e., fuzzy e-Hausdorff) if for each pair of distinct points x and y of X, there exists disjoint fuzzy e-open sets U and V such that $x \in U$ and $y \in V$.

Definition 2.13 ([6]). A fuzzy space X is said to be fuzzy co- T_1 if for each pair of distinct fuzzy points x_{α} and y_{β} of X there exist fuzzy Clopen sets λ and μ containing x_{α} and y_{β} , respectively such that $y_{\beta} \notin \lambda$ and $x_{\alpha} \notin \mu$.

Definition 2.14 ([6]). A fuzzy space X is said to be fuzzy co- T_2 (fuzzy co-Hausdorff) if for each pair of distinct fuzzy points x_{α} and y_{β} in X, there exist disjoint fuzzy Clopen sets λ and μ in X such that $x_{\alpha} \in \lambda$ and $y_{\beta} \in \mu$.

Theorem 2.15 (). Let X and Y be fuzzy topological spaces and $f : X \to Y$ be a mapping. Then the following are equivalent:

- (1) f is fuzzy e-continuous.
- (2) The inverse image of each fuzzy closed set in Y is a fuzzy e-closed set in X.
- (3) $f(eCl\mu) \leq Cl(f(\mu))$ for each fuzzy set μ in X.
- (4) $eCl(f^{-1}(\nu)) \leq f^{-1}(Cl\nu)$ for each fuzzy set ν in Y.
- (5) $f^{-1}(Int\nu) \leq eInt(f^{-1}(\nu))$ for each fuzzy set ν in Y.

Proof. Obvious

Theorem 2.16. Let X and Y be fuzzy topological spaces and $f: X \to Y$ be a mapping. Then for each fuzzy set ν in Y, $f^{-1}(Int\nu) \leq ClInt_{\delta}(f^{-1}(\nu)) \vee IntCl_{\delta}(f^{-1}(\nu))$.

Proof. Let ν be a fuzzy set in Y. Then $Int\nu$ is a fuzzy open set in Y and so $f^{-1}(Int\nu)$ is a fuzzy *e*-open set in X. Hence

$$f^{-1}(Int\nu) \leq ClInt_{\delta}(f^{-1}(Int\nu)) \vee IntCl_{\delta}(f^{-1}(Int\nu)) \\ \leq ClInt_{\delta}(f^{-1}(\nu)) \vee IntCl_{\delta}(f^{-1}(\nu)). \qquad \Box$$

Theorem 2.17. Let X and Y be fuzzy topological spaces and $f : X \to Y$ be a bijection. Then f is fuzzy e-continuous if and only if $Int(f(\mu)) \leq f(eInt\mu)$ for each fuzzy set μ in X.

Proof. Let μ be a fuzzy set in X. Then by Theorem 2.15,

$$f^{-1}(Int(f(\mu))) \le eInt(f^{-1}(f(\mu))).$$

Since f is a bijection,

$$Int(f(\mu)) = f(f^{-1}(Int(f(\mu)))) \le f(eInt\mu).$$

Conversely, let ν be a fuzzy set in Y. Then

$$Int(f(f^{-1}(\nu))) \le f(eInt(f^{-1}(\nu))).$$

Since f is a bijection,

$$Int\nu = Int(f(f^{-1}(\nu))) \le f(eInt(f^{-1}(\nu)))$$

and

$$f^{-1}(Int\nu) \le f^{-1}(f(eInt(f^{-1}(\nu)))) = eInt(f^{-1}(\nu)).$$

Therefore, by Theorem 2.15, f is fuzzy e-continuous.

3. Fuzzy *e*-irresolute mappings

Definition 3.1 ([10]). Let $f : X \to Y$ be a mapping. Then f is called a fuzzy *e*-irresolute mapping if $f^{-1}(\nu)$ is a fuzzy *e*-open set in X for each fuzzy *e*-open set ν in Y.

From the above definition, Every fuzzy *e*-irresolute mapping is a fuzzy *e*-continuous mapping. But the converse is not true in general. A fuzzy semicontinuous mapping and a fuzzy *e*-irresolute mapping do not have any specific relations. Also, fuzzy precontinuous mapping and fuzzy *e*-irresolute mapping are independent.

Example 3.2. Let μ_1 , μ_2 , μ_3 , μ_4 and η_1 be fuzzy sets of $X = \{a, b, c\}$, defined as follows. $\mu_1 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}$, $\mu_2 = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.5}{c}$, $\mu_3 = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.4}{c}$, $\mu_4 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.4}{c}$ and $\eta_1 = \frac{0.2}{a} + \frac{0.2}{b} + \frac{0.2}{c}$. Consider fuzzy topologies $T_1 = \{0_X, 1_X, \mu_1, \mu_2, \mu_3, \mu_4\}$ and $T_2 = \{0_X, 1_X, \eta_1\}$ and the identity mapping $i_X : (X, T_1) \to (X, T_2)$. Then i_X is a fuzzy *e*-continuous mapping, but i_X is not a fuzzy *e*-irresolute mapping.

Example 3.3. Let μ_1 , μ_2 , μ_3 , μ_4 , μ_5 and η_1 be fuzzy sets of $X = \{a, b, c\}$, defined as follows. $\mu_1 = \frac{0.2}{a} + \frac{0.2}{b} + \frac{0.2}{c}$, $\mu_2 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}$, $\mu_3 = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.5}{c}$, $\mu_4 = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.4}{c}$, $\mu_5 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.4}{c}$ and $\eta_1 = \frac{0.2}{a} + \frac{0.2}{b} + \frac{0.2}{c}$. Consider fuzzy topologies $T_1 = \{0_X, 1_X, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5\}$ and $T_2 = \{0_X, 1_X, \eta_1\}$ and the identity mapping $i_X : (X, T_1) \to (X, T_2)$. Then i_X are fuzzy semicontinuous and fuzzy precontinuous, but i_X is not a *e*-irresolute mapping

Example 3.4. Let μ_1 and η_1 be fuzzy sets of $X = \{a, b, c\}$, defined as follows. $\mu_1 = \frac{0.9}{a} + \frac{0.9}{b} + \frac{0.9}{c}, \eta_1 = \frac{0.8}{a} + \frac{0.8}{b} + \frac{0.8}{c}$. Consider fuzzy topologies $T_1 = \{0_X, 1_X, \mu_1\}$ and $T_2 = \{0_X, 1_X, \eta_1\}$ and the identity mapping $i_X : (X, T_1) \to (X, T_2)$. Then i_X is a fuzzy *e*-irresolute mapping, but i_X is not a fuzzy semicontinuous mapping and also i_X is not a fuzzy δ -semicontinuous mapping.

Example 3.5. Let μ_1 and η_1 be fuzzy sets of $X = \{a, b, c\}$, defined as follows. $\mu_1 = \frac{0.1}{a} + \frac{0.1}{b} + \frac{0.1}{c}, \eta_1 = \frac{0.8}{a} + \frac{0.8}{b} + \frac{0.8}{c}$. Consider fuzzy topologies $T_1 = \{0_X, 1_X, \mu_1\}$ and $T_2 = \{0_X, 1_X, \eta_1\}$ and the identity mapping $i_X : (X, T_1) \to (X, T_2)$. Then i_X is a fuzzy *e*-irresolute mapping, but i_X is not a fuzzy precontinuous mapping and also i_X is not a fuzzy δ -precontinuous mapping.

Example 3.6. Let μ and η be fuzzy sets of $X = \{a, b, c\}$, defined as follows. $\mu = \frac{0.8}{a} + \frac{0.8}{b} + \frac{0.8}{c}, \eta = \frac{0.5}{a} + \frac{0.5}{b} + \frac{0.5}{c}$. Consider fuzzy topologies $T_1 = \{0_X, 1_X, \mu\}$ and $T_2 = \{0_X, 1_X, \eta\}$ and the identity mapping $i_X : (X, T_1) \to (X, T_2)$. Then i_X is a fuzzy *e*-irresolute mapping, but i_X is not a fuzzy δ -irresolute.

Example 3.7. In Example 3.2, the mapping i_X is a fuzzy semi- δ -precontinuous mapping, but i_X is not a fuzzy δ -semicontinuous mapping and also i_X is not a fuzzy semi- δ -preirresolute.

Remark 3.8. From the above discussions and known results we have the following implications.

A. Vadivel et al. /Ann. Fuzzy Math. Inform. **11** (2016), No. 1, 53–62

Theorem 3.9. Let X and Y be fuzzy topological spaces and $f : X \to Y$ be a mapping. Then the following are equivalent:

- (i) f is fuzzy e-irresolute.
- (ii) The inverse image of each fuzzy e-closed set in Y is a fuzzy e-closed set in X.
- (iii) $eCl(f^{-1}(\nu)) \leq f^{-1}(eCl\nu)$ for each fuzzy set ν in Y.
- (iv) $f(eCl\mu) \leq eCl(f(\mu))$ for each fuzzy set μ in X.

Proof. (i) implies (ii): Let ν be a fuzzy *e*-closed set in *Y*. Then ν^c is a fuzzy *e*-open set. Since *f* is fuzzy *e*-irresolute, $f^{-1}(\nu^c) = (f^{-1}(\nu))^c$ is a fuzzy *e*-open set in *X*. Therefore, $f^{-1}(\nu)$ is a fuzzy *e*-closed set in *X*.

(ii) implies (i): Let ν be a fuzzy *e*-open set in *Y*. Then ν^c is a fuzzy *e*-closed set and $f^{-1}(\nu^c) = (f^{-1}(\nu))^c$ is a fuzzy *e*-closed set in *X*. Since $f^{-1}(\nu)$ is a fuzzy *e*-open set in *X*, *f* is fuzzy *e*-irresolute.

(ii) implies (iii): Let ν be a fuzzy set in Y. Then $\nu \leq eCl\nu$ and $f^{-1}(\nu) \leq f^{-1}(eCl\nu)$. Since $f^{-1}(eCl\nu)$ is a fuzzy e-closed set in X,

$$eCl(f^{-1}(\nu)) \le eCl(f^{-1}(eCl\nu)) = f^{-1}(eCl\nu).$$

(iii) implies (iv): Let μ be a fuzzy set in X. Then $f(\mu) \leq eCl(f(\mu))$ and

$$eCl\mu \le eCl(f^{-1}(f(\mu))) \le f^{-1}(eCl(f(\mu))).$$

This implies that

$$f(eCl\mu) \le f(f^{-1}(eCl(f(\mu)))) \le eCl(f(\mu)).$$

(iv) implies (ii): Let ν be a fuzzy *e*-closed set in Y. Then

$$f(eCl(f^{-1}(\nu))) \le eCl(f(f^{-1}(\nu))) \le eCl\nu = \nu.$$

That implies that

$$eCl(f^{-1}(\nu))) \le f^{-1}(f(eCl(f^{-1}(\nu)))) \le f^{-1}(\nu).$$

Therefore, $f^{-1}(\nu)$ is a fuzzy *e*-closed set in X.

Theorem 3.10 (). A mapping $f : X \to Y$ is fuzzy e-irresolute if and only if $f^{-1}(eInt\nu) \leq eInt(f^{-1}(\nu))$ for each fuzzy set ν in Y.

Proof. Let ν be a fuzzy set in Y. Then $eInt\nu \leq \nu$. Since f is fuzzy e-irresolute, $f^{-1}(eInt\nu)$ is a fuzzy e-open set in X. Hence

$$f^{-1}(eInt\nu) = eInt(f^{-1}(eInt\nu)) \le eInt(f^{-1}(\nu)).$$

Conversely, let ν be a fuzzy *e*-open set in Y. Then

$$f^{-1}(\nu) = f^{-1}(eInt\nu) \le eInt(f^{-1}(\nu)).$$

Therefore, $f^{-1}(\nu)$ is a fuzzy *e*-open set in X and consequently *f* is a fuzzy *e*-irresolute mapping.

Theorem 3.11. Let X and Y be fuzzy topological spaces and $f : X \to Y$ be a bijection. Then, f is fuzzy e-irresolute if and only if $eInt(f(\mu)) \leq f(eInt\mu)$ for each fuzzy set μ in X.

Proof. Let μ be a fuzzy set in X. Then by Theorem 3.10,

 $f^{-1}(eInt(f(\mu))) \leq eInt(f^{-1}(f(\mu))).$

Since f is a bijection,

$$eInt(f(\mu)) = f(f^{-1}(eInt(f(\mu)))) \le f(eInt(f^{-1}(f(\mu)))) = f(eInt\mu).$$

Conversely, let ν be a fuzzy *e*-open set in Y. Then

$$eInt(f(f^{-1}(\nu))) \le f(eInt(f^{-1}(\nu))).$$

Since f is a bijection,

$$eInt\nu \leq f(eInt(f^{-1}(\nu))).$$

This implies that

$$f^{-1}(eInt\nu) \le f^{-1}(f(eInt(f^{-1}(\nu)))) = eInt(f^{-1}(\nu)).$$

Therefore, by Theorem 3.10, f is a fuzzy e-irresolute mapping.

4. Applications

Theorem 4.1. If $f : X \to Y$ is a fuzzy slightly e-continuous injection and Y is fuzzy co- T_1 , then X is fuzzy $e-T_1$.

Proof. Suppose that Y is fuzzy co- T_1 . For any distinct fuzzy points x_{α} and y_{β} in X, there exist fuzzy Clopen sets λ , μ in Y such that $f(x_{\alpha}) \in \lambda$, $f(y_{\beta}) \notin \lambda$, $f(x_{\alpha}) \notin \mu$ and $f(y_{\beta}) \in \mu$. Since f is fuzzy slightly e-continuous, $f^{-1}(\lambda)$ and $f^{-1}(\mu)$ are fuzzy e-open sets in X such that $x_{\alpha} \in f^{-1}(\lambda), y_{\beta} \notin f^{-1}(\lambda), x_{\alpha} \notin f^{-1}(\mu)$ and $y_{\beta} \in f^{-1}(\mu)$. This shows that X is fuzzy e- T_1 .

Theorem 4.2. If $f : X \to Y$ is a fuzzy slightly e-continuous injection and Y is fuzzy co- T_2 , then X is fuzzy e- T_2 .

Proof. For any pair of distinct fuzzy points x_{α} and y_{β} in X, there exist disjoint fuzzy Clopen sets λ and μ in Y such that $f(x_{\alpha}) \in \lambda$ and $f(y_{\beta}) \in \mu$. Since f is fuzzy slightly *e*-continuous, $f^{-1}(\lambda)$ and $f^{-1}(\mu)$ are fuzzy *e*-open sets in X containing x_{α} and y_{β} respectively. We have $f^{-1}(\lambda) \wedge f^{-1}(\mu) = \phi$. This shows that X is fuzzy *e*- T_2 .

Definition 4.3. A fuzzy space is called fuzzy co-regular [6] (respectively fuzzy strongly *e*-regular) if for each fuzzy Clopen (respectively fuzzy *e*-closed) set η and each fuzzy point $x_{\alpha} \notin \eta$, there exist disjoint fuzzy open sets λ and μ such that $\eta \leq \lambda$ and $x_{\alpha} \in \mu$.

Definition 4.4. A fuzzy space is called fuzzy co-normal [6] (respectively fuzzy strongly *e*-normal) if for every pair of disjoint fuzzy Clopen (respectively fuzzy *e*-closed) set η_1 and η_2 in X, there exist disjoint fuzzy open sets λ and μ such that $\eta_1 \leq \lambda$ and $\eta_2 \leq \mu$.

Theorem 4.5. If f is fuzzy slightly e-continuous injective fuzzy open function from a fuzzy strongly e-regular space X onto a fuzzy space Y, then Y is fuzzy co-regular.

Proof. Let η be fuzzy Clopen set in Y and be $y_{\beta} \notin \eta$. Take $y_{\beta} = f(x_{\alpha})$. Since f is fuzzy slightly *e*-continuous, $f^{-1}(\eta)$ is a fuzzy *e*-closed set. Take $\gamma = f^{-1}(\eta)$. We have $x_{\alpha} \notin \gamma$. Since X is fuzzy strongly *e*-regular, there exist disjoint fuzzy open sets λ and μ such that $\gamma \leq \lambda$ and $x_{\lambda} \in \mu$. We obtain that $\eta = f(\gamma) \leq f(\lambda)$ and $y_{\beta} = f(x_{\alpha}) \in f(\mu)$ such that $f(\lambda)$ and $f(\mu)$ are disjoint fuzzy open sets. This shows that Y is fuzzy co-regular.

Theorem 4.6. If f is fuzzy slightly e-continuous injective fuzzy open function from a fuzzy strongly e-normal space X onto a fuzzy space Y, then Y is fuzzy co-normal.

Proof. Let η_1 and η_2 be disjoint fuzzy Clopen sets in Y. Since f is fuzzy slightly e-continuous, $f^{-1}(\eta_1)$ and $f^{-1}(\eta_2)$ are fuzzy e-closed sets. Take $\lambda = f^{-1}(\eta_1)$ and $\mu = f^{-1}(\eta_2)$. We have $\lambda \wedge \mu = \phi$. Since X is fuzzy strongly e-normal, there exist disjoint fuzzy open sets γ and β such that $\lambda \leq \gamma$ and $\mu \leq \beta$. We obtain that $\eta_1 = f(\lambda) \leq f(\gamma)$ and $\eta_2 = f(\mu) \leq f(\beta)$ such that $f(\gamma)$ and $f(\beta)$ are disjoint fuzzy open sets. Thus, Y is fuzzy co-normal.

Definition 4.7 ([10]). A fuzzy set λ in a topological space (X, τ) is said to be fuzzy *e*-connected if λ cannot be expressed as the union of two fuzzy *e*-open sets.

Equivalently, a fuzzy topological space (X, τ) is said to be fuzzy *e*-connected if fuzzy sets which are both fuzzy *e*-open and fuzzy *e*-closed sets are 0_X and 1_X .

Theorem 4.8. A fuzzy topological space (X, τ) is e-connected iff X has no non-zero e-open sets λ and μ such that $\lambda + \mu = 1_X$.

Proof. (Necessity) Suppose (X, τ) is fuzzy *e*-connected. If X has two non-zero fuzzy *e*-open sets λ and μ such that $\lambda + \mu = 1_X$, then λ is proper fuzzy *e*-open and fuzzy *e*-closed set of X. Hence, X is not fuzzy *e*-connected, a contradiction.

(Sufficiency) If (X, τ) is not fuzzy *e*-connected then it has a proper fuzzy set λ of X which is both fuzzy *e*-open and fuzzy *e*-closed. So $\mu = 1 - \lambda$, is a fuzzy *e*-open set of X such that $\lambda + \mu = 1_X$, which is a contradiction.

Theorem 4.9. If $f : (X, \tau) \to (Y, \sigma)$ is fuzzy *e*-continuous surjection and (X, τ) is fuzzy *e*-connected, then (Y, σ) is fuzzy connected.

Proof. Let X be a fuzzy e-connected space and Y is not fuzzy connected. As Y is not fuzzy connected, then there exists a proper fuzzy set λ of Y such that $\lambda \neq 0_Y, \lambda \neq 1_Y$ and λ is both fuzzy open and fuzzy closed set. Since, f is fuzzy e-continuous, $f^{-1}(\lambda)$ is both fuzzy e-open and fuzzy e-closed set in X such that $f^{-1}(\lambda) \neq 0_X$ and $f^{-1}(\lambda) \neq 1_X$. Hence, X is not fuzzy e-connected, a contradiction.

Theorem 4.10. If $f : (X, \tau) \to (Y, \sigma)$ is fuzzy *e*-irresolute surjection and X is fuzzy *e*-connected, then Y is so.

Proof. Similar to the proof of the above Theorem 4.9.

Definition 4.11 ([7]). A collection μ of fuzzy sets in a fuzzy space X is said to be cover of a fuzzy set η of X if $(\bigvee_{A \in \mu} A)(x) = 1$, for every $x \in s(\eta)$. A fuzzy cover μ of a fuzzy set η in a fuzzy space X is said to be have a finite subcover if there exists a finite subcollection $\rho = \{A_1, A_2, \ldots, A_n\}$ of μ such that $(\bigvee_{j=1}^n A_j)(x) \ge \eta(x)$, for every $x \in s(\eta)$, where $s(\eta)$ denotes the support of a fuzzy set η . **Definition 4.12** ([5]). A fuzzy topological space (X, τ) is fuzzy compact space if every fuzzy open cover of X has a finite subcover.

Definition 4.13 ([11]). Let (X, τ) be a fts a family μ of fuzzy sets is *e*-open cover of a fuzzy set λ if $\lambda \leq \bigvee \{G : G \in \mu\}$ and each member of μ is *e*-open cover of a fuzzy set. A subcover of μ is subfamily which is also cover.

Definition 4.14 ([11]). A fuzzy topological space (X, τ) is fuzzy *e*-compact space if every fuzzy *e*-open cover of X has a finite subcover.

In this proposition we will explain that the union of any two fuzzy *e*-compact is also fuzzy e-compact

Proposition 4.15. Let (X, τ) be a fts, if A and B are two fuzzy e-compact subsets of X, then $A \cup B$ is also fuzzy e-compact.

Proof. Let $\{G_{\lambda} : \lambda \in \Lambda\}$ be a fuzzy *e*-open cover of $A \cup B$. Then $\mu_{A\cup B}(x) \leq \sup_{\lambda \in \Lambda} \{\mu_{G_{\lambda}}(x)\}$, i.e., $Max\{\mu_A(x), \mu_B(x)\} \leq \sup_{\lambda \in \Lambda} \{\mu_{G_{\lambda}}(x)\}$ Hence, $A \cup B \subseteq \bigcup_{\lambda \in \Lambda} G_{\lambda}$. Since, $\mu_A(x) \leq \mu_{A \cup B}(x)$. Then $A \subseteq A \cup B$. Also $\mu_B(x) \leq \mu_{A \cup B}(x)$. Then $B \subseteq A \cup B$. It is follows that $\{G_{\lambda} : \lambda \in \Lambda\}$ is a fuzzy *e*-open cover of A and a fuzzy *e*-open

cover of B. Since A and B are two fuzzy e-compact sets, then there exists a finite subcover $\{G_{\lambda_1}, G_{\lambda_2}, ..., G_{\lambda_n}\}$, which covering A belong to $\{G_{\lambda} : \lambda \in \Lambda\}$.

Then $\mu_A(x) \le Max\{\mu_{G_{\lambda_i}}(x)\}\$ Hence $A \subseteq \bigcup_{i=1}^{n} G_{\lambda_i}$ and there exists a finite subcover $\{G_{\lambda_1}, G_{\lambda_2}, ..., G_{\lambda_m}\}$ which covering B belongs to $\{G_{\lambda} : \lambda \in \Lambda\}$ Then, $\mu_B(x) \leq Max\{\mu_{G_{\lambda_i}}(x)\}\$ Hence, $B \subseteq \bigcup_{j=1}^{m} G_{\lambda_j}$ It is follows that $\mu_{A\cup B}(x) \leq Max\{G_{\lambda_K}(x)\}, k = 1, 2, ..., n + m$ Then $A \cup B \subseteq \bigcup_{k=1}^{n+m} G_{\lambda_k}$ Thus, $A \cup B$ is fuzzy *e*-compact.

Proposition 4.16. Let (X, τ) be a fts, if A and B are two fuzzy e-compact subsets of X, then $A \cap B$ need not be fuzzy e-compact.

References

- [1] Anjana Bhattacharyya and M. N. Mukherjee, On fuzzy δ -almost continuous and δ^* -almost continuous functions, J. Tripura Math. Soc. 2 (2000) 45-57.
- [2] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14-32.
- [3] G. Balasubramanian, On fuzzy β -compact spaces and fuzzy β -extremally disconnected spaces, Kybernetika (Prague) 33 (3) (1997) 271-277.
- [4] A. S. Bin Shahna, On fuzzy strongly semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303-308.

- [5] E. Ekici, On fuzzy functions, Commun. Korean Math. Soc. 20 (4) (2005) 781–789.
- [6] E. Ekici, Generalizations of some fuzzy functions, Bulletin of the institute of Mathematics, Academia Sinica 33 (3) (2005) 277-289.
- [7] S. Ganguly and S. Saha, A note on compactness in fuzzy setting, Fuzzy Sets and Systems 34 (1990) 117–124.
- [8] A. Mukherjee and S. Debnath, β -semi open sets in fuzzy setting, J. Tri. Math. Soc. 8 (2006) 51–54.
- [9] P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- [10] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Ann. Fuzzy Math. Inform. 8 (1) (2014) 141–148.
- [11] V. Seenivasan and K. Kamala, Fuzzy e-Compact Spaces in Fuzzy Topological Spaces, Proceedings of the International Conference on Mathematics And its Applications (2014) 15–17.
- [12] S. S. Thakur and R. K. Khare, Fuzzy semi δ -preopen sets and fuzzy semi δ -precontinuous mappings, Universitatea din Bacau studii si cerceturi Strintitice Seria Matematica 14 (2004) 201–211.
- [13] S. S. Thakur and R. K. Khare, Fuzzy semi δ-pre irresolute mappings, Ultra Scientist of Physical Sciences 16 (2) (2004) 295-300.
- [14] A. Vadivel and M. Palanisamy, Fuzzy totally e-continuous functions, Ann. Fuzzy Math. Inform. 10 (2) (2015) 239–247.
- [15] N. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2) (1968) 103–118.

<u>R. V. M. RANGARAJAN</u> (rangarajan.rvm@gmail.com)

Professor and Head, Department of Mathematics, K. S. R. College of Engineering, Tiruchengode

M. CHANDRASEKHARAN (mcbrindha@gmail.com)

Dean of Science and Humanities, Nanda Engineering College, Erode-638052.

<u>A. VADIVEL</u> (avmaths@gmail.com)

Assistant Professor, Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608 002

<u>M. PALANISAMY</u> (palaniva260gmail.com)

Research Scholar, Department of Mathematics, Annamalai
 University, Annamalainagar- $608\,\,002$