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1. INTRODUCTION

Weaker forms of fuzzy continuity on fuzzy topological spaces have been consid-
ered by many workers using the concepts of fuzzy semiopen sets and fuzzy preopen
sets. Seenivasan [10] defined the concept of fuzzy e-open set and studied fuzzy
e-continuous mappings on fuzzy topological spaces. Fuzzy e-open sets are weaker
then fuzzy d-preopen set, fuzzy d-semiopen set and stronger then the fuzzy S-open
sets. Using this notion, he studied fuzzzy e-continuous (e-open, e-closed) mappings
on fuzzy topological spaces. In this paper, using of fuzzy e-interiors and fuzzy e-
closures we investigate the characteristic properties of fuzzy e-irresolute mappings
on fuzzy topological spaces.

2. PRELIMINARIES

Throughout this paper (X,77) and (Y,T5) (or simply X and Y ) represent non-
empty fuzzy topological spaces. Let p be a fuzzy subset of a space X. The fuzzy
closure of p and fuzzy interior of p are denoted by Cl(u) and Int(u) respectively. A
fuzzy subset p of space X is called fuzzy regular open [2] (resp. fuzzy regular closed)
if = Int(Cl(w)) (resp. p = Cl(Int(n)). The fuzzy d-interior of fuzzy subset p of X
is the union of all fuzzy regular open sets contained in A. A fuzzy subset p is called
fuzzy §-open [15] if u = Ints(p). The complement of fuzzy §-open set is called fuzzy
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d-closed (i.e, p = Cls(n)). The fuzzy d-closure of p and the fuzzy d-interior of p are
denoted by Cls(pn) and Ints(u).

A fuzzy subset i of a space X is called fuzzy semi open [2] (resp. fuzzy S-open set
[3], fuzzy pre-open set[4], fuzzy §- preopen [1], fuzzy d-semi open)[8] if p < Clintu
(resp. pu < Cl(Int(Cl(w))); p < Int(Cl(p)); p < Int(Cls(n)), p < Cl(Ints(u))).
The complement of a fuzzy semiopen (resp. fuzzy preopen , fuzzy J- semiopen, fuzzy
d-preopen set) is called fuzzy semiclosed (resp. fuzzy preclosed , fuzzy J-semiclosed,
fuzzy J-preclosed). The union of all fuzzy J-semi open (resp. fuzzy J-preopen) sets
contained in a fuzzy set p in a fuzzy topological space X is called the fuzzy J-semi
interior [8] (resp. fuzzy d-pre interior [1]) of p and it is denoted by sInts(u) (resp.
pInts(p)). The intersection of all fuzzy d-semi closed (resp. fuzzy d-preclosed)
sets containing a fuzzy set p in a fuzzy topological space X is called the fuzzy -
semiclosure [8] (resp. fuzzy d-preclosure [1]) of u and it is denoted by sCls(u) (resp.
pCls(1)).

A fuzzy point in X with support z € X and value (0 < o < 1) is denoted by
ZTo. A fuzzy set X in X is said to be g-coincident with a fuzzy set u, denoted by
Aqp, if there exists x € X such that A\(x) + p(z) > 1 [9]. It is known [9] that A <
if and only if X\ and 1 — p are not g-coincident, denoted by Ag(1 — u). The words
‘neighborhood’ and ‘fuzzy topological space’ will be abbreviated as ‘nbd’ and ‘fts’,
respectively.

A mapping f : X — Y is said to be fuzzy continuous if f~1(v) is a fuzzy open
set in X for any fuzzy open set v in Y.

Definition 2.1 ([12]). Let u ba a fuzzy set of a fuzzy topological space X. Then u
is said to be fuzzy semi d-preopen set of X if p < ClIntClspu.

Definition 2.2 ([10]). Let u be a fuzzy set of a topological space X. Then p is
called:

(i) a fuzzy e-open set of X if pu < Cl(Intsp) V Int(Clsp),

(ii) a fuzzy e-closed set of X if Cl(Intsp) A Int(Clsp) < p.

Lemma 2.3 ([10]). (i) Any union of fuzzy e-open sets is a fuzzy e-open set.
(ii) Any intersection of fuzzy e-closed sets is a fuzzy e-closed set.

Theorem 2.4. Let X and Y be fuzzy topological spaces such that X is product
related to Y. Then the product p X v of a fuzzy e-open set p in X and a fuzzy e-open
set v in'Y is a fuzzy e-open set of the fuzzy product topological space X X Y.

Definition 2.5 ([10]). Let u be a fuzzy set of a fuzzy topological space X.
(1) The fuzzy e-interior of y is
eInty = V{v|v < p,v is a fuzzy e-open set },
(2) The fuzzy e-closure of 4 is
eClp = NMu|v > p, v is a fuzzy e-closed set }.
Obviously, eClyu is the smallest fuzzy e-closed set which contains u, and elnty is

the largest fuzzy e-open set which is contained in u. Also, eCluy = p for any fuzzy
e-closed set p and elnty = p for any fuzzy e-open set .

Theorem 2.6 ([10]). Let p be a fuzzy set of a fuzzy topological space X. Then
elntu® = (eClu)® and eClp® = (elntp)©.
54
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Definition 2.7 ([1, 2, 4, 8, 12, 10]). Let X and Y be fuzzy topological spaces and
f X — Y be amapping. Then f is called:
(i) a fuzzy semicontinuous mapping if f~!(v) is a fuzzy semiopen set in X for
any fuzzy open set v in Y,
(ii) a fuzzy precontinuous mapping if f~1(v) is a fuzzy preopen set in X for any
fuzzy open set v in Y,
(iii) a fuzzy d-semicontinuous mapping if f~1(v) is a fuzzy d-semiopen set in X
for any fuzzy open set v in Y,
(iv) a fuzzy -precontinuous mapping if f~1(v) is a fuzzy J-preopen set in X for
any fuzzy open set v in Y,
(v) a fuzzy semi d-precontinuous mapping if f~!(v) is a fuzzy semi §-preopen
set in X for any fuzzy open set v in Y,
(vi) a fuzzy e-continuous mapping if f~!(v) is a fuzzy e-open set in X for any
fuzzy open set v in Y.

Definition 2.8. Let f : X — Y be a mapping. Then f is called a fuzzy J-irresolute
mapping if f~1(v) is a fuzzy §-open set in X for each fuzzy §-open set v in Y.

Definition 2.9 ([13]). Let f : X — Y be a mapping. Then f is called a fuzzy semi
d-preirresolute mapping if f~1(v) is a fuzzy semi d-preopen set in X for each fuzzy
semi d-preopen set v in Y.

Definition 2.10 ([14]). Let (X, 7) and (Y, o) be fuzzy topological spaces. A fuzzy
function f: X — Y is said to be fuzzy slightly e-continuous if for each fuzzy point
Zo € X and each fuzzy Clopen set A in Y containing f(z,), there exists a fuzzy
e-open set 4 in X containing x, such that f(u) < A.

Definition 2.11 ([10]). A fuzzy topological space (X, 7) is said to be fuzzy e-T} if
for each pair of distinct points  and y of X, there exists fuzzy e-open sets U; and
Us such that z € Uy and y € Uy, = ¢ Uy and y ¢ Us.

Definition 2.12 ([10]). A fuzzy topological space (X, 7) is said to be fuzzy e-Ty
(i.e., fuzzy e-Hausdorfl) if for each pair of distinct points = and y of X, there exists
disjoint fuzzy e-open sets U and V such that € U and y € V.

Definition 2.13 ([0]). A fuzzy space X is said to be fuzzy co-T; if for each pair of
distinct fuzzy points z, and yg of X there exist fuzzy Clopen sets A and p containing
xo and yg, respectively such that yz ¢ A and z, ¢ p.

Definition 2.14 ([0]). A fuzzy space X is said to be fuzzy co-Tp ( fuzzy co-
Hausdorft) if for each pair of distinct fuzzy points z, and yg in X, there exist
disjoint fuzzy Clopen sets A and p in X such that z, € A and yg € p.

Theorem 2.15 (). Let X and Y be fuzzy topological spaces and f : X =Y be a
mapping. Then the following are equivalent:

(1) f is fuzzy e-continuous.
(2) The inverse image of each fuzzy closed set in'Y is a fuzzy e-closed set in X.
(3) (eCl,u) < CIU(f(w)) for each fuzzy set p in X.
(4) eCl( L)) < f~Y(Clv) for each fuzzy set v inY.
(5) f~t(Intv) < elnt(f~1(v)) for each fuzzy set v in Y.
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Proof. Obvious g

Theorem 2.16. Let X and Y be fuzzy topological spaces and f: X — Y be a map-
ping. Then for each fuzzy setv inY, f~1(Intv) < ClInts(f~(v))VIntCls(f~1(v)).

Proof. Let v be a fuzzy set in Y. Then Intv is a fuzzy open set in Y and so f~!(Intv)
is a fuzzy e-open set in X. Hence
f~Y(Intv) < ClInts(f~1(Intv)) Vv IntClg(f HIntv))
< ClInts(f~1(v)) vV IntCls(f~1(v)). O

Theorem 2.17. Let X and Y be fuzzy topological spaces and f : X — Y be a
bijection. Then f is fuzzy e-continuous if and only if Int(f(n)) < f(elIntu) for each
fuzzy set p in X.

Proof. Let u be a fuzzy set in X. Then by Theorem 2.15,
FHInt(f(w)) < eInt(f~1(f(w)))-

Since f is a bijection,

Int(f(p) = f(f~ (Int(f(n))) < f(eIntp).

Conversely, let v be a fuzzy set in Y. Then

Int(f(f~1(v)) < fleInt(f~1())).

Since f is a bijection,
Intv = Int(f(f (1)) < f(eInt(f~ (1))

and

fIntv) < f7H(f(ent(f7H(v)))) = elnt(f ().

Therefore, by Theorem 2.15, f is fuzzy e-continuous. O

3. FuzzYy e-IRRESOLUTE MAPPINGS

Definition 3.1 ([10]). Let f : X — Y be a mapping. Then f is called a fuzzy
e-irresolute mapping if f~1(v) is a fuzzy e-open set in X for each fuzzy e-open set
vinY.

From the above definition, Every fuzzy e-irresolute mapping is a fuzzy e-continuous
mapping. But the converse is not true in general. A fuzzy semicontinuous mapping
and a fuzzy e-irresolute mapping do not have any specific relations. Also, fuzzy
precontinuous mapping and fuzzy e-irresolute mapping are independent.

Example 3.2. Let uq, pa, p3, e and np be fuzzy sets of X = {a, b, c}, defined as
follows. i — 03+04+c’“ :OG+O5+c7M :06+05+c’“ _03+04+04
and n; = %2 + 0 2 1 02 Consider fuzzy topologies Ty = {Ox, 1x, g1, po, [3, ,u4}
and Th = {OX, 1X, 771} and the identity mapping ix : (X,T1) — (X, T2). Then ix
is a fuzzy e-continuous mapping, but ix is not a fuzzy e-irresolute mapping.
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Example 3.3. Let 1, ,ug, w3, 4, s and 1 be fuzzy sets of X = {a, b, c},
defined as follows. u; = 2+OT+—2 = 03+04+05,u3— 06+05+05
u4—%+0b‘)+7,u5 734—074—!—07 ndm:%—koz—l—C Con81derfuzzy
topologies 11 = {Ox, lx, g1, p2, p3, pa, ps} and To = {Ox, 1x, ni} and the
identity mapping ix : (X,T1) — (X,T3). Then ix are fuzzy semicontinuous and

fuzzy precontinuous, but ix is not a e-irresolute mapping

Example 3.4. Let uy and 77 be fuzzy sets of X = {a, b, ¢}, defined as follows.
i = %+L£+Lf7 n = %—F%—i—%. Consider fuzzy topologies Th = {0x, 1x, p1}
and Ty = {Ox, 1x, m} and the identity mapping ix : (X,T1) — (X, T2). Then ix
is a fuzzy e-irresolute mapping, but ¢x is not a fuzzy semicontinuous mapping and
also ix is not a fuzzy d§-semicontinuous mapping.

Example 3.5. Let 1 and 1 be fuzzy sets of X = {a, b, ¢}, defined as follows.
= 0714—07‘)14—%1, n = %4—%4—%. Consider fuzzy topologies Th = {0x, 1x, p1}
and T = {0x, lx, m} and the identity mapping iy : (X,T1) — (X, T%). Then ix
is a fuzzy e-irresolute mapping, but iy is not a fuzzy precontinuous mapping and
also ix is not a fuzzy J-precontinuous mapping.

Example 3.6. Let p and 7 be fuzzy sets of X = {a, b, ¢}, defined as follows.
w= 0 8 + 08 8 + 008, n= % + % + O—f. Consider fuzzy topologies T} = {0x, 1x, p}
and T2 = {OX, 1x, n} and the identity mapping ix : (X,71) — (X,T3). Then ix

is a fuzzy e-irresolute mapping, but ix is not a fuzzy d-irresolute.

Example 3.7. In Example 3.2, the mapping ix is a fuzzy semi-é-precontinuous
mapping, but ix is not a fuzzy §-semicontinuous mapping and also ix is not a fuzzy
semi-J-preirresolute.

Remark 3.8. From the above discussions and known results we have the following
implications.
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Theorem 3.9. Let X and Y be fuzzy topological spaces and f : X — Y be a
mapping. Then the following are equivalent:
(i) f is fuzzy e-irresolute.
(ii) The inverse image of each fuzzy e-closed set in'Y is a fuzzy e-closed set in
X.
(iii) eCl(f~1(v)) < f~Y(eClv) for each fuzzy set v in'Y.
(iv) f(eClu) < eCl(f(u)) for each fuzzy set u in X.

Proof. (i) implies (ii): Let v be a fuzzy e-closed set in Y. Then v° is a fuzzy e-open
set. Since f is fuzzy e-irresolute, f~1(v°) = (f~1(v))¢ is a fuzzy e-open set in X.
Therefore, f~1(v) is a fuzzy e-closed set in X.

(ii) implies (i): Let v be a fuzzy e-open set in Y. Then v° is a fuzzy e-closed set
and f~1(v¢) = (f~(v))¢ is a fuzzy e-closed set in X. Since f~1(v) is a fuzzy e-open
set in X, f is fuzzy e-irresolute.

(i) implies (iii): Let v be a fuzzy set in Y. Then v < eClv and f~1(v) <
f~(eClv). Since f~1(eClv) is a fuzzy e-closed set in X,

eCl(f~1(v)) < eCl(f~1(eClv)) = f~HeClv).
(iii) implies (iv): Let u be a fuzzy set in X. Then f(u) <eCl(f(pn)) and

eClp < eCU(f~H(f()) < fH(eCU(f(1)))-
This implies that

feClp) < f(f7H(eClU(f (1)) < eCU(f ().
(iv) implies (ii): Let v be a fuzzy e-closed set in Y. Then

FeCl(f~1(v))) <eCl(f(f~(v))) < eClv = v.
That implies that
eCl(f7 (V) < fHf(eCUfH W) < fH ).
Therefore, f~1(v) is a fuzzy e-closed set in X. O

Theorem 3.10 (). A mapping f : X — Y is fuzzy e-irresolute if and only if
fYelIntv) < elInt(f~1(v)) for each fuzzy setv in'Y.

Proof. Let v be a fuzzy set in Y. Then elntr < v. Since f is fuzzy e-irresolute,
f~Y(eIntv) is a fuzzy e-open set in X. Hence

f~l(eIntv) = elnt(f~(elntv)) < elnt(f~1(v)).
Conversely, let v be a fuzzy e-open set in Y. Then

f~tw) = f~(elntv) < elnt(f~1(v)).

Therefore, f~1(v) is a fuzzy e-open set in X and consequently f is a fuzzy e-irresolute
mapping. O

Theorem 3.11. Let X and Y be fuzzy topological spaces and f : X — Y be a
bijection. Then, f is fuzzy e-irresolute if and only if eInt(f(p)) < f(elIntu) for each
fuzzy set uin X.
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Proof. Let u be a fuzzy set in X. Then by Theorem 3.10,
= ent(f(p)) < eInt(f~(f(n)))-

Since f is a bijection,

eInt(f(p)) = f(f~ (eInt(f(1)) < f(eInt(f~(f(1)))) = f(eIntp).

Conversely, let v be a fuzzy e-open set in Y. Then

eInt(f(f~1(v)) < fleInt(f~'())).
Since f is a bijection,
elntv < flelnt(f~1(v))).
This implies that
fHelntv) < f7H(f(eInt(f71(v)))) = elnt(f~1 ().
Therefore, by Theorem 3.10, f is a fuzzy e-irresolute mapping. O

4. APPLICATIONS

Theorem 4.1. If f : X — Y s a fuzzy slightly e-continuous injection and Y 1is
fuzzy co-Ty, then X is fuzzy e-T.

Proof. Suppose that Y is fuzzy co-T7. For any distinct fuzzy points z, and y3 in X,
there exist fuzzy Clopen sets A, p in Y such that f(za) € A, f(yg) € A, f(za) & 1
and f(yg) € p. Since f is fuzzy slightly e-continuous, f~'(\) and f~!(p) are fuzzy
e-open sets in X such that x, € f71(\),yp & f~1(N\), za & f1 (1) and yg € f~1(p).
This shows that X is fuzzy e-T7. O

Theorem 4.2. If f : X — Y is a fuzzy slightly e-continuous injection and Y 1is
fuzzy co-Ty, then X is fuzzy e-Tb.

Proof. For any pair of distinct fuzzy points z, and yg in X, there exist disjoint
fuzzy Clopen sets A and p in Y such that f(z.) € A and f(yg) € p. Since f is fuzzy
slightly e-continuous, f~1()\) and f~!(u) are fuzzy e-open sets in X containing
and yg respectively. We have f~1(A\) A f=1(u) = ¢. This shows that X is fuzzy
e-Tg. O

Definition 4.3. A fuzzy space is called fuzzy co-regular [6] (respectively fuzzy
strongly e-regular) if for each fuzzy Clopen (respectively fuzzy e-closed) set 7 and
each fuzzy point z, ¢ 7, there exist disjoint fuzzy open sets A and p such that n < A
and x, € p.

Definition 4.4. A fuzzy space is called fuzzy co-normal [6] (respectively fuzzy
strongly e-normal) if for every pair of disjoint fuzzy Clopen (respectively fuzzy e-
closed) set 71 and 7 in X, there exist disjoint fuzzy open sets A and p such that
m < Aand ny < p.

Theorem 4.5. If [ is fuzzy slightly e-continuous injective fuzzy open function from

a fuzzy strongly e-reqular space X onto a fuzzy space Y, then'Y is fuzzy co-regular.
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Proof. Let n be fuzzy Clopen set in Y and be yg ¢ 7. Take yg = f(z4). Since f
is fuzzy slightly e-continuous, f~!(n) is a fuzzy e-closed set. Take v = f~1(n). We
have x, ¢ 7. Since X is fuzzy strongly e-regular, there exist disjoint fuzzy open
sets A and p such that v < A and z) € p. We obtain that n = f(v) < f(\) and
yg = f(xa) € f(p) such that f(X) and f(u) are disjoint fuzzy open sets. This shows
that Y is fuzzy co-regular. O

Theorem 4.6. If [ is fuzzy slightly e-continuous injective fuzzy open function from
a fuzzy strongly e-normal space X onto a fuzzy space Y, then Y is fuzzy co-normal.

Proof. Let n; and 79 be disjoint fuzzy Clopen sets in Y. Since f is fuzzy slightly
e-continuous, f~1(n1) and f~1(n2) are fuzzy e-closed sets. Take A = f~!(n;) and
pu = f"1(n2). We have A A i = ¢. Since X is fuzzy strongly e-normal, there exist
disjoint fuzzy open sets v and 5 such that A < v and g < B. We obtain that

m=f(\) < f(v) and 2 = f(u) < f(B) such that f(y) and f(8) are disjoint fuzzy
open sets. Thus, Y is fuzzy co-normal. O

Definition 4.7 ([10]). A fuzzy set A in a topological space (X, 7) is said to be fuzzy
e-connected if A cannot be expressed as the union of two fuzzy e-open sets.

Equivalently, a fuzzy topological space (X, 1) is said to be fuzzy e-connected if
fuzzy sets which are both fuzzy e-open and fuzzy e-closed sets are Ox and 1x.

Theorem 4.8. A fuzzy topological space (X, T) is e-connected iff X has no non-zero
e-open sets A and p such that A+ p = 1x.

Proof. (Necessity) Suppose (X, 7) is fuzzy e-connected. If X has two non-zero fuzzy
e-open sets A and p such that A + g = 1x, then X is proper fuzzy e-open and fuzzy
e-closed set of X. Hence, X is not fuzzy e-connected, a contradiction.

(Sufficiency) If (X, 7) is not fuzzy e-connected then it has a proper fuzzy set A of
X which is both fuzzy e-open and fuzzy e-closed. So p =1 — A, is a fuzzy e-open
set of X such that A + y = 1x, which is a contradiction. g

Theorem 4.9. If f: (X,7) — (Y,0) is fuzzy e-continuous surjection and (X, T) is
fuzzy e-connected, then (Y, o) is fuzzy connected.

Proof. Let X be a fuzzy e-connected space and Y is not fuzzy connected. AsY is not
fuzzy connected, then there exists a proper fuzzy set A of Y such that A #£ 0y, A # 1y
and A is both fuzzy open and fuzzy closed set. Since, f is fuzzy e-continuous,
f7Y(\) is both fuzzy e-open and fuzzy e-closed set in X such that f~1()\) # 0x and
F71(\) # 1x. Hence, X is not fuzzy e-connected, a contradiction. O

Theorem 4.10. If f : (X, 7) — (Y, 0) is fuzzy e-irresolute surjection and X is fuzzy
e-connected, then Y is so.

Proof. Similar to the proof of the above Theorem 4.9. O

Definition 4.11 ([7]). A collection p of fuzzy sets in a fuzzy space X is said to be
cover of a fuzzy set n of X if (\ 4, A)(z) =1, for every x € s(n). A fuzzy cover p
of a fuzzy set n in a fuzzy space X is said to be have a finite subcover if there exists
a finite subcollection p = {A1, As, ..., A, } of u such that (\/;.L:1 Aj)(x) > n(x), for
every = € s(n), where s(n) denotes the support of a fuzzy set 7.
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Definition 4.12 ([5]). A fuzzy topological space (X, 7) is fuzzy compact space if
every fuzzy open cover of X has a finite subcover.

Definition 4.13 ([11]). Let (X, 7) be a fts a family p of fuzzy sets is e-open cover
of a fuzzy set A if A < \/{G : G € p} and each member of p is e-open cover of a
fuzzy set. A subcover of p is subfamily which is also cover.

Definition 4.14 ([11]). A fuzzy topological space (X, 7) is fuzzy e-compact space
if every fuzzy e-open cover of X has a finite subcover.

In this proposition we will explain that the union of any two fuzzy e-compact is
also fuzzy e-compact

Proposition 4.15. Let (X,7) be a fts, if A and B are two fuzzy e-compact subsets
of X, then AU B is also fuzzy e-compact.

Proof. Let {Gy : A € A} be a fuzzy e-open cover of AU B.
Then paup(z) < iuR{MG* (2)}, ie., Maz{pa(z), pp(z)} < iuR{MG* ()}
€ €

Hence, AUB C | G».
AEA
Since, pa(x) < paup(z). Then A C AU B.

Also pup(x) < paup(x). Then B C AU B.

It is follows that {G : A € A} is a fuzzy e-open cover of A and a fuzzy e-open
cover of B.

Since A and B are two fuzzy e-compact sets, then there exists a finite subcover
{Gx,,Gx,,...,G», }, which covering A belong to {G : A € A}.

Then fia(2) < Maa{uc, (2)}

n
Hence A C |J G,, and there exists a finite subcover {Gx,, Gx,, ..., Gx,, } which

i=1
covering B belongs to {G : A € A}
Then, up(x) < Maz{ug, (2))

Hence, B C |J G\,
j=1
It is follows that paup(x) < Max{Gx,(x)}, k=1,2,...,n+m

n+m

Then AUB C |J Ga,
k=1
Thus, A U B is fuzzy e-compact. g

Proposition 4.16. Let (X, 1) be a fts, if A and B are two fuzzy e-compact subsets
of X, then AN B need not be fuzzy e-compact.
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