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1. Introduction

Weaker forms of fuzzy continuity on fuzzy topological spaces have been consid-
ered by many workers using the concepts of fuzzy semiopen sets and fuzzy preopen
sets. Seenivasan [10] defined the concept of fuzzy e-open set and studied fuzzy
e-continuous mappings on fuzzy topological spaces. Fuzzy e-open sets are weaker
then fuzzy δ-preopen set, fuzzy δ-semiopen set and stronger then the fuzzy β-open
sets. Using this notion, he studied fuzzzy e-continuous (e-open, e-closed) mappings
on fuzzy topological spaces. In this paper, using of fuzzy e-interiors and fuzzy e-
closures we investigate the characteristic properties of fuzzy e-irresolute mappings
on fuzzy topological spaces.

2. Preliminaries

Throughout this paper (X,T1) and (Y, T2) (or simply X and Y ) represent non-
empty fuzzy topological spaces. Let µ be a fuzzy subset of a space X. The fuzzy
closure of µ and fuzzy interior of µ are denoted by Cl(µ) and Int(µ) respectively. A
fuzzy subset µ of space X is called fuzzy regular open [2] (resp. fuzzy regular closed)
if µ = Int(Cl(µ)) (resp. µ = Cl(Int(µ)). The fuzzy δ-interior of fuzzy subset µ of X
is the union of all fuzzy regular open sets contained in A. A fuzzy subset µ is called
fuzzy δ-open [15] if µ = Intδ(µ). The complement of fuzzy δ-open set is called fuzzy
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δ-closed (i.e, µ = Clδ(µ)). The fuzzy δ-closure of µ and the fuzzy δ-interior of µ are
denoted by Clδ(µ) and Intδ(µ).

A fuzzy subset µ of a space X is called fuzzy semi open [2] ( resp. fuzzy β-open set
[3], fuzzy pre-open set[4], fuzzy δ- preopen [1], fuzzy δ-semi open)[8] if µ ≤ ClIntµ
(resp. µ ≤ Cl(Int(Cl(µ))); µ ≤ Int(Cl(µ)); µ ≤ Int(Clδ(µ)), µ ≤ Cl(Intδ(µ))).
The complement of a fuzzy semiopen (resp. fuzzy preopen , fuzzy δ- semiopen, fuzzy
δ-preopen set) is called fuzzy semiclosed (resp. fuzzy preclosed , fuzzy δ-semiclosed,
fuzzy δ-preclosed). The union of all fuzzy δ-semi open (resp. fuzzy δ-preopen) sets
contained in a fuzzy set µ in a fuzzy topological space X is called the fuzzy δ-semi
interior [8] (resp. fuzzy δ-pre interior [1]) of µ and it is denoted by sIntδ(µ) (resp.
pIntδ(µ)). The intersection of all fuzzy δ-semi closed (resp. fuzzy δ-preclosed)
sets containing a fuzzy set µ in a fuzzy topological space X is called the fuzzy δ-
semiclosure [8] (resp. fuzzy δ-preclosure [1]) of µ and it is denoted by sClδ(µ) (resp.
pClδ(µ)).

A fuzzy point in X with support x ∈ X and value (0 < α ≤ 1) is denoted by
xα. A fuzzy set λ in X is said to be q-coincident with a fuzzy set µ, denoted by
λqµ, if there exists x ∈ X such that λ(x) + µ(x) > 1 [9]. It is known [9] that λ ≤ µ
if and only if λ and 1 − µ are not q-coincident, denoted by λq(1 − µ). The words
‘neighborhood’ and ‘fuzzy topological space’ will be abbreviated as ‘nbd’ and ‘fts’,
respectively.

A mapping f : X → Y is said to be fuzzy continuous if f−1(ν) is a fuzzy open
set in X for any fuzzy open set ν in Y .

Definition 2.1 ([12]). Let µ ba a fuzzy set of a fuzzy topological space X. Then µ
is said to be fuzzy semi δ-preopen set of X if µ ≤ ClIntClδµ.

Definition 2.2 ([10]). Let µ be a fuzzy set of a topological space X. Then µ is
called:

(i) a fuzzy e-open set of X if µ ≤ Cl(Intδµ) ∨ Int(Clδµ),
(ii) a fuzzy e-closed set of X if Cl(Intδµ) ∧ Int(Clδµ) ≤ µ.

Lemma 2.3 ([10]). (i) Any union of fuzzy e-open sets is a fuzzy e-open set.
(ii) Any intersection of fuzzy e-closed sets is a fuzzy e-closed set.

Theorem 2.4. Let X and Y be fuzzy topological spaces such that X is product
related to Y . Then the product µ×ν of a fuzzy e-open set µ in X and a fuzzy e-open
set ν in Y is a fuzzy e-open set of the fuzzy product topological space X × Y .

Definition 2.5 ([10]). Let µ be a fuzzy set of a fuzzy topological space X.
(1) The fuzzy e-interior of µ is

eIntµ = ∨{ν|ν ≤ µ, ν is a fuzzy e-open set },
(2) The fuzzy e-closure of µ is

eClµ = ∧{ν|ν ≥ µ, ν is a fuzzy e-closed set }.
Obviously, eClµ is the smallest fuzzy e-closed set which contains µ, and eIntµ is
the largest fuzzy e-open set which is contained in µ. Also, eClµ = µ for any fuzzy
e-closed set µ and eIntµ = µ for any fuzzy e-open set µ.

Theorem 2.6 ([10]). Let µ be a fuzzy set of a fuzzy topological space X. Then
eIntµc = (eClµ)c and eClµc = (eIntµ)c.
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Definition 2.7 ([1, 2, 4, 8, 12, 10]). Let X and Y be fuzzy topological spaces and
f : X → Y be a mapping. Then f is called:

(i) a fuzzy semicontinuous mapping if f−1(ν) is a fuzzy semiopen set in X for
any fuzzy open set ν in Y ,

(ii) a fuzzy precontinuous mapping if f−1(ν) is a fuzzy preopen set in X for any
fuzzy open set ν in Y ,

(iii) a fuzzy δ-semicontinuous mapping if f−1(ν) is a fuzzy δ-semiopen set in X
for any fuzzy open set ν in Y ,

(iv) a fuzzy δ-precontinuous mapping if f−1(ν) is a fuzzy δ-preopen set in X for
any fuzzy open set ν in Y ,

(v) a fuzzy semi δ-precontinuous mapping if f−1(ν) is a fuzzy semi δ-preopen
set in X for any fuzzy open set ν in Y ,

(vi) a fuzzy e-continuous mapping if f−1(ν) is a fuzzy e-open set in X for any
fuzzy open set ν in Y .

Definition 2.8. Let f : X → Y be a mapping. Then f is called a fuzzy δ-irresolute
mapping if f−1(ν) is a fuzzy δ-open set in X for each fuzzy δ-open set ν in Y .

Definition 2.9 ([13]). Let f : X → Y be a mapping. Then f is called a fuzzy semi
δ-preirresolute mapping if f−1(ν) is a fuzzy semi δ-preopen set in X for each fuzzy
semi δ-preopen set ν in Y .

Definition 2.10 ([14]). Let (X, τ) and (Y, σ) be fuzzy topological spaces. A fuzzy
function f : X → Y is said to be fuzzy slightly e-continuous if for each fuzzy point
xα ∈ X and each fuzzy Clopen set λ in Y containing f(xα), there exists a fuzzy
e-open set µ in X containing xα such that f(µ) ≤ λ.

Definition 2.11 ([10]). A fuzzy topological space (X, τ) is said to be fuzzy e-T1 if
for each pair of distinct points x and y of X, there exists fuzzy e-open sets U1 and
U2 such that x ∈ U1 and y ∈ U2, x /∈ U2 and y /∈ U1.

Definition 2.12 ([10]). A fuzzy topological space (X, τ) is said to be fuzzy e-T2

(i.e., fuzzy e-Hausdorff) if for each pair of distinct points x and y of X, there exists
disjoint fuzzy e-open sets U and V such that x ∈ U and y ∈ V .

Definition 2.13 ([6]). A fuzzy space X is said to be fuzzy co-T1 if for each pair of
distinct fuzzy points xα and yβ of X there exist fuzzy Clopen sets λ and µ containing
xα and yβ , respectively such that yβ /∈ λ and xα /∈ µ.

Definition 2.14 ([6]). A fuzzy space X is said to be fuzzy co-T2 ( fuzzy co-
Hausdorff) if for each pair of distinct fuzzy points xα and yβ in X, there exist
disjoint fuzzy Clopen sets λ and µ in X such that xα ∈ λ and yβ ∈ µ.

Theorem 2.15 (). Let X and Y be fuzzy topological spaces and f : X → Y be a
mapping. Then the following are equivalent:

(1) f is fuzzy e-continuous.
(2) The inverse image of each fuzzy closed set in Y is a fuzzy e-closed set in X.
(3) f(eClµ) ≤ Cl(f(µ)) for each fuzzy set µ in X.
(4) eCl(f−1(ν)) ≤ f−1(Clν) for each fuzzy set ν in Y .
(5) f−1(Intν) ≤ eInt(f−1(ν)) for each fuzzy set ν in Y .
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Proof. Obvious �

Theorem 2.16. Let X and Y be fuzzy topological spaces and f : X → Y be a map-
ping. Then for each fuzzy set ν in Y , f−1(Intν) ≤ ClIntδ(f−1(ν))∨IntClδ(f−1(ν)).

Proof. Let ν be a fuzzy set in Y . Then Intν is a fuzzy open set in Y and so f−1(Intν)
is a fuzzy e-open set in X. Hence

f−1(Intν) ≤ ClIntδ(f−1(Intν)) ∨ IntClδ(f−1(Intν))
≤ ClIntδ(f−1(ν)) ∨ IntClδ(f−1(ν)). �

Theorem 2.17. Let X and Y be fuzzy topological spaces and f : X → Y be a
bijection. Then f is fuzzy e-continuous if and only if Int(f(µ)) ≤ f(eIntµ) for each
fuzzy set µ in X.

Proof. Let µ be a fuzzy set in X. Then by Theorem 2.15,

f−1(Int(f(µ))) ≤ eInt(f−1(f(µ))).

Since f is a bijection,

Int(f(µ)) = f(f−1(Int(f(µ)))) ≤ f(eIntµ).

Conversely, let ν be a fuzzy set in Y . Then

Int(f(f−1(ν))) ≤ f(eInt(f−1(ν))).

Since f is a bijection,

Intν = Int(f(f−1(ν))) ≤ f(eInt(f−1(ν)))

and

f−1(Intν) ≤ f−1(f(eInt(f−1(ν)))) = eInt(f−1(ν)).

Therefore, by Theorem 2.15, f is fuzzy e-continuous. �

3. Fuzzy e-irresolute mappings

Definition 3.1 ([10]). Let f : X → Y be a mapping. Then f is called a fuzzy
e-irresolute mapping if f−1(ν) is a fuzzy e-open set in X for each fuzzy e-open set
ν in Y .

From the above definition, Every fuzzy e-irresolute mapping is a fuzzy e-continuous
mapping. But the converse is not true in general. A fuzzy semicontinuous mapping
and a fuzzy e-irresolute mapping do not have any specific relations. Also, fuzzy
precontinuous mapping and fuzzy e-irresolute mapping are independent.

Example 3.2. Let µ1, µ2, µ3, µ4 and η1 be fuzzy sets of X = {a, b, c}, defined as
follows. µ1 = 0.3

a + 0.4
b + 0.5

c , µ2 = 0.6
a + 0.5

b + 0.5
c , µ3 = 0.6

a + 0.5
b + 0.4

c , µ4 = 0.3
a + 0.4

b + 0.4
c

and η1 = 0.2
a + 0.2

b + 0.2
c . Consider fuzzy topologies T1 = {0X , 1X , µ1, µ2, µ3, µ4}

and T2 = {0X , 1X , η1} and the identity mapping iX : (X,T1)→ (X,T2). Then iX
is a fuzzy e-continuous mapping, but iX is not a fuzzy e-irresolute mapping.
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Example 3.3. Let µ1, µ2, µ3, µ4, µ5 and η1 be fuzzy sets of X = {a, b, c},
defined as follows. µ1 = 0.2

a + 0.2
b + 0.2

c , µ2 = 0.3
a + 0.4

b + 0.5
c , µ3 = 0.6

a + 0.5
b + 0.5

c ,

µ4 = 0.6
a + 0.5

b + 0.4
c , µ5 = 0.3

a + 0.4
b + 0.4

c and η1 = 0.2
a + 0.2

b + 0.2
c . Consider fuzzy

topologies T1 = {0X , 1X , µ1, µ2, µ3, µ4, µ5} and T2 = {0X , 1X , η1} and the
identity mapping iX : (X,T1) → (X,T2). Then iX are fuzzy semicontinuous and
fuzzy precontinuous, but iX is not a e-irresolute mapping

Example 3.4. Let µ1 and η1 be fuzzy sets of X = {a, b, c}, defined as follows.
µ1 = 0.9

a + 0.9
b + 0.9

c , η1 = 0.8
a + 0.8

b + 0.8
c . Consider fuzzy topologies T1 = {0X , 1X , µ1}

and T2 = {0X , 1X , η1} and the identity mapping iX : (X,T1)→ (X,T2). Then iX
is a fuzzy e-irresolute mapping, but iX is not a fuzzy semicontinuous mapping and
also iX is not a fuzzy δ-semicontinuous mapping.

Example 3.5. Let µ1 and η1 be fuzzy sets of X = {a, b, c}, defined as follows.
µ1 = 0.1

a + 0.1
b + 0.1

c , η1 = 0.8
a + 0.8

b + 0.8
c . Consider fuzzy topologies T1 = {0X , 1X , µ1}

and T2 = {0X , 1X , η1} and the identity mapping iX : (X,T1)→ (X,T2). Then iX
is a fuzzy e-irresolute mapping, but iX is not a fuzzy precontinuous mapping and
also iX is not a fuzzy δ-precontinuous mapping.

Example 3.6. Let µ and η be fuzzy sets of X = {a, b, c}, defined as follows.
µ = 0.8

a + 0.8
b + 0.8

c , η = 0.5
a + 0.5

b + 0.5
c . Consider fuzzy topologies T1 = {0X , 1X , µ}

and T2 = {0X , 1X , η} and the identity mapping iX : (X,T1) → (X,T2). Then iX
is a fuzzy e-irresolute mapping, but iX is not a fuzzy δ-irresolute.

Example 3.7. In Example 3.2, the mapping iX is a fuzzy semi-δ-precontinuous
mapping, but iX is not a fuzzy δ-semicontinuous mapping and also iX is not a fuzzy
semi-δ-preirresolute.

Remark 3.8. From the above discussions and known results we have the following
implications.
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Theorem 3.9. Let X and Y be fuzzy topological spaces and f : X → Y be a
mapping. Then the following are equivalent:

(i) f is fuzzy e-irresolute.
(ii) The inverse image of each fuzzy e-closed set in Y is a fuzzy e-closed set in

X.
(iii) eCl(f−1(ν)) ≤ f−1(eClν) for each fuzzy set ν in Y .
(iv) f(eClµ) ≤ eCl(f(µ)) for each fuzzy set µ in X.

Proof. (i) implies (ii): Let ν be a fuzzy e-closed set in Y . Then νc is a fuzzy e-open
set. Since f is fuzzy e-irresolute, f−1(νc) = (f−1(ν))c is a fuzzy e-open set in X.
Therefore, f−1(ν) is a fuzzy e-closed set in X.

(ii) implies (i): Let ν be a fuzzy e-open set in Y . Then νc is a fuzzy e-closed set
and f−1(νc) = (f−1(ν))c is a fuzzy e-closed set in X. Since f−1(ν) is a fuzzy e-open
set in X, f is fuzzy e-irresolute.

(ii) implies (iii): Let ν be a fuzzy set in Y . Then ν ≤ eClν and f−1(ν) ≤
f−1(eClν). Since f−1(eClν) is a fuzzy e-closed set in X,

eCl(f−1(ν)) ≤ eCl(f−1(eClν)) = f−1(eClν).

(iii) implies (iv): Let µ be a fuzzy set in X. Then f(µ) ≤ eCl(f(µ)) and

eClµ ≤ eCl(f−1(f(µ))) ≤ f−1(eCl(f(µ))).

This implies that

f(eClµ) ≤ f(f−1(eCl(f(µ)))) ≤ eCl(f(µ)).

(iv) implies (ii): Let ν be a fuzzy e-closed set in Y . Then

f(eCl(f−1(ν))) ≤ eCl(f(f−1(ν))) ≤ eClν = ν.

That implies that

eCl(f−1(ν))) ≤ f−1(f(eCl(f−1(ν)))) ≤ f−1(ν).

Therefore, f−1(ν) is a fuzzy e-closed set in X. �

Theorem 3.10 (). A mapping f : X → Y is fuzzy e-irresolute if and only if
f−1(eIntν) ≤ eInt(f−1(ν)) for each fuzzy set ν in Y .

Proof. Let ν be a fuzzy set in Y . Then eIntν ≤ ν. Since f is fuzzy e-irresolute,
f−1(eIntν) is a fuzzy e-open set in X. Hence

f−1(eIntν) = eInt(f−1(eIntν)) ≤ eInt(f−1(ν)).

Conversely, let ν be a fuzzy e-open set in Y . Then

f−1(ν) = f−1(eIntν) ≤ eInt(f−1(ν)).

Therefore, f−1(ν) is a fuzzy e-open set in X and consequently f is a fuzzy e-irresolute
mapping. �

Theorem 3.11. Let X and Y be fuzzy topological spaces and f : X → Y be a
bijection. Then, f is fuzzy e-irresolute if and only if eInt(f(µ)) ≤ f(eIntµ) for each
fuzzy set µ in X.
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Proof. Let µ be a fuzzy set in X. Then by Theorem 3.10,

f−1(eInt(f(µ))) ≤ eInt(f−1(f(µ))).

Since f is a bijection,

eInt(f(µ)) = f(f−1(eInt(f(µ)))) ≤ f(eInt(f−1(f(µ)))) = f(eIntµ).

Conversely, let ν be a fuzzy e-open set in Y . Then

eInt(f(f−1(ν))) ≤ f(eInt(f−1(ν))).

Since f is a bijection,

eIntν ≤ f(eInt(f−1(ν))).

This implies that

f−1(eIntν) ≤ f−1(f(eInt(f−1(ν)))) = eInt(f−1(ν)).

Therefore, by Theorem 3.10, f is a fuzzy e-irresolute mapping. �

4. Applications

Theorem 4.1. If f : X → Y is a fuzzy slightly e-continuous injection and Y is
fuzzy co-T1, then X is fuzzy e-T1.

Proof. Suppose that Y is fuzzy co-T1. For any distinct fuzzy points xα and yβ in X,
there exist fuzzy Clopen sets λ, µ in Y such that f(xα) ∈ λ, f(yβ) /∈ λ, f(xα) /∈ µ
and f(yβ) ∈ µ. Since f is fuzzy slightly e-continuous, f−1(λ) and f−1(µ) are fuzzy
e-open sets in X such that xα ∈ f−1(λ), yβ /∈ f−1(λ), xα /∈ f−1(µ) and yβ ∈ f−1(µ).
This shows that X is fuzzy e-T1. �

Theorem 4.2. If f : X → Y is a fuzzy slightly e-continuous injection and Y is
fuzzy co-T2, then X is fuzzy e-T2.

Proof. For any pair of distinct fuzzy points xα and yβ in X, there exist disjoint
fuzzy Clopen sets λ and µ in Y such that f(xα) ∈ λ and f(yβ) ∈ µ. Since f is fuzzy
slightly e-continuous, f−1(λ) and f−1(µ) are fuzzy e-open sets in X containing xα
and yβ respectively. We have f−1(λ) ∧ f−1(µ) = φ. This shows that X is fuzzy
e-T2. �

Definition 4.3. A fuzzy space is called fuzzy co-regular [6] (respectively fuzzy
strongly e-regular) if for each fuzzy Clopen (respectively fuzzy e-closed) set η and
each fuzzy point xα /∈ η, there exist disjoint fuzzy open sets λ and µ such that η ≤ λ
and xα ∈ µ.

Definition 4.4. A fuzzy space is called fuzzy co-normal [6] (respectively fuzzy
strongly e-normal) if for every pair of disjoint fuzzy Clopen (respectively fuzzy e-
closed) set η1 and η2 in X, there exist disjoint fuzzy open sets λ and µ such that
η1 ≤ λ and η2 ≤ µ.

Theorem 4.5. If f is fuzzy slightly e-continuous injective fuzzy open function from
a fuzzy strongly e-regular space X onto a fuzzy space Y , then Y is fuzzy co-regular.
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Proof. Let η be fuzzy Clopen set in Y and be yβ /∈ η. Take yβ = f(xα). Since f
is fuzzy slightly e-continuous, f−1(η) is a fuzzy e-closed set. Take γ = f−1(η). We
have xα /∈ γ. Since X is fuzzy strongly e-regular, there exist disjoint fuzzy open
sets λ and µ such that γ ≤ λ and xλ ∈ µ. We obtain that η = f(γ) ≤ f(λ) and
yβ = f(xα) ∈ f(µ) such that f(λ) and f(µ) are disjoint fuzzy open sets. This shows
that Y is fuzzy co-regular. �

Theorem 4.6. If f is fuzzy slightly e-continuous injective fuzzy open function from
a fuzzy strongly e-normal space X onto a fuzzy space Y , then Y is fuzzy co-normal.

Proof. Let η1 and η2 be disjoint fuzzy Clopen sets in Y . Since f is fuzzy slightly
e-continuous, f−1(η1) and f−1(η2) are fuzzy e-closed sets. Take λ = f−1(η1) and
µ = f−1(η2). We have λ ∧ µ = φ. Since X is fuzzy strongly e-normal, there exist
disjoint fuzzy open sets γ and β such that λ ≤ γ and µ ≤ β. We obtain that
η1 = f(λ) ≤ f(γ) and η2 = f(µ) ≤ f(β) such that f(γ) and f(β) are disjoint fuzzy
open sets. Thus, Y is fuzzy co-normal. �

Definition 4.7 ([10]). A fuzzy set λ in a topological space (X, τ) is said to be fuzzy
e-connected if λ cannot be expressed as the union of two fuzzy e-open sets.

Equivalently, a fuzzy topological space (X, τ) is said to be fuzzy e-connected if
fuzzy sets which are both fuzzy e-open and fuzzy e-closed sets are 0X and 1X .

Theorem 4.8. A fuzzy topological space (X, τ) is e-connected iff X has no non-zero
e-open sets λ and µ such that λ+ µ = 1X .

Proof. (Necessity) Suppose (X, τ) is fuzzy e-connected. If X has two non-zero fuzzy
e-open sets λ and µ such that λ+ µ = 1X , then λ is proper fuzzy e-open and fuzzy
e-closed set of X. Hence, X is not fuzzy e-connected, a contradiction.

(Sufficiency) If (X, τ) is not fuzzy e-connected then it has a proper fuzzy set λ of
X which is both fuzzy e-open and fuzzy e-closed. So µ = 1 − λ, is a fuzzy e-open
set of X such that λ+ µ = 1X , which is a contradiction. �

Theorem 4.9. If f : (X, τ)→ (Y, σ) is fuzzy e-continuous surjection and (X, τ) is
fuzzy e-connected, then (Y, σ) is fuzzy connected.

Proof. Let X be a fuzzy e-connected space and Y is not fuzzy connected. As Y is not
fuzzy connected, then there exists a proper fuzzy set λ of Y such that λ 6= 0Y , λ 6= 1Y
and λ is both fuzzy open and fuzzy closed set. Since, f is fuzzy e-continuous,
f−1(λ) is both fuzzy e-open and fuzzy e-closed set in X such that f−1(λ) 6= 0X and
f−1(λ) 6= 1X . Hence, X is not fuzzy e-connected, a contradiction. �

Theorem 4.10. If f : (X, τ)→ (Y, σ) is fuzzy e-irresolute surjection and X is fuzzy
e-connected, then Y is so.

Proof. Similar to the proof of the above Theorem 4.9. �

Definition 4.11 ([7]). A collection µ of fuzzy sets in a fuzzy space X is said to be
cover of a fuzzy set η of X if (

∨
A∈µA)(x) = 1, for every x ∈ s(η). A fuzzy cover µ

of a fuzzy set η in a fuzzy space X is said to be have a finite subcover if there exists
a finite subcollection ρ = {A1, A2, . . . , An} of µ such that (

∨n
j=1Aj)(x) ≥ η(x), for

every x ∈ s(η), where s(η) denotes the support of a fuzzy set η.
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Definition 4.12 ([5]). A fuzzy topological space (X, τ) is fuzzy compact space if
every fuzzy open cover of X has a finite subcover.

Definition 4.13 ([11]). Let (X, τ) be a fts a family µ of fuzzy sets is e-open cover
of a fuzzy set λ if λ ≤

∨
{G : G ∈ µ} and each member of µ is e-open cover of a

fuzzy set. A subcover of µ is subfamily which is also cover.

Definition 4.14 ([11]). A fuzzy topological space (X, τ) is fuzzy e-compact space
if every fuzzy e-open cover of X has a finite subcover.

In this proposition we will explain that the union of any two fuzzy e-compact is
also fuzzy e-compact

Proposition 4.15. Let (X, τ) be a fts, if A and B are two fuzzy e-compact subsets
of X, then A ∪B is also fuzzy e-compact.

Proof. Let {Gλ : λ ∈ Λ} be a fuzzy e-open cover of A ∪B.
Then µA∪B(x) ≤ sup

λ∈Λ
{µGλ(x)}, i.e., Max{µA(x), µB(x)} ≤ sup

λ∈Λ
{µGλ(x)}

Hence, A ∪B ⊆
⋃
λ∈Λ

Gλ.

Since, µA(x) ≤ µA∪B(x). Then A ⊆ A ∪B.
Also µB(x) ≤ µA∪B(x). Then B ⊆ A ∪B.
It is follows that {Gλ : λ ∈ Λ} is a fuzzy e-open cover of A and a fuzzy e-open

cover of B.
Since A and B are two fuzzy e-compact sets, then there exists a finite subcover

{Gλ1
, Gλ2

, ..., Gλn}, which covering A belong to {Gλ : λ ∈ Λ}.
Then µA(x) ≤Max{µGλi (x)}

Hence A ⊆
n⋃
i=1

Gλi and there exists a finite subcover {Gλ1 , Gλ2 , ..., Gλm} which

covering B belongs to {Gλ : λ ∈ Λ}
Then, µB(x) ≤Max{µGλj (x)}

Hence, B ⊆
m⋃
j=1

Gλj

It is follows that µA∪B(x) ≤Max{GλK (x)}, k = 1, 2, ..., n+m

Then A ∪B ⊆
n+m⋃
k=1

Gλk

Thus, A ∪B is fuzzy e-compact. �

Proposition 4.16. Let (X, τ) be a fts, if A and B are two fuzzy e-compact subsets
of X, then A ∩B need not be fuzzy e-compact.
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[15] N. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2) (1968) 103–118.

R. V. M. Rangarajan (rangarajan.rvm@gmail.com)
Professor and Head, Department of Mathematics, K. S. R. College of Engineering,
Tiruchengode

M. Chandrasekharan (mcbrindha@gmail.com)
Dean of Science and Humanities, Nanda Engineering College, Erode-638052.

A. Vadivel (avmaths@gmail.com)
Assistant Professor, Mathematics Section (FEAT), Annamalai University, Anna-
malainagar, Tamil Nadu-608 002

M. Palanisamy (palaniva26@gmail.com)
Research Scholar, Department of Mathematics, Annamalai University, Annamalainagar-
608 002

63


	 Fuzzy e-irresolute mappings on fuzzy topological spaces. By 

