Annals of Fuzzy Mathematics and Informatics Volume 11, No. 1, (January 2016), pp. 35–51 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Characterizations of near-rings by interval valued (α, β) -Fuzzy ideals

N. THILLAIGOVINDAN, V. CHINNADURAI, S. KADALARASI

Received 20 April 2015; Revised 27 May 2015; Accepted 6 July 2015

ABSTRACT. In this paper, we introduce the concept of interval valued (α, β) -fuzzy subnear-rings and ideal of near-rings, where α, β any two of the $\{\in, q, \in \lor q, \in \land q\}$ with $\alpha \neq \in \land q$, by using belongs to relation \in and quasi-coincidence with relation q between interval valued fuzzy points and interval valued fuzzy sets. We also discussed some characterizations of interval valued $(\alpha, \in \lor q)$ -fuzzy ideals(subnear-rings), mainly discuss interval valued $(\in, \in \lor q)$ -fuzzy ideals(subnear-rings) of near-rings.

2010 AMS Classification: 18B40, 03E72, 16D25

Keywords: Near-rings, ideals, Interval valued (α, β) -fuzzy ideals, Interval valued $(\in, \in \lor q)$ -fuzzy ideal.

Corresponding Author: V. Chinnadurai (kv.chinnadurai@yahoo.com)

1. INTRODUCTION

A near-ring satisfies all axioms of an associative ring, except commutative of addition and one of the two distributive laws. In 1965, the fundamental concept of a fuzzy set was first initiated by Zadeh[24]. Then the fuzzy sets have been used in the reconsideration of classical mathematics. Ten years later Zadeh[25] introduced the concept of interval valued fuzzy subsets, where the values of the membership functions are the intervals instead of numbers. Rosenfeld[19] introduced the concept of fuzzy subgroup and give some of its properties. The concept of the interval valued fuzzy subgroup was first discussed by Biswas[6] in 1994. Abou-zaid [1] proposed the notion of fuzzy subnear-rings and ideals of near-rings. A new type of fuzzy subgroup, namely, (α, β) -fuzzy subgroup was introduced by Bhakat and Das[3, 4, 5] using the relation "belongs to" (\in) and "quasi-coincidence" (q) of fuzzy points and fuzzy sets initiated by Pu Pao-Ming and Liu-Ming[18].The ($\in, \in \lor q$)-fuzzy subgroup is an important and useful generalization of Rosenfeld's fuzzy subgroup. In [12], Dudek et al. introduced the concept of (α, β)-fuzzy ideals and (α, β)-fuzzy h-ideals in hemirings. Davvaz[7, 8] used this concept in the theory of near-rings and introduced ($\in, \in \lor q$)-fuzzy subnear-rings (ideals, *R*-subgroups) of near-rings. Young Bae Jun[22, 23], gave some results on (α, β)-fuzzy h-ideals in hemirings and discussed some properties of ($\in, \in \lor q_k$)-fuzzy subalgebras in BCK/BCI- algebras. Narayanan and Manikandan[16] introduced the notion of an ($\in, \in \lor q$)-fuzzy quasi-ideals in nearrings. Asger Khan[2] introduced the notion of generalized fuzzy ideals of ordered semigroups. Muhammad Shabir[15], initiated the concept of interval valued generalized fuzzy ideals of regular LA-semigroups. Deena and Coumaressane[11] proposed the notion of ($\in, \in \lor q_k$)-fuzzy subnear-rings and ideals of near-rings which is a generalization of ($\in, \in \lor q$)-fuzzy subnear-rings and ideals. In [13, 14], Zhan et al. have considered the idea of interval valued (α, β)-fuzzy hyperideals of hypernear-rings and a new view of fuzzy hypernear-rings. Davvaz[9, 10], discussed few concepts of fuzzy ideals of near-rings and generalized fuzzy H_v -submodules endowed with interval valued membership functions.

2. Preliminaries

In this section, we present some elementary definitions that we use in the sequal.

Definition 2.1 ([8, 17]). A near-ring is an algebraic system $(R, +, \cdot)$ consisting of a non empty set R together with two binary operations called + and \cdot such that (R, +) is a group not necessarily abelian and (R, \cdot) is a semigroup connected by the following distributive law: $x \cdot (y + z) = x \cdot y + x \cdot z$ valid for all $x, y, z \in R$. We will use the word 'near-ring 'to mean 'left near-ring '. We denote xy instead of $x \cdot y$. An ideal I of a near-ring R is the subset of R such that (i) (I, +) is a normal subgroup of (R, +), (ii) $RI \subseteq I$, (iii) $(x + a)y - xy \in I$, for any $a \in I$ and $x, y \in R$.

Note that I is a left ideal of R if I satisfies (i) and (ii), and right ideal of R if I satisfies (i) and (iii).

Definition 2.2 ([7]). A fuzzy subset μ of R is said to be an $(\in, \in \lor q)$ -fuzzy subnearring of R if for all $x, y \in R$ and $t, r \in (0, 1]$:

(1) $x_t, y_r \in \mu$ implies $(x+y)_{\min\{t,r\}} \in \forall q\mu$,

(2) $x_t \in \mu$ implies $(-x)_t \in \lor q\mu$,

(3) $x_t, y_r \in \mu$ implies $(xy)_{\min\{t,r\}} \in \forall q\mu$.

 μ is called an $(\in,\in \lor q)\text{-fuzzy}$ ideal of R if μ is a $(\in,\in \lor q)\text{-fuzzy}$ subnear-ring of R and

(4)
$$x_t \in \mu$$
 implies $(y + x - y)_t \in \forall q\mu$,

(5) $y_r \in \mu$ and $x \in R$ implies $(xy)_r \in \lor q\mu$,

(6) $a_t \in \mu$ and $x, y \in R$ implies $((x+a)y - xy)_t \in \forall q\mu$, for any $x, y, a \in R$.

Definition 2.3. A fuzzy subset μ of R is a map $\mu : R \to [0,1]$. A fuzzy subset of the form

$$\mu(y) = \begin{cases} t \in (0,1], & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

is called a fuzzy point with support x and value t and is denoted by x_t .

For a fuzzy point x_t and a fuzzy subset μ of the same set R, Pu Ming and Liu Ming[18] introduced the symbol $x_t \alpha \mu$, where $\alpha \in \{ \in, q, \in \land q, \in \lor q \}$. A fuzzy point x_t is said to belong to (resp.quasi-coincident with) a fuzzy subset μ , written as $x_t \in \mu(\text{resp. } x_t q \mu)$ if $\mu(x) \geq t(\text{resp. } \mu(x) + t > 1)$. The symbol $x_t \in \forall q \mu$ means that $x_t \in \mu$ or $x_t q \mu$. Similarly, $x_t \in \wedge q \mu$ denotes that $x_t \in \mu$ and $x_t q \mu$. $x_t \in \mu$ and $x_t \in \forall q \mu$ means that $x_t \in \mu$ and $x_t \in \forall q \mu$ do not hold, respectively.

Notation 2.4 ([10, 20]). By an interval number \tilde{a} , we mean an interval $[a^-, a^+]$ such that $0 \le a^- \le a^+ \le 1$ where a^- and a^+ are the lower and upper limits of \tilde{a} respectively. The set of all cosed subintervals of [0, 1] is denoted by D[0, 1]. We also identify the interval [a, a] by the number $a \in [0, 1]$. For any interval numbers $\widetilde{a}_i = [a_i^-, a_i^+], \widetilde{b}_i = [b_i^-, b_i^+] \in D[0, 1], i \in I$ we define

$$\max^{i} \{\widetilde{a}_{i}, b_{i}\} = [\max\{a_{i}^{-}, b_{i}^{-}\}, \max\{a_{i}^{+}, b_{i}^{+}\}],$$
$$\min^{i} \{\widetilde{a}_{i}, \widetilde{b}_{i}\} = [\min\{a_{i}^{-}, b_{i}^{-}\}, \min\{a_{i}^{+}, b_{i}^{+}\}],$$
$$\inf \widetilde{a}_{i} = \left[\bigcap_{i \in I} a_{i}^{-}, \bigcap_{i \in I} a_{i}^{+}\right], \sup \widetilde{a}_{i} = \left[\bigcup_{i \in I} a_{i}^{-}, \bigcup_{i \in I} a_{i}^{+}\right]$$

and let

- $\begin{array}{ll} (1) \ \widetilde{a} \leq \widetilde{b} \Longleftrightarrow a^- \leq b^- \ \text{and} \ a^+ \leq b^+, \\ (2) \ \widetilde{a} = \widetilde{b} \Longleftrightarrow a^- = b^- \ \text{and} \ a^+ = b^+, \end{array}$ (3) $\tilde{a} < \tilde{b} \iff \tilde{a} \le \tilde{b}$ and $\tilde{a} \ne \tilde{b}$, (4) $k\tilde{a} = [ka^-, ka^+]$, whenever $0 \le k \le 1$.

Definition 2.5 ([20]). Let X be a non-empty set. A mapping $\tilde{\mu} : X \to D[0, 1]$ is called an interval valued fuzzy subset of X. For any $x \in X$, $\tilde{\mu}(x) = [\mu^{-}(x), \mu^{+}(x)]$, where μ^- and μ^+ are fuzzy subsets of X such that $\mu^-(x) \leq \mu^+(x)$. Thus $\tilde{\mu}(x)$ is an interval (a closed subset of [0, 1]) and not a number from the interval [0, 1] as in the case of a fuzzy set.

Let $\tilde{\mu}, \tilde{\nu}$ be interval valued fuzzy subsets of X. The following are defined by (1) $\widetilde{\mu} < \widetilde{\nu} \Leftrightarrow \widetilde{\mu}(x) < \widetilde{\nu}(x)$. (2) $\widetilde{\mu} = \widetilde{\nu} \Leftrightarrow \widetilde{\mu}(x) = \widetilde{\nu}(x).$ (3) $(\widetilde{\mu} \cup \widetilde{\nu}) = \max^i \{ \widetilde{\mu}(x), \widetilde{\nu}(x) \}.$ (4) $(\widetilde{\mu} \cap \widetilde{\nu}) = \min^{i} \{\widetilde{\mu}(x), \widetilde{\nu}(x)\}.$

Definition 2.6 ([20]). Let $\tilde{\mu}$ be an interval valued fuzzy subset of X and $[t_1, t_2] \in$ D[0,1]. Then the set $U(\widetilde{\mu}:[t_1,t_2])=\{x\in X\,|\,\widetilde{\mu}(x)\geq [t_1,t_2]\}$ is called the upper level set of $\tilde{\mu}$.

Definition 2.7 ([20]). Let I be a subset of a near-ring R. Define a function \tilde{f}_I : $R \to D[0,1]$ by

$$\widetilde{f}_I(x) = \begin{cases} \widetilde{1} & \text{if } x \in I \\ \widetilde{0} & \text{otherwise} \end{cases}$$

for all $x \in R$. Clearly \tilde{f}_I is an interval valued fuzzy subset of R and \tilde{f}_I is called the interval valued characteristic function of I.

3. INTERVAL VALUED (α, β) -FUZZY IDEALS

We now extend the idea of quasi-coincident of fuzzy point with a fuzzy set to the concept of quasi-coincidence of a interval value fuzzy point with an interval valued fuzzy set as follows.

Definition 3.1. An interval valued fuzzy set $\tilde{\mu}$ of a near-ring R of the form

$$\widetilde{\mu}(y) = \begin{cases} \widetilde{t} \neq [0,0], & \text{if } y = x, \\ [0,0], & \text{if, } y \neq x, \end{cases}$$

is said to be an interval value fuzzy point with support x and interval value \tilde{t} and is denoted by $x_{\tilde{t}}$. An interval value fuzzy point $x_{\tilde{t}}$ is said to belong to (resp. be quasicoincidence with) an interval valued fuzzy set $\tilde{\mu}$, written as $x_{\tilde{t}} \in \tilde{\mu}$ (resp. $x_{\tilde{t}}q\tilde{\mu}$) if $\tilde{\mu}(x) \geq \tilde{t}$ (resp. $\tilde{\mu}(x) + \tilde{t} > [1, 1]$). If $x_{\tilde{t}} \in \tilde{\mu}$ or $x_{\tilde{t}}q\tilde{\mu}$, then we write $x_{\tilde{t}} \in \lor q\tilde{\mu}$ and if $x_{\tilde{t}} \in \tilde{\mu}$ and $x_{\tilde{t}}q\tilde{\mu}$, then we write $x_{\tilde{t}} \in \land q\tilde{\mu}$. The symbol $\overline{\in \lor q}$ means $\in \lor q$ does not hold.

Throughout this paper R will denote a left near-ring and α and β denote any one of $\{\in, q, \in \lor q, \in \land q\}$ unless otherwise specified. Also $\tilde{\mu}(x) = [\mu^{-}(x), \mu^{+}(x)]$ satisfies the following conditions:

(1) Any two elements of D[0,1] are comparable.

(2) $[\mu^{-}(x), \mu^{+}(x)] \ge [0.5, 0.5]$ or $[\mu^{-}(x), \mu^{+}(x)] < [0.5, 0.5]$, for all $x \in \mathbb{R}$.

In this section, we present some fundamental concepts and characterizations of interval valued (α, β) -fuzzy ideals in which the central role is played by $(\alpha, \in \lor q)$ -fuzzy ideals, especially $(\in, \in \lor q)$ -fuzzy ideals.

We first extend the idea of fuzzy ideals to interval valued (α, β) -fuzzy ideals of near-rings.

Definition 3.2. An interval valued fuzzy set $\tilde{\mu}$ of R is said to be an interval valued (α, β) -fuzzy subnear-ring of R with $\alpha \neq \in \land q$ if it satisfies the following conditions:

- (1) $x_{\tilde{t}}\alpha\tilde{\mu}$ and $y_{\tilde{r}}\alpha\tilde{\mu}$ implies $(x+y)_{\min^i\{\tilde{t},\tilde{r}\}}\beta\tilde{\mu}$,
- (2) $x_{\tilde{t}}\alpha\tilde{\mu}$ implies $(-x)_{\tilde{t}}\beta\tilde{\mu}$,

(3) $x_{\tilde{t}}\alpha\widetilde{\mu}$ and $y_{\tilde{r}}\alpha\widetilde{\mu}$ implies $(xy)_{\min^i\{\widetilde{t},\widetilde{r}\}}\beta\widetilde{\mu}$, for all $t,r\in(0,1]$ and $x,y\in R$.

Definition 3.3. An interval valued fuzzy set $\tilde{\mu}$ of R is said to be an interval valued (α, β) -fuzzy ideals of R with $\alpha \neq \in \land q$ if the following conditions hold:

(4) $\tilde{\mu}$ is an interval valued (α, β) -fuzzy subnear-ring of R,

(5) $x_{\tilde{t}}\alpha\tilde{\mu}$ and $y \in R$ implies $(y+x-y)_{\tilde{t}}\beta\tilde{\mu}$

(6) $y_{\tilde{t}}\alpha\tilde{\mu}$ and $x \in R$ implies $(xy)_{\tilde{t}}\beta\tilde{\mu}$,

(7) $z_{\tilde{t}}\alpha \tilde{\mu}$ and $x, y \in R$ implies $((x+z)y-xy)_{\tilde{t}}\beta \tilde{\mu}$, for all $t, r, \in (0,1]$ and $x, y, z \in R$.

The conditions (1) and (2) in Definition 3.2 is equivalent to the following condition:

(1) $x_{\tilde{t}}\alpha\tilde{\mu}$, and $y_{\tilde{r}}\alpha\tilde{\mu}$ implies $(x-y)_{\min^i\{\tilde{t},\tilde{r}\}}\beta\tilde{\mu}$.

Let $\tilde{\mu}$ be an interval valued fuzzy subset of R such that $\tilde{\mu}(x) \leq [0.5, 0.5]$ for all $x \in R$. Suppose that $x \in R$ and $t \in (0, 1]$ such that $x_{\tilde{t}} \in \wedge q\tilde{\mu}$. Then $\tilde{\mu}(x) \geq \tilde{t}$ and $\tilde{\mu}(x) + \tilde{t} > [1, 1]$. It follows that $[1, 1] < \tilde{\mu}(x) + \tilde{t} \leq \tilde{\mu}(x) + \tilde{\mu}(x) = 2\tilde{\mu}(x)$. This means that $\tilde{\mu}(x) > [0.5, 0.5]$, and so $\{x_{\tilde{t}} \mid x_{\tilde{t}} \in \wedge q\tilde{\mu}\} = \emptyset$. Therefore the case $\alpha = \in \wedge q$ in Definitions 3.2 and 3.3 are omitted.

Example 3.4. Let $R = \{a, b, c, d\}$ be a set with two binary operations defined as follows:

+	a	b	С	d		•	a	b	c	d
a	a	b	С	d		a	a	a	a	a
b	b	a	d	c		b	a	a	a	a
<i>c</i>	с	d	b	a		c	a	a	a	a
d	d	c	a	b		d	a	b	c	d

Then $(R, +, \cdot)$ is a near-ring and $I = \{a, b\}$ is its ideal. Let $\tilde{\mu} : R \longrightarrow D[0, 1]$ be an interval valued fuzzy subset of R defined by $\tilde{\mu}(a) = [0.8, 0.9], \tilde{\mu}(b) = [0.6, 0.7]$ and $\tilde{\mu}(c) = [0.5, 0.5] = \tilde{\mu}(d)$. Then, clearly, $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R. But

- (1) $\tilde{\mu}$ is not an interval valued (\in, \in) -fuzzy ideal of R, since
 - $b_{[0.58,0.68]} \in \widetilde{\mu} \text{ but } ((c+b)d cd)_{[0.58,0.68]} = d_{[0.58,0.68]} \overline{\in} \widetilde{\mu}.$
- (2) $\widetilde{\mu}$ is not an interval valued (q, q)-fuzzy ideal of R, since $a_{[0.2,0.3]}q\widetilde{\mu}$ and $b_{[0.48,0.58]}q\widetilde{\mu}$ but $(a-b)_{[0.2,0.3]} = b_{[0.2,0.3]}\overline{q} \ \widetilde{\mu}$.
- (3) $\widetilde{\mu}$ is not an interval valued $(q, \in \wedge q)$ -fuzzy ideal of R, since $a_{[0.2,0.3]}q\widetilde{\mu}$ and $c_{[0.58,0.59]}q\widetilde{\mu}$ but $(a-c)_{[0.2,0.3]} = d_{[0.2,0.3]}\overline{q} \ \widetilde{\mu}$.
- (4) $\widetilde{\mu}$ is not an interval valued $(\in, \in \land q)$ -fuzzy ideal of R, since $b_{[0.58, 0.68]} \in \widetilde{\mu}$ and $c_{[0.48, 0.49]} \in \widetilde{\mu}$ but $(b c)_{[0.48, 0.49]} = c_{[0.48, 0.49]} \overline{\in \land q} \widetilde{\mu}$.
- (5) $\widetilde{\mu}$ is not an interval valued $(\in \forall q, \in \land q)$ -fuzzy ideal of R, since $b_{[0.58,0.68]} \in \lor q\widetilde{\mu}$ and $c_{[0.48,0.49]} \in \lor q\widetilde{\mu}$ but $(b-c)_{[0.48,0.49]} = c_{[0.48,0.49]} \overline{\in \land q} \widetilde{\mu}$.
- (6) $\tilde{\mu}$ is not an interval valued (\in, q) -fuzzy ideal of R, since $b_{[0.58, 0.68]} \in \tilde{\mu}$ and $c_{[0.48, 0.49]} \in \tilde{\mu}$ but $(b-c)_{[0.48, 0.49]} = c_{[0.48, 0.49]} \bar{q} \tilde{\mu}$.
- (7) $\tilde{\mu}$ is not an interval valued (q, \in) -fuzzy ideal of R, since $b_{[0.58, 0.68]}q\tilde{\mu}$ and $c_{[0.52, 0.54]}q\tilde{\mu}$ but $(b-c)_{[0.52, 0.54]} = c_{[0.52, 0.54]}\overline{\in \mu}$.
- (8) $\widetilde{\mu}$ is not an interval valued $(\in \lor q, \in)$ -fuzzy ideal of R, since $b_{[0.58,0.68]} \in \lor q\widetilde{\mu}$ and $c_{[0.52,0.54]} \in \lor q\widetilde{\mu}$ but $(b-c)_{[0.52,0.54]} = c_{[0.52,0.54]} \in \widetilde{\mu}$.
- (9) $\widetilde{\mu}$ is not an interval valued $(\in \lor q, q)$ -fuzzy ideal of R, since $a_{[0.2,0.2]} \in \lor q\widetilde{\mu}$ and $b_{[0.3,0.4]} \in \lor q\widetilde{\mu}$ but $(a-b)_{[0.2,0.2]} = b_{[0.2,0.2]}\overline{q} \ \widetilde{\mu}$.

In the next theorem, using an interval valued (α, β) -fuzzy ideal of R, we present a method of constructing an ideal of R.

Theorem 3.5. Let $\tilde{\mu}$ be an interval valued (α, β) -fuzzy ideal of R. Then the set $S_{\tilde{\mu}} = \{x \in R \mid \tilde{\mu}(x) > [0, 0]\}$ is an ideal of R.

Proof. $S_{\widetilde{\mu}} = \{x \in R \mid \widetilde{\mu}(x) > [0,0]\}$. Let $x, y \in S_{\widetilde{\mu}}$ be such that $\widetilde{\mu}(x) > [0,0]$ and $\widetilde{\mu}(y) > [0,0]$. Let $\widetilde{\mu}(x-y) = [0,0]$. If $\alpha \in \{\in, \in \forall q\}$, then $x_{\widetilde{\mu}(x)}\alpha\widetilde{\mu}$ and $y_{\widetilde{\mu}(y)}\alpha\widetilde{\mu}$ but $\widetilde{\mu}(x-y) = [0,0] < \min^{i} \{\widetilde{\mu}(x), \widetilde{\mu}(y)\}$ and $\widetilde{\mu}(x-y) + \min^{i} \{\widetilde{\mu}(x), \widetilde{\mu}(y)\} \leq [0,0] +$ [1,1] = [1,1]. So, $(x-y)_{\min^i \{\widetilde{\mu}(x),\widetilde{\mu}(y)\}} \overline{\beta} \widetilde{\mu}$ for every $\beta \in \{\in, q, \in \forall q, \in \land q\}$, which is a contradiction. Hence $\widetilde{\mu}(x-y) > [0,0]$, that is, $x-y \in S_{\widetilde{\mu}}$. Also, $x_{[1,1]}q\widetilde{\mu}$ and $y_{[1,1]}q\widetilde{\mu}$ but $(x-y)_{[1,1]}\beta\widetilde{\mu}$ for every $\beta \in \{\in, q, \in \lor q, \in \land q\}$, a contradiction. Hence $\widetilde{\mu}(x-y) > [0,0]$, that is, $x-y \in S_{\widetilde{\mu}}$. Now, let $x \in S_{\widetilde{\mu}}$, $y \in R$ implies $\widetilde{\mu}(x) > [0,0]$ and we assume that $\widetilde{\mu}(y+x-y) = [0,0]$. If $\alpha \in \{\in, \in \forall q\}$ then $x_{\widetilde{\mu}(x)}\alpha\widetilde{\mu}$ but $(y+x-y)_{\widetilde{\mu}(x)}\overline{\beta}\widetilde{\mu}$, for every $\beta \in \{\in, q, \in \land q, \in \lor q\}$, a contradiction, this means that $(y+x-y) \in S_{\widetilde{\mu}}$. Also, $x_{[1,1]}q\widetilde{\mu}$ but $(y+x-y)_{[1,1]}\overline{\beta}\widetilde{\mu}$ for every $\beta \in \{\in, q, \in \lor q, \in \land q\}$. This leads to a contradiction and so $\tilde{\mu}(y+x-y) > [0,0]$, that is, $y+x-y \in S_{\tilde{\mu}}$. Again, let $y \in S_{\widetilde{\mu}}$, $x \in R$ implies $\widetilde{\mu}(y) > [0,0]$. Let $\widetilde{\mu}(xy) = [0,0]$. If $\alpha \in \{\in, \in \forall q\}$ then $y_{\tilde{\mu}(y)} \alpha \tilde{\mu}$ but $(xy)_{\tilde{\mu}(y)} \beta \tilde{\mu}$ for every $\beta \in \{ \in, q, \in \land q, \in \lor q \}$, a contradiction, this implies that $xy \in S_{\tilde{\mu}}$. Also, $y_{[1,1]}q\tilde{\mu}$ but $(xy)_{[1,1]}\overline{\beta}\tilde{\mu}$ for every $\beta \in \{\in, q, \in \lor q, \in \land q\}$. This leads to a contradiction and so $\mu(xy) > [0,0]$, that is, $xy \in S_{\tilde{\mu}}$. Let $z \in S_{\tilde{\mu}}$ and $x, y \in \mathbb{R}$. Then $\widetilde{\mu}(z) > [0, 0]$. Suppose that $\widetilde{\mu}((x+z)y - xy) = [0, 0]$. If $\alpha \in \{\in$ $(z, \in \forall q)$, then $z_{\widetilde{\mu}(z)} \alpha \widetilde{\mu}$, but $((x+z)y - xy)_{\mu(z)} \overline{\beta} \widetilde{\mu}$, for every $\beta \in \{ \in, q, \in \forall q, \in \land q \}$, a contradiction. Thus $\widetilde{\mu}((x+z)y-xy) > [0,0]$, that is $((x+z)y-xy) \in S_{\widetilde{\mu}}$. Also, $z_{[1,1]}q\widetilde{\mu}$ but $((x+z)y-xy)_{[1,1]}\overline{\beta}\widetilde{\mu}$ for every $\beta \in \{\in, q, \in \lor q, \in \land q\}$, a contradiction. Thus $\widetilde{\mu}((x+z)y-xy) > [0,0]$, implies, $(x+z)y-xy \in S_{\widetilde{\mu}}$. This shows that $S_{\widetilde{\mu}}$ is an ideal of R.

Theorem 3.6. If I is an ideal of R, then an interval valued fuzzy subset $\tilde{\mu}$ of R such that

$$\widetilde{\mu}(x) = \begin{cases} \ge [0.5, 0.5] & \text{if } x \in I \\ [0, 0] & \text{otherwise} \end{cases}$$

is an interval valued $(\alpha, \in \lor q)$ -fuzzy ideal of R.

Proof. (a) Let $x, y \in R$ and $\tilde{t}, \tilde{r} \in D[0,1]$ with $\tilde{t}, \tilde{r} \neq [0,0]$ be such that $x_{\tilde{t}} \in \tilde{\mu}$ and $y_{\tilde{r}} \in \tilde{\mu}$. Then $\tilde{\mu}(x) \geq \tilde{t}$ and $\tilde{\mu}(y) \geq \tilde{r}$. Thus $x, y \in I$ and so $x - y \in I$, that is, $\tilde{\mu}(x-y) \geq [0.5, 0.5]$. If $\min^i \{\tilde{t}, \tilde{r}\} \leq [0.5, 0.5]$, then $\tilde{\mu}(x-y) \geq [0.5, 0.5] \geq \min^i \{\tilde{t}, \tilde{r}\}$. Hence $(x - y)_{\min^i \{\tilde{t}, \tilde{r}\}} \in \tilde{\mu}$. If $\min^i \{\tilde{t}, \tilde{r}\} > [0.5, 0.5]$, then $\tilde{\mu}(x-y) + \min^i \{\tilde{t}, \tilde{r}\} > [0.5, 0.5] + [0.5, 0.5] = [1, 1]$ and so $(x - y)_{\min^i \{\tilde{t}, \tilde{r}\}} q\tilde{\mu}$. Therefore $(x - y)_{\min^i \{\tilde{t}, \tilde{r}\}} \in \vee q\tilde{\mu}$. Now, let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ be such that $x_{\tilde{t}} \in \tilde{\mu}$. Then $\tilde{\mu}(x) \geq \tilde{t}$, which implies $x \in I$ and so $y + x - y \in I$. Consequently $\tilde{\mu}(y + x - y) \geq [0.5, 0.5]$. If $\tilde{t} \leq [0.5, 0.5]$, then $\tilde{\mu}(y + x - y) \geq [0.5, 0.5] + [0.5, 0.5] = [1, 1]$ and so $(y + x - y)_{\tilde{t}} \in \tilde{\mu}$. Thus $(y + x - y)_{\tilde{t}} \in \vee q\tilde{\mu}$. Also, let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ be such that $y_{\tilde{t}} \in [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq \tilde{t}$. Thus $y \in I$ and so $xy \in I$, that is $\tilde{\mu}(xy) \geq [0.5, 0.5]$. If $\tilde{t} \leq [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq [0.5, 0.5] = [1, 1]$ and so $(xy)_{\tilde{t}} \in \tilde{\mu}$. If $\tilde{t} > [0.5, 0.5]$. If $\tilde{t} \leq [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq [0.5, 0.5] \geq \tilde{t}$. Hence $(xy)_{\tilde{t}} \in \tilde{\mu}$. If $\tilde{t} > [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq \tilde{t}$. Thus $y \in I$ and so $xy \in I$, that is $\tilde{\mu}(xy) \geq [0.5, 0.5]$. If $\tilde{t} \leq [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq [0.5, 0.5] \geq \tilde{t}$. Hence $(xy)_{\tilde{t}} \in \tilde{\mu}$. If $\tilde{t} > [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq [0.5, 0.5] \geq \tilde{t}$. Hence $(xy)_{\tilde{t}} \in \tilde{\mu}$. If $\tilde{t} > [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq [0.5, 0.5] = [1, 1]$ and so $(xy)_{\tilde{t}}q\tilde{\mu}$. This implies that $(xy)_{\tilde{t}} \in \vee q\tilde{\mu}$. Similarly, we can prove that $((x+z)y-xy)_{\tilde{t}} \in \vee q\tilde{\mu}$. Therefore $\tilde{\mu}$ is an interval valued $(\epsilon, \epsilon \vee q)$ -fuzzy ideal of R.

(b) Let $x, y \in R$ and $\tilde{t}, \tilde{r} \in D[0, 1]$ with $\tilde{t}, \tilde{r} \neq [0, 0]$ be such that $x_{\tilde{t}}q\tilde{\mu}$ and $y_{\tilde{t}}q\tilde{\mu}$. Then $x, y \in I, \widetilde{\mu}(x) + \widetilde{t} > [1, 1]$ and $\widetilde{\mu}(y) + \widetilde{r} > [1, 1]$. Since $x - y \in I$, we have $\widetilde{\mu}(x-y) \ge [0.5, 0.5]$. If $\min^i \{\widetilde{t}, \widetilde{r}\} \le [0.5, 0.5]$, then $\widetilde{\mu}(x-y) \ge [0.5, 0.5] \ge \min^i \{\widetilde{t}, \widetilde{r}\}$. Hence $(x-y)_{\min^i\{\widetilde{t},\widetilde{r}\}} \in \widetilde{\mu}$. If $\min^i\{\widetilde{t},\widetilde{r}\} > [0.5, 0.5]$, then $\widetilde{\mu}(x-y) + \min^i\{\widetilde{t},\widetilde{r}\} >$ [0.5, 0.5] + [0.5, 0.5] = [1, 1] and so $(x - y)_{\min^i \{\tilde{t}, \tilde{r}\}} q \tilde{\mu}$. Thus $(x - y)_{\min^i \{\tilde{t}, \tilde{r}\}} \in \forall q \tilde{\mu}$. Now let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ be such that $x_{\tilde{t}}q\tilde{\mu}$. This means that $\widetilde{\mu}(x) + \widetilde{t} > [1,1]$. Thus $x \in I$ and so $y + x - y \in I$. This implies that $\widetilde{\mu}(y + x - y) \geq 1$ [0.5, 0.5]. If $t \leq [0.5, 0.5]$, then $\tilde{\mu}(y + x - y) \geq [0.5, 0.5] \geq t$. Hence $(y + x - y)_{\tilde{t}} \in \tilde{\mu}$. If $\widetilde{t} > [0.5, 0.5], \text{ then } \widetilde{\mu}(y + x - y) + \widetilde{t} > [0.5, 0.5] + [0.5, 0.5] = [1, 1] \text{ and so } (y + x - y)_{\widetilde{t}} q \widetilde{\mu}.$ Thus $(y + x - y)_{\tilde{t}} \in \forall q \tilde{\mu}$. Let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ be such that $y_{\tilde{t}}q\tilde{\mu}$ implies $\tilde{\mu}(y) + \tilde{t} > [1,1]$. Then $y \in I$ and so $xy \in I$. This implies that $\tilde{\mu}(xy) \geq I$ [0.5, 0.5]. If $\tilde{t} \leq [0.5, 0.5]$, then $\tilde{\mu}(xy) \geq [0.5, 0.5] \geq t$. Hence $(xy)_{\tilde{t}} \in \tilde{\mu}$. If $\tilde{t} > [0.5, 0.5]$, then $\widetilde{\mu}(xy) + \widetilde{t} > [0.5, 0.5] + [0.5, 0.5] = [1, 1]$ and so $(xy)_{\widetilde{t}}q\widetilde{\mu}$. Hence $(xy)_{\widetilde{t}} \in \forall q\widetilde{\mu}$. Let $x, y, z \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ be such that $z_{\tilde{t}}q\tilde{\mu}$. Then $\tilde{\mu}(z) + \tilde{t} > [1, 1]$ and it follows that $z \in I$. Then $(x+z)y - xy \in I$ and so $\widetilde{\mu}((x+z)y - xy) \ge [0.5, 0.5]$. If $\widetilde{t} \leq [0.5, 0.5]$, then $\widetilde{\mu}((x+z)y - xy) \geq [0.5, 0.5] \geq \widetilde{t}$. Hence $((x+z)y - xy)_{\widetilde{t}} \in \widetilde{\mu}$. If $\tilde{t} > [0.5, 0.5]$, then $\tilde{\mu}((x+z)y - xy) + \tilde{t} > [0.5, 0.5] + [0.5, 0.5] = [1, 1]$ and so $((x+z)y-xy)_{\tilde{t}}q\tilde{\mu}$. Thus $((x+z)y-xy)_{\tilde{t}} \in \forall q\tilde{\mu}$. Hence $\tilde{\mu}$ is an interval valued $(q, \in \lor q)$ -fuzzy ideal of R.

(c) Similar consequence of (a) and (b), we have to prove that $\tilde{\mu}$ is an interval valued $(\in \forall q, \in \forall q)$ -fuzzy ideal of R.

Remark 3.7. The following example proves that every interval valued fuzzy set $\tilde{\mu}$ defined in Theorem 3.6 is an interval valued $(\alpha, \in \lor q)$ -fuzzy ideal of R but $\tilde{\mu}$ is not an interval valued (α, β) -fuzzy ideal of R, for every $\beta \in \{\in, q, \in \lor q, \in \land q\}$.

Example 3.8. Let $R = \{a, b, c, d\}$ be a set with two binary operations defined as follows:

+	a	b	С	d	•	a	b	С	d	
a	a	b	с	d	a	a	a	a	a	
b	b	a	d	c	b	a	a	a	a	
c	c	d	b	a	с	a	a	a	a	
d	d	c	a	b	d	a	a	b	b	

Then $(R, +, \cdot)$ is a near-ring and $I = \{a, b\}$ is its ideal. Let $\tilde{\mu} : R \longrightarrow D[0, 1]$ be an interval valued fuzzy subset of R defined by $\tilde{\mu}(a) = [0.6, 0.7], \tilde{\mu}(b) = [0.5, 0.6]$ and $\tilde{\mu}(c) = [0, 0] = \tilde{\mu}(d)$. Then, clearly, $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R. Since, $a_{[0.26, 0.28]} \in \tilde{\mu}$. Then, $(a - a)_{[0.26, 0.28]} = a_{[0.26, 0.28]} \in \lor q\tilde{\mu}$ but $(a-a)_{[0.26, 0.28]} = a_{[0.26, 0.28]} \bar{q} \tilde{\mu}$, which implies that $(a-a)_{[0.26, 0.28]} = a_{[0.26, 0.28]} \in \land q\tilde{\mu}$. Then, $\tilde{\mu}$ is not an $(\alpha, \in \land q)$ -fuzzy ideal of R.

4. Interval valued
$$(\in, \in \lor q)$$
-fuzzy ideal of near-rings

In this section, we introduce the notion of interval valued $(\in, \in \lor q)$ -fuzzy ideal of near-ring and investigate some of its properties.

Definition 4.1 ([21]). An interval valued fuzzy subset μ of a near-ring R is said to be an i-v (\in , $\in \lor q$)-fuzzy subnear-ring of R if for all $x, y \in R$ and $t, r \in (0, 1]$:

- (1) $x_{\tilde{t}} \in \widetilde{\mu}$ and $y_{\tilde{r}} \in \widetilde{\mu}$ implies $(x+y)_{\min^i \{\tilde{t},\tilde{r}\}} \in \forall q \widetilde{\mu}$,
- (2) $x_{\tilde{t}} \in \tilde{\mu}$ implies $(-x)_{\tilde{t}} \in \lor q\tilde{\mu}$,
- (3) $x_{\widetilde{t}} \in \widetilde{\mu}$ and $y_{\widetilde{r}} \in \widetilde{\mu}$ implies $(xy)_{\min^i \{\widetilde{t}, \widetilde{r}\}} \in \lor q\widetilde{\mu}$,

The conditions (1) and (2) in Definition 4.1 is equivalent to (1') $x_{\tilde{t}}, y_{\tilde{\tau}} \in \tilde{\mu}$ implies $(x - y)_{\min^i \{\tilde{t}, \tilde{\tau}\}} \in \forall q \tilde{\mu}$.

Definition 4.2. An interval valued fuzzy subset $\tilde{\mu}$ of R is said to be an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R if it satisfies the following conditions for all $t, r \in (0, 1]$ and $x, y, z \in R$,

(1) $\widetilde{\mu}$ is an interval valued ($\in, \in \lor q$)-fuzzy subnear-ring of R,

- (2) $x_{\tilde{t}} \in \tilde{\mu}$ and $y \in R$ implies $(y + x y)_{\tilde{t}} \in \forall q \tilde{\mu}$,
- (3) $y_{\tilde{t}} \in \tilde{\mu}$ and $x \in R$ implies $(xy)_{\tilde{t}} \in \lor q\tilde{\mu}$.
- (4) $z_{\tilde{t}} \in \tilde{\mu}$ and $x, y \in R$ implies $((x+z)y xy)_{\tilde{t}} \in \forall q\tilde{\mu}$.

Theorem 4.3 ([21]). An interval valued fuzzy subset $\tilde{\mu}$ of R is an interval valued $(\in, \in \forall q)$ -fuzzy subnear-ring of R if and only if

- (1) $\widetilde{\mu}(x-y) \ge \min^{i} \{ \widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5] \},\$
- (2) $\tilde{\mu}(xy) \ge \min^{i} \{ \tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5] \}, \text{ for all } x, y \in R.$

Lemma 4.4. Let $\tilde{\mu}$ be an interval valued fuzzy subset of R and $\tilde{t}, \tilde{r} \in D[0,1]$ with $\tilde{t}, \tilde{r} \neq [0,0]$. Then

- (1) (a) μ is an $(\in, \in \lor q)$ -fuzzy subnear-ring of R and
 - (b) $\widetilde{\mu}(x-y) \ge \min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5]\}, \widetilde{\mu}(xy) \ge \min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5]\}$ for all $x, y \in R$ are equivalent.
- (2) (c) $x_{\tilde{t}} \in \tilde{\mu}$ and $y \in R$ implies $(y + x y)_{\tilde{t}} \in \forall q \tilde{\mu}$, and
- (d) $\widetilde{\mu}(y+x-y) \ge \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\}, \text{ for all } x, y \in R \text{ are equivalent.}$ (3) (e) $y_{\widetilde{t}} \in \widetilde{\mu} \text{ and } x \in R \text{ implies } (xy)_{\widetilde{t}} \in \lor q\widetilde{\mu} \text{ and}$
- (f) $\widetilde{\mu}(xy) \ge \min^i \{\widetilde{\mu}(y), [0.5, 0.5]\}, \text{ for all } x, y \in R \text{ are equivalent.}$
- (4) (g) $z_{\tilde{t}} \in \tilde{\mu}$ and $x, y \in R$ implies $((x+z)y xy)_{\tilde{t}} \in \forall q\tilde{\mu}$ and (h) $\tilde{\mu}((x+z)y - xy) \geq \min^{i} \{\tilde{\mu}(z), [0.5, 0.5]\}$. for all $x, y, z \in R$ are equivalent.

Proof. Let $\tilde{\mu}$ be an interval fuzzy subset of R.

(1) (a) \iff (b), Theorem 4.3.

(2) (c) \implies (d): Suppose that (d) is not valid, then there exists $x, y \in R$ such that $\widetilde{\mu}(y + x - y) < \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\}$. Now, we arise the following two cases: (i) $\widetilde{\mu}(x) \leq [0.5, 0.5]$ (ii) $\widetilde{\mu}(x) > [0.5, 0.5]$.

Case (i): We have $\widetilde{\mu}(y+x-y) < \widetilde{\mu}(x)$. Choose an interval t such that $\widetilde{\mu}(y+x-y) < \widetilde{t} < \widetilde{\mu}(x)$. This implies $x_{\widetilde{t}} \in \widetilde{\mu}$ and $(y+x-y)_{\widetilde{t}} \in \overline{\vee q} \widetilde{\mu}$, which contradicts (c). So, $\widetilde{\mu}(y+x-y) \ge \widetilde{\mu}(x) = \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\}.$

Case (ii): We have $\tilde{\mu}(y + x - y) \leq [0.5, 0.5]$. Then $x_{[0.5, 0.5]} \in \tilde{\mu}$ and $(y + x - y)_{[0.5, 0.5]} \in \overline{\forall q} \tilde{\mu}$, which is a contradiction to (c). Hence $\tilde{\mu}(y + x - y) \geq [0.5, 0.5] = \min^{i} {\{\tilde{\mu}(x), [0.5, 0.5]\}}$.

 $\begin{array}{l} (d) \implies (c): \text{Let } x_{\widetilde{t}} \in \widetilde{\mu} \text{ and } y \in R. \text{ Then } \widetilde{\mu}(x) \geq \widetilde{t}. \text{ Now } (d), \text{ we have } \widetilde{\mu}(y+x-y) \geq \\ \min^i \{\mu(x), [0.5, 0.5]\} \geq \min^i \{\widetilde{t}, [0.5, 0.5]\}. \text{ If } \widetilde{t} \leq [0.5, 0.5] \text{ then } \widetilde{\mu}(y+x-y) \geq \widetilde{t} \text{ and} \\ \text{ so } (y+x-y)_{\widetilde{t}} \in \widetilde{\mu}. \text{ If } \widetilde{t} > [0.5, 0.5], \text{ then } \widetilde{\mu}(y+x-y) + \widetilde{t} > [1, 1] \text{ and so } (y+x-y)_{\widetilde{t}}q\widetilde{\mu}. \\ \text{ This implies that } (y+x-y)_{\widetilde{t}} \in \vee q\widetilde{\mu}. \end{array}$

(3) (e) \implies (f): Let us assume that (f) is not valid. Then $x, y \in R$, we can write $\tilde{\mu}(xy) < \min^i \{\tilde{\mu}(y), [0.5, 0.5]\}$. We consider the following two cases:

(i) $\widetilde{\mu}(y) \le [0.5, 0.5]$ (ii) $\widetilde{\mu}(y) > [0.5, 0.5]$.

Case (i): We have $\tilde{\mu}(xy) < \tilde{\mu}(y)$. Choose \tilde{t} such that $\tilde{\mu}(xy) < \tilde{t} < \tilde{\mu}(y)$. Then $y_{\tilde{t}} \in \tilde{\mu}$, but $(xy)_{\tilde{t}} \in \overline{\forall q} \tilde{\mu}$, which contradicts (e).

Case (ii): We have $\widetilde{\mu}(xy) < [0.5, 0.5] \leq \widetilde{\mu}(y)$. This implies that $y_{[0.5, 0.5]} \in \widetilde{\mu}$, but $(xy)_{[0.5, 0.5]} \in \overline{\lor q} \widetilde{\mu}$, which contradicts (e). Therefore $(xy)_{\widetilde{t}} \in \overline{\lor q} \widetilde{\mu}$.

 $(f) \implies (e): \text{Let } y_{\widetilde{t}} \in \widetilde{\mu} \text{ and } x \in R \text{ be such that } \widetilde{\mu}(y) \geq t. \text{ We have } \mu(xy) \geq \min^{i} \{\widetilde{\mu}(y), [0.5, 0.5]\} \geq \min^{i} \{\widetilde{t}, [0.5, 0.5]\}, \text{ which implies that } \widetilde{\mu}(xy) \geq \widetilde{t} \text{ or } \widetilde{\mu}(xy) \geq [0.5, 0.5] \text{ according to } \widetilde{t} \leq [0.5, 0.5] \text{ or } \widetilde{t} > [0.5, 0.5]. \text{ Therefore } (xy)_{\widetilde{t}} \in \lor q\widetilde{\mu}.$

Similarly, we can prove $(4)(g) \implies (h)$ and $(h) \implies (g)$. This completes the proof.

By Definition 4.2 and Lemma 4.4, we obtain the following theorem.

Theorem 4.5. An interval valued fuzzy subset $\tilde{\mu}$ of R is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R if and only if

- (1) $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy subnear-ring of R,
- (2) $\widetilde{\mu}(y+x-y) \ge \min^{i} \{\mu(x), [0.5, 0.5]\},\$
- (3) $\widetilde{\mu}(xy) \ge \min^{i} \{ \widetilde{\mu}(y), [0.5, 0.5] \},\$
- (4) $\widetilde{\mu}((x+z)y-xy) \ge \min^{i} \{\widetilde{\mu}(z), [0.5, 0.5]\}, \text{ for all } x, y, z \in \mathbb{R}.$

In the following theorem, we explain the construction of an interval valued generalized fuzzy ideal form an ideal.

Theorem 4.6. Let I be an ideal of R. For every $\tilde{t} \in D[0, 0.5]$ with $\tilde{t} \neq [0, 0]$ there exists an interval valued $(\in, \in \lor q)$ -fuzzy ideal $\tilde{\mu}$ of R such that $\widetilde{U}(\tilde{\mu} : \tilde{t}) = I$.

Proof. Let $\tilde{\mu}$ be an interval valued fuzzy subset in R defined by

$$\widetilde{\mu}(x) = \begin{cases} \widetilde{t} & \text{if } x \in I \\ [0,0] & \text{otherwise} \end{cases}$$

for all $x \in R$, where $\tilde{t} \in D[0, 0.5]$ with $\tilde{t} \neq [0, 0]$. Obviously, $\widetilde{U}(\tilde{\mu} : \tilde{t}) = I$. Assume that $\tilde{\mu}(x-y) < \min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5]\}$, for some $x, y \in R$. Since $|Im(\tilde{\mu})| = 2$, it follows that $\tilde{\mu}(x-y) = [0, 0]$ and $\min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5]\} = \tilde{t}$. Hence $\tilde{\mu}(x) = \tilde{t} = \tilde{\mu}(y)$ and so $x, y \in I$. Thus $x-y \in I$, since I is an ideal of R and so $\tilde{\mu}(x-y) = \tilde{t}$, which is a contradiction. Therefore $\tilde{\mu}(x-y) \ge \min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5]\}$. Let us suppose that $\tilde{\mu}(y+x-y) < \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\}$ for some $x, y \in R$. It follows that $\tilde{\mu}(y+x-y) = [0, 0]$ and $\min^i \{\widetilde{\mu}(x), [0.5, 0.5]\} = \tilde{t}$. Hence $\tilde{\mu}(x) = \tilde{t}$ and so $x \in I$. Since I is an ideal of R, then $y+x-y \in I$. Thus $\tilde{\mu}(y+x-y) = \tilde{t}$, which is a contradiction and hence $\tilde{\mu}(y+x-y) \ge \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\}$. Assume that $\tilde{\mu}(xy) < \min^i \{\widetilde{\mu}(y), [0.5, 0.5]\}$, for some $x, y \in R$. Then $\tilde{\mu}(xy) = [0, 0]$ and $\min^i \{\widetilde{\mu}(y), [0.5, 0.5]\} = \tilde{t}$. Hence $\tilde{\mu}(y) = \tilde{t}$ and so $y \in I$. Since I is an ideal of R, then $y+x-y \in I$. Thus $\tilde{\mu}(xy) = [0, 0]$ and $\min^i \{\widetilde{\mu}(y), [0.5, 0.5]\} = \tilde{t}$. Hence $\tilde{\mu}(y) = \tilde{t}$ and so $y \in I$. Since I is an ideal of R, then $xy \in I$. Thence $\tilde{\mu}(xy) = [0, 0]$ and $\min^i \{\widetilde{\mu}(y), [0.5, 0.5]\} = \tilde{t}$. Hence $\tilde{\mu}(y) = \tilde{t}$ and so $y \in I$. Since I is an ideal of R, then $xy \in I$. Thus $\tilde{\mu}(xy) = \tilde{t}$, which is a contradiction and therefore $\tilde{\mu}(xy) \ge \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\}$. Similarly, the same procedure we have $\tilde{\mu}((x+x)y-xy) \ge \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\}$.

The next theorem brings out the relationship between interval valued $(\in, \in \lor q)$ -fuzzy ideals of R and the crisp ideals of R.

Theorem 4.7. A nonempty subset I of R is an ideal of R if and only if \tilde{f}_I is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R.

Proof. Let I be an ideal of R. Then \tilde{f}_I is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R by Theorem 4.6.

Conversely, assume that \widetilde{f}_I is an interval valued $(\in, \in \lor q)$ fuzzy ideal of R. Then clearly, $\widetilde{f}_I(x-y) \ge \min^i \{\widetilde{f}_I(x), \widetilde{f}_I(y), [0.5, 0.5]\} = \min\{[1, 1], [0.5, 0.5]\} = [0.5, 0.5] \neq$ [0, 0], which implies $\widetilde{f}_I(x-y) = [1, 1]$ and so $x-y \in I$. Let $x \in I$ and $y \in R$. Then, $\widetilde{f}_I(y+x-y) \ge \min^i \{\widetilde{f}_I(x), [0.5, 0.5]\} = \min^i \{[1, 1], [0.5, 0.5]\} = [0.5, 0.5] \neq [0, 0]$. This implies that $\widetilde{f}_I(y+x-y) = [1, 1]$ and so $y+x-y \in I$. Let $y \in I$ and $x \in R$ be such that $f_I(y) = [1, 1]$. Then, $\widetilde{f}_I(xy) \ge \min^i \{\widetilde{f}_I(y), [0.5, 0.5]\} = [0.5, 0.5] \neq [0, 0]$. This implies that $\widetilde{f}_I(xy) = [1, 1]$ and so $xy \in I$. Similarly, we proceed like this $(x+z)y-xy \in I$.

Now, we characterize the interval valued $(\in, \in \lor q)$ -fuzzy ideals using their level ideals.

Theorem 4.8. An interval valued fuzzy subset $\tilde{\mu}$ of R is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R if and only if the level subset $\tilde{U}(\tilde{\mu} : \tilde{t})$ is an ideal of R for all $[0,0] < \tilde{t} \leq [0.5, 0.5]$.

Proof. Let $\tilde{\mu}$ be an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R and $[0,0] < \tilde{t} \leq [0.5, 0.5]$. Let $x, y \in \tilde{U}(\tilde{\mu} : \tilde{t})$ then $\tilde{\mu}(x) \geq \tilde{t}$ and $\tilde{\mu}(y) \geq \tilde{t}$. Now by Theorem 4.5, we have $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\} \geq \min^i \{\tilde{t}, \tilde{t}, [0.5, 0.5]\} = \tilde{t}$. So $x - y \in \tilde{U}(\tilde{\mu} : \tilde{t})$. If $x \in \tilde{U}(\tilde{\mu} : \tilde{t})$ and $y \in R$. Then $\tilde{\mu}(x) \geq \tilde{t}$. Consequently by Theorem 4.5, we have $\tilde{\mu}(y + x - y) \geq \min^i \{\tilde{\mu}(x), [0.5, 0.5]\} \geq \min^i \{\tilde{t}, [0.5, 0.5]\} = \tilde{t}$. So $y + x - y \in \tilde{U}(\tilde{\mu} : \tilde{t})$. Let $y \in \tilde{U}(\tilde{\mu} : \tilde{t})$ and $x \in R$. Then $\tilde{\mu}(y) \geq \tilde{t}$. Since $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, we have $\tilde{\mu}(xy) \geq \min^i \{\tilde{\mu}(y), [0.5, 0.5]\} \geq \min^i \{\tilde{t}, [0.5, 0.5]\} = \tilde{t}$. Thus $xy \in \tilde{U}(\tilde{\mu}, \tilde{t})$ and so $\tilde{U}(\tilde{\mu} : \tilde{t})$ is a left ideal of R. Also, for every $z \in \tilde{U}(\tilde{\mu} : \tilde{t})$ and $x, y \in R$ such that $\tilde{\mu}(z) \geq \tilde{t}$. Then $\tilde{\mu}((x + z)y - xy) \geq \min^i \{\tilde{\mu}(z), [0.5, 0.5]\} \geq \min^i \{\tilde{t}, [0.5, 0.5]\} \geq \min^i \{\tilde{t}, [0.5, 0.5]\} \geq \min^i \{\tilde{t}, [0.5, 0.5]\} = \tilde{t}$ and so $(x + z)y - xy \in \tilde{U}(\tilde{\mu} : \tilde{t})$. Therefore $\tilde{U}(\tilde{\mu} : \tilde{t})$ is an ideal of R.

Conversely, assume that $\tilde{\mu}$ is an interval valued fuzzy subset of R such that $\tilde{U}(\tilde{\mu}: \tilde{t})(\neq \emptyset)$ become an ideal of R, for all $[0,0] < \tilde{t} \leq [0.5,0.5]$. Let $x, y \in R$. Suppose that $\tilde{\mu}(x-y) < \min^i \{\mu(x),\mu(y),[0.5,0.5]\}$. Then we can choose \tilde{t} such that $\tilde{\mu}(x-y) < \tilde{t} < \min^i \{\mu(x),\mu(y),[0.5,0.5]\}$. This implies that $x, y \in \tilde{U}(\tilde{\mu}:\tilde{t})$. Since $\tilde{U}(\tilde{\mu}:\tilde{t})$ is an additive subgroup of R, then $(x-y) \in \tilde{U}(\tilde{\mu}:\tilde{t})$ and so $\tilde{\mu}(x-y) \geq \tilde{t}$, which is a contradiction. Thus $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x),\tilde{\mu}(y),[0.5,0.5]\}$. Let us assume that $\tilde{\mu}(y+x-y) < \min^i \{\tilde{\mu}(x),[0.5,0.5]\}$. Then $x \in \tilde{U}(\tilde{\mu}:\tilde{t})$ and so $y + x - y \in \tilde{U}(\tilde{\mu}:\tilde{t})$, since $\tilde{U}(\tilde{\mu}:\tilde{t})$ is a ideal of R. This implies that $\tilde{\mu}(y+x-y) \geq \tilde{t}$, which contradicts to our hypothesis. Hence $\tilde{\mu}(y+x-y) \geq \min^i \{\tilde{\mu}(x),[0.5,0.5]\}$. Suppose that $\mu(xy) < \min^i \{\tilde{\mu}(y),[0.5,0.5]\}$, for all $x, y \in R$. Then there exist \tilde{t} such that $\tilde{\mu}(xy) < \tilde{t} < \min^i \{\tilde{\mu}(y),[0.5,0.5]\}$. Thus $y \in \tilde{U}(\tilde{\mu}:\tilde{t})$ and so $xy \in \tilde{U}(\tilde{\mu}:\tilde{t})$, since $\tilde{U}(\tilde{\mu}:\tilde{t})$ is an ideal of R. This implies that $\tilde{\mu}(x),[0.5,0.5]\}$. Suppose that $\mu(xy) < \min^i \{\tilde{\mu}(y),[0.5,0.5]\}$. Thus $y \in \tilde{U}(\tilde{\mu}:\tilde{t})$ and so $xy \in \tilde{U}(\tilde{\mu}:\tilde{t})$, since $\tilde{U}(\tilde{\mu}:\tilde{t})$ is an ideal of R. Therefore $\tilde{\mu}$ is an interval valued ($\in, \in \forall q$)-fuzzy ideal of R. \Box

Next, we discuss the relationship between these generalized interval valued fuzzy ideals.

Theorem 4.9. Every interval valued $(\in \lor q, \in \lor q)$ -fuzzy ideal of R is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R.

Proof. Let $\tilde{\mu}$ be an interval valued $(\in \forall q, \in \forall q)$ -fuzzy ideal of R. Suppose that $x, y \in R$ and $\tilde{t}, \tilde{r} \in D[0, 1]$ with $\tilde{t}, \tilde{r} \neq [0, 0]$ such that $x_{\tilde{t}} \in \tilde{\mu}$ and $y_{\tilde{r}} \in \tilde{\mu}$. Then $x_{\tilde{t}} \in \forall q \tilde{\mu}$ and $y_{\tilde{r}} \in \forall q \tilde{\mu}$. By the hypothesis $(x - y)_{\min^i\{\tilde{t},\tilde{r}\}} \in \forall q \tilde{\mu}$. Now $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ such that $x_{\tilde{t}} \in \tilde{\mu}$. Then $x_{\tilde{t}} \in \forall q \tilde{\mu}$, so by hypothesis $(y + x - y)_{\tilde{t}} \in \forall q \tilde{\mu}$. Similarly, we prove $(xy)_{\tilde{t}} \in \forall q \tilde{\mu}$ and $((x + z)y - xy)_{\tilde{t}} \in \forall q \tilde{\mu}$. Therefore $\tilde{\mu}$ is an interval valued $(\in, \in \forall q)$ -fuzzy ideal of R.

The following theorem gives the connection between interval valued (\in, \in) -fuzzy ideal and interval valued fuzzy ideal.

Theorem 4.10. An interval valued fuzzy subset $\tilde{\mu}$ of R is an interval valued (\in, \in) -fuzzy ideal of R if and only if it is an interval valued fuzzy ideal of R.

Proof. Assume that $\tilde{\mu}$ is an interval valued fuzzy ideal of R. Let $x, y \in R$ and $\tilde{t}, \tilde{r} \in D[0,1]$ with $\tilde{t}, \tilde{r} \neq [0,0]$ be such that $x_{\tilde{t}}, y_{\tilde{r}} \in \tilde{\mu}$. Then $\tilde{\mu}(x) \geq \tilde{t}$ and $\tilde{\mu}(y) \geq \tilde{r}$.

Since $\tilde{\mu}$ is an interval valued fuzzy ideal of R, we have $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\} \geq \min^i \{\tilde{t}, \tilde{r}\}$, it follows that $(x-y)_{\min\{\tilde{t}, \tilde{r}\}} \in \tilde{\mu}$. Now let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$. Then $x_{\tilde{t}} \in \tilde{\mu}$ and so $\tilde{\mu}(x) \geq \tilde{t}$. Since $\tilde{\mu}$ is an interval valued fuzzy ideal of R, we have $\tilde{\mu}(y+x-y) \geq \tilde{\mu}(x) \geq \tilde{t}$. Hence $(y+x-y)_{\tilde{t}} \in \tilde{\mu}$. Let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$. Then $y_{\tilde{t}} \in \tilde{\mu}$ and so $\tilde{\mu}(y) \geq \tilde{t}$. Hence $\tilde{\mu}(xy) \geq \tilde{\mu}(y) \geq \tilde{t}$, because $\tilde{\mu}$ is an interval valued fuzzy ideal of R. Thus $(xy)_{\tilde{t}} \in \tilde{\mu}$. Again let $x, z, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ be such that $\tilde{\mu}(z) \geq \tilde{t}$. Since $\tilde{\mu}$ is an interval valued fuzzy ideal of R. Thus $(xy)_{\tilde{t}} \in \tilde{\mu}$ and therefore $\tilde{\mu}$ is an interval valued $(z, \varepsilon) - xy \geq \tilde{\mu}(z) \geq \tilde{t}$. Thus $((x+z)y-xy)_{\tilde{t}} \in \tilde{\mu}$ and therefore $\tilde{\mu}$ is an interval valued (\in, ϵ) -fuzzy ideal of R.

Conversely, assume that $\tilde{\mu}$ is an interval valued (\in, \in) -fuzzy ideal of R. On the contrary assume that there exist $x, y \in R$ such that $\tilde{\mu}(x - y) < \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Choose \tilde{t} such that $\tilde{\mu}(x - y) < \tilde{t} < \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Then $x_{\tilde{t}}, y_{\tilde{t}} \in \tilde{\mu}$ and $(x - y)_{\tilde{t}} \in \tilde{\mu}$. This is a contradiction to our assumption that $\tilde{\mu}$ is an interval valued (\in, \in) -fuzzy ideal of R. Thus $\tilde{\mu}(x - y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y)\}$. Suppose that $\tilde{\mu}(y + x - y) < \tilde{\mu}(x)$, for some $x, y \in R$. Choose \tilde{t} such that $\tilde{\mu}(y + x - y) < \tilde{t} < \tilde{\mu}(x)$. Then $x_{\tilde{t}} \in \tilde{\mu}$ and $(y + x - y)_{\tilde{t}} \in \tilde{\mu}$, which is a contradiction and hence $\tilde{\mu}(y + x - y) \geq \tilde{\mu}(x)$. Let us assume that $\tilde{\mu}(xy) < \tilde{\mu}(y)$, for some $x, y \in R$. Then there exist \tilde{t} such that $\tilde{\mu}(xy) < \tilde{t} < \tilde{\mu}(y)$. This implies that $y_{\tilde{t}} \in \tilde{\mu}$ but $(xy)_{\tilde{t}} \in \tilde{\mu}$. This contradicts our hypothesis. Hence $\tilde{\mu}(xy) \geq \tilde{\mu}(y)$. Again the contrary assume that there exist $x, y, z \in R$ such that $\tilde{\mu}((x + z)y - xy) < \tilde{\mu}(z)$. Let \tilde{t} be such that $\tilde{\mu}((x + z)y - xy) < \tilde{t} < \tilde{\mu}(z)$. Then $z_{\tilde{t}} \in \tilde{\mu}$ but $((x + z)y - xy) < \tilde{t} \in \tilde{\mu}$, which is a contradiction and so $\tilde{\mu}((x + z)y - xy) \geq \tilde{\mu}(z)$. Therefore $\tilde{\mu}$ is an interval valued fuzzy ideal of R.

Theorem 4.11. Every interval valued (\in, q) -fuzzy ideal of R is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R.

Proof. The proof is straightforward.

The converse part of the above Theorem 4.11 is not true is general as shown in Example 3.4(6).

Theorem 4.12. Every interval valued (\in, \in) -fuzzy ideal of R is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R.

Proof. The proof is straightforward.

The converse part of the above Theorem 4.12 is not true is general as shown in Example 3.4(1).

In the following theorem, we give a condition for an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R to be an interval valued (\in, \in) -fuzzy ideal of R.

Theorem 4.13. Let $\tilde{\mu}$ be an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R such that $\tilde{\mu}(x) < [0.5, 0.5]$ for all $x \in R$. Then $\tilde{\mu}$ is an interval valued (\in, \in) -fuzzy ideal of R.

Proof. Let $x, y \in R$ and $\tilde{t}, \tilde{r} \in D[0, 1]$ with $\tilde{t}, \tilde{r} \neq [0, 0]$ be such that $x_{\tilde{t}}, y_{\tilde{r}} \in \tilde{\mu}$. Then $\tilde{\mu}(x) \geq \tilde{t}, \tilde{\mu}(y) \geq \tilde{r}$. Since $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, then $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\} \geq \min^i \{\tilde{t}, \tilde{r}, [0.5, 0.5]\} = \min^i \{\tilde{t}, \tilde{r}\}$ and so $(x-y)_{\min^i \{\tilde{t}, \tilde{r}\}} \in \tilde{\mu}$. Let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ be such that $x_{\tilde{t}} \in \tilde{\mu}$. Then $\tilde{\mu}(x) \geq \tilde{t}$. Thus $\tilde{\mu}(y+x-y) \geq \min^i \{\tilde{\mu}(x), [0.5, 0.5]\} \geq \tilde{t}$, since $\tilde{\mu}$ is an interval

valued $(\in, \in \lor q)$ -fuzzy ideal of R. Hence $(y+x-y)_{\tilde{t}} \in \tilde{\mu}$. Let $x, y \in R$ and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$. Then $y_{\tilde{t}} \in \tilde{\mu}$ implies $\tilde{\mu}(y) \geq \tilde{t}$. So $\tilde{\mu}(xy) \geq \min^i \{\tilde{\mu}(y), [0.5, 0.5]\} \geq \tilde{t}$, since $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R. Thus $(xy)_{\tilde{t}} \in \tilde{\mu}$. Similarly, we can prove that $((x+z)y-xy)_{\tilde{t}} \in \tilde{\mu}$. Therefore $\tilde{\mu}$ is an interval valued (\in, \in) -fuzzy ideal of R.

Theorem 4.14 ([21]). If $\{\widetilde{\mu}_i | i \in \Omega\}$ is a family of interval valued $(\in, \in \lor q)$ -fuzzy subnear-ring of a near-ring R, then $\widetilde{\mu} = \bigcap_{i \in \Omega} \widetilde{\mu}_i$ is an interval valued $(\in, \in \lor q)$ -fuzzy subnear-ring of a near-ring R, where Ω is any index set.

Theorem 4.15. If $\{\widetilde{\mu}_i | i \in \Omega\}$ is a family of interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, then $\widetilde{\mu} = \bigcap_{i \in \Omega} \widetilde{\mu}_i$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, where Ω is any index set.

Proof. Let $x, y, z \in R$. Then, clearly, $\tilde{\mu} = \bigcap_{i \in \Omega} \tilde{\mu}_i$ is an interval valued $(\in, \in \lor q)$ fuzzy subnear-ring of R from Theorem 4.15. Then,

$$\begin{split} \widetilde{\mu}(y+x-y) &= \bigcap_{i \in \Omega} \widetilde{\mu}_i(y+x-y) &= \inf^i \{ \widetilde{\mu}_i(y+x-y) : i \in \Omega \} \\ &\geq \inf^i \{ \min^i \{ \widetilde{\mu}_i(x), [0.5, 0.5] \} : i \in \Omega \} \\ &= \min^i \{ \inf^i \{ \widetilde{\mu}_i(x) : i \in \Omega \}, [0.5, 0.5] \} \\ &= \min^i \left\{ \bigcap_{i \in \Omega} \widetilde{\mu}_i(x), [0.5, 0.5] \right\} \\ &= \min^i \{ \widetilde{\mu}(x), [0.5, 0.5] \}. \end{split}$$

$$\begin{split} \widetilde{\mu}(xy) &= \bigcap_{i \in \Omega} \widetilde{\mu}_i(xy) &= \inf^i \{ \widetilde{\mu}_i(xy) : i \in \Omega \} \\ &\geq \inf^i \{ \min^i \{ \widetilde{\mu}_i(y), [0.5, 0.5] \} : i \in \Omega \} \\ &= \min^i \{ \inf^i \{ \widetilde{\mu}_i(y) : i \in \Omega \}, [0.5, 0.5] \} \\ &= \min^i \left\{ \bigcap_{i \in \Omega} \widetilde{\mu}_i(y), [0.5, 0.5] \right\} \\ &= \min^i \{ \widetilde{\mu}(y), [0.5, 0.5] \} \end{split}$$

Similarly, $\widetilde{\mu}((x+z)y-xy) \ge \min^i \{\widetilde{\mu}(z), [0.5, 0.5]\}$. Therefore $\widetilde{\mu} = \bigcap_{i \in \Omega} \widetilde{\mu_i}$ is an interval valued $(\in, \in \lor q)$ fuzzy ideal of R.

Theorem 4.16 ([21]). Let $\tilde{\mu}$ be an interval valued fuzzy subset of R. $\tilde{\mu} = [\mu^-, \mu^+]$ is an interval valued ($\in, \in \lor q$)-fuzzy subnear-ring of R if and only if μ^-, μ^+ are ($\in, \in \lor q$)-fuzzy subnear-ring of R.

The following theorem establishes the connection between interval valued ($\in, \in \lor q$)-fuzzy ideal of R and ($\in, \in \lor q$)-fuzzy ideal of R.

Theorem 4.17. Let $\tilde{\mu}$ be an interval valued fuzzy subset of R. $\tilde{\mu} = [\mu^-, \mu^+]$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R if and only if μ^-, μ^+ are $(\in, \in \lor q)$ -fuzzy ideal of R.

Proof. Let $\widetilde{\mu}$ be an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R. For any $x, y, z \in R$.

$$\begin{split} [\mu^-(x-y),\mu^+(x-y)] &= \widetilde{\mu}(x-y) \\ &\geq \min^i \{\widetilde{\mu}(x),\widetilde{\mu}(y),[0.5,0.5]\} \\ &= \min^i \{[\mu^-(x),\mu^+(x)],[\mu^-(y),\mu^+(y)],[0.5,0.5]\} \\ &= [\min\{\mu^-(x),\mu^-(y),0.5\},\min\{\mu^+(x),\mu^+(y),0.5\}]. \end{split}$$

It follows that $\mu^-(x-y) \ge \min\{\mu^-(x), \mu^-(y), 0.5\}$ and $\mu^+(x-y) \ge \min\{\mu^+(x), \mu^+(y), 0.5\}$. And

$$\begin{aligned} [\mu^{-}(y+x-y),\mu^{+}(y+x-y)] &= \widetilde{\mu}(y+x-y) \\ &\geq \min^{i}\{\widetilde{\mu}(x),[0.5,0.5]\} \\ &= \min^{i}\{[\mu^{-}(x),\mu^{+}(x)],[0.5,0.5]\} \\ &= [\min\{\mu^{-}(x),0.5\},\min\{\mu^{+}(x),0.5\}]. \end{aligned}$$

It follows that $\mu^-(y+x-y) \ge \min\{\mu^-(x), 0.5\}$ and $\mu^+(y+x-y) \ge \min\{\mu^+(x), 0.5\}$. Further,

$$\begin{aligned} [\mu^{-}(xy), \mu^{+}(xy)] &= \widetilde{\mu}(xy) \geq \min^{i} \{ \widetilde{\mu}(y), [0.5, 0.5] \} \\ &= \min^{i} \{ [\mu^{-}(y), \mu^{+}(y)], [0.5, 0.5] \} \\ &= [\min\{\mu^{-}(y), 0.5\}, \min\{\mu^{+}(y), 0.5\}]. \end{aligned}$$

It follows that $\mu^{-}(xy) \ge \min\{\mu^{-}(y), 0.5\}$ and $\mu^{+}(xy) \ge \min\{\mu^{+}(y), 0.5\}$. Similarly, $\mu^{-}((x+z)y-xy) \ge \min\{\mu^{-}(z), 0.5\}, \ \mu^{+}((x+z)y-xy) \ge \min\{\mu^{+}(z), 0.5\}$. Therefore μ^{+} and μ^{-} are $(\in, \in \lor q)$ -fuzzy ideal of R.

Conversely, assume that μ^+ and μ^- are $(\in, \in \lor q)$ -fuzzy ideal of R. Let $x, y, z \in R$. Then,

$$\begin{split} \widetilde{\mu}(x-y) &= \left[\mu^{-}(x-y), \mu^{+}(x-y)\right] \\ &\geq \left[\min\{\mu^{-}(x), \mu^{-}(y), 0.5\}, \min\{\mu^{+}(x), \mu^{+}(y), 0.5\}\right] \\ &= \min^{i}\{\left[\mu^{-}(x), \mu^{+}(x)\right], \left[\mu^{-}(y), \mu^{+}(y)\right], \left[0.5, 0.5\right]\} \\ &= \min^{i}\{\widetilde{\mu}(x), \widetilde{\mu}(y), \left[0.5, 0.5\right]\}. \end{split}$$

Further,

$$\begin{split} \widetilde{\mu}(y+x-y) &= & [\mu^-(y+x-y), \mu^+(y+x-y)] \\ &\geq & [\min\{\mu^-(x), 0.5\}, \min\{\mu^+(x), 0.5\}] \\ &= & \min^i\{[\mu^-(x), \mu^+(x)], [0.5, 0.5]\} \\ &= & \min^i\{\widetilde{\mu}(x), [0.5, 0.5]\}. \\ &\quad 47 \end{split}$$

And

$$\begin{split} \widetilde{\mu}(xy) &= & [\mu^-(xy), \mu^+(xy)] \\ &\geq & [\min\{\mu^-(y), 0.5\}, \min\{\mu^+(y), 0.5\}] \\ &= & \min^i\{[\mu^-(y), \mu^+(y)], [0.5, 0.5]\} \\ &= & \min^i\{\widetilde{\mu}(y), [0.5, 0.5]\}. \end{split}$$

Similarly, $\widetilde{\mu}((x+z)y-xy) \ge \min^i \{\widetilde{\mu}(z), [0.5, 0.5]\}.$

Definition 4.18. For any interval valued fuzzy subset $\tilde{\mu}$ of R and $\tilde{t} \in D[0, 1]$ with $\tilde{t} \neq [0, 0]$ we consider two subsets: $\tilde{Q}(\tilde{\mu}; \tilde{t}) = \{x \in R | x_{\tilde{t}} q \tilde{\mu}\}$ and $[\tilde{\mu}]_{\tilde{t}} = \{x \in R | x_{\tilde{t}} \in \forall q \tilde{\mu}\}$. Obviously, $[\tilde{\mu}]_{\tilde{t}} = \tilde{U}(\tilde{\mu}: \tilde{t}) \cup \tilde{Q}(\tilde{\mu}; \tilde{t})$.

We call $[\widetilde{\mu}]_{\widetilde{t}}$ as an $\in \forall q$ -level ideal and $\widetilde{Q}(\widetilde{\mu};\widetilde{t})$ a q-level ideal of $\widetilde{\mu}$.

Lemma 4.19. Every interval valued fuzzy subset $\tilde{\mu}$ of R satisfies the following assertion $\tilde{t} \in D[0, 0.5]$ with $\tilde{t} \neq [0, 0]$ implies $[\tilde{\mu}]_{\tilde{t}} = \tilde{U}(\tilde{\mu} : \tilde{t})$.

Proof. Let $\tilde{t} \in D[0, 0.5]$ with $\tilde{t} \neq [0, 0]$. Clearly, $\widetilde{U}(\tilde{\mu} : \tilde{t}) \subseteq [\tilde{\mu}]_{\tilde{t}}$. Let $x \in [\tilde{\mu}]_{\tilde{t}}$. If $x \notin \widetilde{U}(\tilde{\mu} : \tilde{t})$, then $\tilde{\mu}(x) < \tilde{t}$ and so $\tilde{\mu}(x) + \tilde{t} \leq \tilde{t} + \tilde{t} = 2\tilde{t} \leq [1, 1]$. This implies that $x_{\tilde{t}}\overline{q}\tilde{\mu}$, that is $x \notin \widetilde{Q}(\tilde{\mu}; \tilde{t})$. Thus $x \notin \widetilde{U}(\tilde{\mu} : \tilde{t}) \cup \widetilde{Q}(\tilde{\mu}; t) = [\tilde{\mu}]_{\tilde{t}}$. This leads to a contradiction and so $x \in \widetilde{U}(\tilde{\mu} : \tilde{t})$. Thus $[\tilde{\mu}]_t \subseteq \widetilde{U}(\tilde{\mu} : \tilde{t})$. Therefore $[\tilde{\mu}]_{\tilde{t}} = \widetilde{U}(\tilde{\mu} : \tilde{t})$.

Using the $(\in \lor q)$ -level ideals of near-rings, we characterize the interval valued $(\in, \in \lor q)$ -fuzzy ideals of near-rings.

Theorem 4.20. An interval valued fuzzy subset $\tilde{\mu}$ of R is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R if and only if $[\tilde{\mu}]_{\tilde{t}} (\neq \varnothing)$ is an ideal of R.

Proof. Assume that $\widetilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R and let $\widetilde{t} \in D[0, 0.5]$ with $\widetilde{t} \neq [0, 0]$ be such that $[\widetilde{\mu}]_{\widetilde{t}}(\neq \varnothing)$. Let $x, y \in [\widetilde{\mu}]_{\widetilde{t}}$ such that $\widetilde{\mu}(x) \geq \widetilde{t}$ or $\widetilde{\mu}(x) + \widetilde{t} > [1, 1]$ and $\widetilde{\mu}(y) \geq \widetilde{t}$ or $\widetilde{\mu}(y) + \widetilde{t} > [1, 1]$. We can consider four cases: (i) $\widetilde{\mu}(x) \geq \widetilde{t}$ and $\widetilde{\mu}(y) \geq \widetilde{t}$, (ii) $\widetilde{\mu}(x) \geq \widetilde{t}$ and $\widetilde{\mu}(y) + \widetilde{t} > [1, 1]$, (iii) $\widetilde{\mu}(x) + \widetilde{t} > [1, 1]$ and $\widetilde{\mu}(y) \geq \widetilde{t}$, (iv) $\widetilde{\mu}(x) + \widetilde{t} > [1, 1]$ and $\widetilde{\mu}(y) + \widetilde{t} > [1, 1]$.

Consider Case (i): $\tilde{\mu}(x) \geq \tilde{t}$ and $\tilde{\mu}(y) \geq \tilde{t}$. This implies that

$$\begin{split} \widetilde{\mu}(x-y) &\geq \min^{i} \{ \widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5] \} \geq \min^{i} \{ \widetilde{t}, [0.5, 0.5] \} \\ &= \begin{cases} [0.5, 0.5] & \text{if } \widetilde{t} > [0.5, 0.5] \\ \widetilde{t} & \text{if } \widetilde{t} \leq [0.5, 0.5] \end{cases} \end{split}$$

If $\tilde{t} > [0.5, 0.5]$, then $\tilde{\mu}(x-y) \ge [0.5, 0.5]$ and so $\tilde{\mu}(x-y) + \tilde{t} > [0.5, 0.5] + [0.5, 0.5] = [1, 1]$, that is, $(x-y)_{\tilde{t}}q\tilde{\mu}$. If $\tilde{t} \le [0.5, 0.5]$, then $\tilde{\mu}(x-y) \ge \tilde{t}$ and thus $(x-y)_{\tilde{t}} \in \tilde{\mu}$. Therefore, $(x-y)_{\tilde{t}} \in \lor q\tilde{\mu}$, that is, $(x-y) \in [\tilde{\mu}]_{\tilde{t}}$. Case(ii): $\tilde{\mu}(x) \ge \tilde{t}$ and $\tilde{\mu}(y) + \tilde{t} > [1, 1]$. If $\tilde{t} > [0.5, 0.5]$, then $\tilde{\mu}(x-y) \ge \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\} \ge \min^i \{\tilde{t}, [1, 1] - \tilde{t}, [0.5, 0.5]\} = [1, 1] - \tilde{t}$, that is, $\tilde{\mu}(x-y) + \tilde{t} > [1, 1]$ and thus $(x-y)_{\tilde{t}}q\tilde{\mu}$. If $\tilde{t} \le [0.5, 0.5]$, then $\tilde{\mu}(x-y) \ge \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\} \ge \min^i \{\tilde{t}, [1, 1] - \tilde{t}, [0.5, 0.5]\} = \tilde{t}$, that is, $(x-y)_{\tilde{t}} \in \tilde{\mu}$ and thus $(x-y)_{\tilde{t}} \in \lor q\tilde{\mu}$. This means that $x-y \in [\tilde{\mu}]_{\tilde{t}}$. Similarly, we can prove the result for the case(iii). Next we consider the case(iv): $\tilde{\mu}(x) + \tilde{t} > [1, 1]$ and $\tilde{\mu}(y) + \tilde{t} > [1, 1]$. If $\tilde{t} > [0.5, 0.5]$, then $\tilde{\mu}(x - y) \ge \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\} \ge \min^i \{[1, 1] - \tilde{t}, [1, 1] - \tilde{t}, [0.5, 0.5]\} = [1, 1] - \tilde{t}$. So, $\tilde{\mu}(x - y) + \tilde{t} > [1, 1]$, that is, $(x - y)_{\tilde{t}}q\tilde{\mu}$. If $\tilde{t} \le [0.5, 0.5]$, then $\tilde{\mu}(x - y) \ge \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\} \ge \min \{[1, 1] - \tilde{t}, [1, 1] - \tilde{t}, [0.5, 0.5]\} = [0.5, 0.5] \ge \tilde{t}$, that is, $(x - y)_{\tilde{t}} \in \tilde{\mu}$ and hence $(x - y)_{\tilde{t}} \in \lor q\tilde{\mu}$. This means that $x - y \in [\tilde{\mu}]_{\tilde{t}}$. Consequently, $[\tilde{\mu}]_{\tilde{t}}$ is a subnear-ring of (R, +). Let $x \in [\tilde{\mu}]_{\tilde{t}}$ and $y \in R$ such that $\tilde{\mu}(x) \ge \tilde{t}$ and $\tilde{\mu}(x) + \tilde{t} > [1, 1]$ and we consider two cases:

 $\begin{array}{l} \text{Case}(\mathrm{i})\colon \widetilde{\mu}(x) \geq \widetilde{t}. \text{ Since } \widetilde{\mu} \text{ is an } (\in, \in \lor q) \text{-fuzzy ideal of } R, \text{ we have } \widetilde{\mu}(y+x-y) \geq \\ \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\} \geq \min^i \{\widetilde{t}, [0.5, 0.5]\}. \quad \text{If } \widetilde{t} > [0.5, 0.5], \text{ then } \widetilde{\mu}(y+x-y) \geq \\ [0.5, 0.5] \text{ and so } \widetilde{\mu}(y+x-y)+\widetilde{t} > [0.5, 0.5]+[0.5, 0.5] = [1, 1], \text{ that is, } \widetilde{\mu}(y+x-y)+\widetilde{t} > \\ [1, 1]. \text{ Thus } (y+x-y)_{\widetilde{t}}q\widetilde{\mu}. \text{ If } \widetilde{t} \leq [0.5, 0.5], \text{ then } \widetilde{\mu}(y+x-y) \geq \widetilde{t}. \text{ Hence } (y+x-y)_{\widetilde{t}} \in \widetilde{\mu}. \\ \\ \text{Case}(\mathrm{ii})\colon \widetilde{\mu}(x)+\widetilde{t} > [1, 1]. \text{ Since } \widetilde{\mu} \text{ is an interval valued } (\in, \in \lor q) \text{-fuzzy ideal of } R, \text{ we have } \widetilde{\mu}(y+x-y) \geq \min^i \{\widetilde{\mu}(x), [0.5, 0.5]\} > \min^i \{[1, 1] - \widetilde{t}, [0.5, 0.5]\}. \text{ If } \\ \widetilde{t} > [0.5, 0.5], \text{ then } \widetilde{\mu}(y+x-y) > [1, 1] - \widetilde{t}. \text{ Thus } (y+x-y)_{\widetilde{t}}q\widetilde{\mu}. \text{ If } \widetilde{t} \leq [0.5, 0.5], \text{ then } \\ \widetilde{\mu}(y+x-y) > [0.5, 0.5] \geq \widetilde{t}. \text{ Hence } (y+x-y)_{\widetilde{t}} \in \widetilde{\mu}. \text{ This means that } (y+x-y)_{\widetilde{t}} \in \lor q\widetilde{\mu}, \\ \text{ that is, } y+x-y \in [\widetilde{\mu}]_{\widetilde{t}}. \text{ Let } y \in [\widetilde{\mu}]_{\widetilde{t}} \text{ and } x \in R. \text{ Then } \widetilde{\mu}(y) \geq \widetilde{t} \text{ or } \widetilde{\mu}(y) + \widetilde{t} > [1, 1]. \\ \text{ Assume that } \widetilde{\mu}(y) \geq \widetilde{t}. \text{ Since } \widetilde{\mu} \text{ is an } (\in, \in \lor q) \text{-fuzzy ideal of } R, \text{ we have } \widetilde{\mu}(xy) \geq \\ \min^i \{\widetilde{\mu}(y), [0.5, 0.5]\} \geq \min^i \{\widetilde{t}, [0.5, 0.5]\}. \text{ If } \widetilde{t} > [0.5, 0.5], \text{ then } \widetilde{\mu}(xy) \geq \\ \min^i \{\widetilde{\mu}(y), [0.5, 0.5]\} \geq \min^i \{\widetilde{t}, [0.5, 0.5]\}. \text{ If } \widetilde{t} > [0.5, 0.5], \text{ then } \widetilde{\mu}(xy) \geq \\ \min^i \{\widetilde{\mu}(xy) + \widetilde{t} > [0.5, 0.5] + [0.5, 0.5] = [1, 1]. \text{ So, } \widetilde{\mu}(xy) + \widetilde{t} > [1, 1] \text{ and thus } \\ (xy)_{\widetilde{t}}q\widetilde{\mu}. \text{ If } \widetilde{t} \leq [0.5, 0.5], \text{ then } \widetilde{\mu}(xy) \geq \widetilde{t}. \text{ Hence } (xy)_{\widetilde{t}} \in \widetilde{\mu}. \end{aligned}$

Let us assume that $\widetilde{\mu}(y) + \widetilde{t} > [1, 1]$. Since $\widetilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, we have $\widetilde{\mu}(xy) \ge \min^i \{\widetilde{\mu}(y), [0.5, 0.5]\} > \min^i \{[1, 1] - \widetilde{t}, [0.5, 0.5]\}$. If $\widetilde{t} > [0.5, 0.5]$, then $\widetilde{\mu}(xy) > [1, 1] - \widetilde{t}$. So, $(xy)_{\widetilde{t}}q\widetilde{\mu}$. If $\widetilde{t} \le [0.5, 0.5]$, then $\widetilde{\mu}(xy) > [0.5, 0.5] \ge \widetilde{t}$. Thus $(xy)_{\widetilde{t}} \in \widetilde{\mu}$. This means that $(xy)_{\widetilde{t}} \in \lor q\widetilde{\mu}$, that is, $xy \in [\widetilde{\mu}]_{\widetilde{t}}$ and $[\widetilde{\mu}]_{\widetilde{t}}$ is a left ideal of R. Again, let $x, y \in R$ and $z \in [\widetilde{\mu}]_{\widetilde{t}}$ for $[0, 0] < \widetilde{t} \le [1, 1]$. Then $z_{\widetilde{t}} \in \lor q\widetilde{\mu}$, that is, $\widetilde{\mu}(z) \ge \widetilde{t}$ and $\widetilde{\mu}(z) + \widetilde{t} > [1, 1]$. Since $\widetilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, then we have $\widetilde{\mu}((x + z)y - xy) \ge \min^i \{\widetilde{\mu}(z), [0.5, 0.5]\}$. Similarly, we can prove that $(x + z)y - xy \in [\widetilde{\mu}]_{\widetilde{t}}$ and $[\widetilde{\mu}]_{\widetilde{t}}$ the ideal of R. Therefore, $[\widetilde{\mu}]_{\widetilde{t}}$ is a right ideal of R.

Conversely, assume that $\tilde{\mu}$ be an interval valued fuzzy subset in R and let $[0,0] < \tilde{t} \leq [1,1]$ be such that $[\tilde{\mu}]_{\tilde{t}}$ is an ideal of R.

Suppose that $\tilde{\mu}(x-y) < \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\}$. Choose \tilde{t} such that $\tilde{\mu}(x-y) < \tilde{t} < \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\}$. Then $[0, 0] < \tilde{t} \leq [0.5, 0.5]$ and $x, y \in \tilde{U}(\tilde{\mu} : \tilde{t}) \subseteq [\tilde{\mu}]_{\tilde{t}}$. Since $[\tilde{\mu}]_{\tilde{t}}$ is an ideal of R, then $x-y \in [\tilde{\mu}]_{\tilde{t}}$ and we have $\tilde{\mu}(x-y) \geq \tilde{t}$ or $\tilde{\mu}(x-y) + \tilde{t} > [1, 1]$, which is a contradiction. Thus $\tilde{\mu}(x-y) \geq \min^i \{\tilde{\mu}(x), \tilde{\mu}(y), [0.5, 0.5]\}$, for all $x, y \in R$. Now, let $x, y \in R$ be such that $\tilde{\mu}(y+x-y) < \tilde{t} < \min^i \{\tilde{\mu}(x), [0.5, 0.5]\}$. Then $[0, 0] < \tilde{t} \leq [0.5, 0.5]$ and $x \in \tilde{U}(\tilde{\mu} : \tilde{t}) \subseteq [\tilde{\mu}]_{\tilde{t}}$. Since $[\tilde{\mu}]_{\tilde{t}}$ is an ideal of R, then $y + x - y \in [\tilde{\mu}]_{\tilde{t}}$ and so $\tilde{\mu}(y+x-y) \geq \tilde{t}$ or $\tilde{\mu}(y+x-y) + \tilde{t} > [1, 1]$. This is a contradiction to our assumption. Hence $\tilde{\mu}(y+x-y) \geq \min^i \{\tilde{\mu}(x), [0.5, 0.5]\}$, for all $x, y \in R$. For, let $x, y \in R$ be such that $\tilde{\mu}(xy) < \tilde{t} < \min^i \{\tilde{\mu}(y), [0.5, 0.5]\}$. Then $[0, 0] < \tilde{t} \leq [0.5, 0.5]$ and $y \in \tilde{U}(\tilde{\mu} : \tilde{t}) \subseteq [\tilde{\mu}]_{\tilde{t}}$. Since $[\tilde{\mu}]_{\tilde{t}}$ is an ideal of R, then $y + x - y \in [\tilde{\mu}]_{\tilde{t}}$ and so $\tilde{\mu}(y+x-y) \geq \tilde{t}$ or $\tilde{\mu}(y+x-y)$. This is a contradiction to our assumption. Hence $\tilde{\mu}(y+x-y) \geq \min^i \{\tilde{\mu}(y), [0.5, 0.5]\}$. Then $[0, 0] < \tilde{t} \leq [0.5, 0.5]$ and $y \in \tilde{U}(\tilde{\mu} : \tilde{t}) \subseteq [\tilde{\mu}]_{\tilde{t}}$. Since $[\tilde{\mu}]_{\tilde{t}}$ is an ideal of R, then $xy \in [\tilde{\mu}]_{\tilde{t}}$ and so $\tilde{\mu}(xy) \geq \tilde{t}$ or $\tilde{\mu}(xy) + \tilde{t} > [1, 1]$ which is a contradiction to our subscription.

our assumption. Hence $\tilde{\mu}(xy) \geq \min^i \{\tilde{\mu}(y), [0.5, 0.5]\}$, for all $x, y \in R$. Similarly we have to prove $\tilde{\mu}((x+z)y-xy) \geq \min^i \{\tilde{\mu}(z), [0.5, 0.5]\}$ and therefore $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R.

Theorem 4.21. If $\tilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, then the set $\widetilde{Q}(\tilde{\mu}; \tilde{t}) \neq \emptyset$ is an ideal of R for all $[0.5, 0.5] < \tilde{t} \leq [1, 1]$.

Proof. Assume that $\tilde{\mu}$ is an interval valued $(\in, \in \forall q)$ -fuzzy ideal of R and let $[0.5, 0.5] < \tilde{t} \leq [1, 1]$ be such that $\widetilde{Q}(\widetilde{\mu}; \widetilde{t}) \neq \emptyset$. Let $x, y \in \widetilde{Q}(\widetilde{\mu}; \widetilde{t})$ be such that $\widetilde{\mu}(x) + \widetilde{Q}(\widetilde{\mu}; \widetilde{t})$ $\widetilde{t} > [1,1]$ and $\widetilde{\mu}(y) + \widetilde{t} > [1,1]$ and we have $\widetilde{\mu}(x-y) \ge \min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y), [0.5, 0.5]\}$. If $\min^{i} \{ \widetilde{\mu}(x), \widetilde{\mu}(y) \} \ge [0.5, 0.5], \text{ then } \widetilde{\mu}(x-y) \ge [0.5, 0.5] > [1, 1] - \widetilde{t}. \text{ If } \min^{i} \{ \widetilde{\mu}(x), \widetilde{\mu}(y) \} < 0.5, 0.5 \}$ [0.5, 0.5], then $\widetilde{\mu}(x-y) \geq \min^i \{\widetilde{\mu}(x), \widetilde{\mu}(y)\} > [1, 1] - \widetilde{t}$. This implies that $x-y \in \mathbb{C}$ $\widehat{Q}(\widetilde{\mu};t)$. Now, let $x \in \widehat{Q}(\widetilde{\mu};\widetilde{t})$ and $y \in R$ be such that $\widetilde{\mu}(x) + \widetilde{t} > [1,1]$. Since $\widetilde{\mu}$ is an interval valued $(\in, \in \forall q)$ -fuzzy ideal of R, then we have $\widetilde{\mu}(y + x - y) \geq 1$ $\min^{i} \{ \widetilde{\mu}(x), [0.5, 0.5] \}$. If $\widetilde{\mu}(x) \ge [0.5, 0.5]$, then $\widetilde{\mu}(y + x - y) \ge [0.5, 0.5] > [1, 1] - \widetilde{t}$. If $\widetilde{\mu}(x) < [0.5, 0.5]$, then $\widetilde{\mu}(y + x - y) \ge \widetilde{\mu}(x) > [1, 1] - \widetilde{t}$. Thus $y + x - y \in \widetilde{Q}(\widetilde{\mu}; \widetilde{t})$. Similarly, let $y \in \widetilde{Q}(\widetilde{\mu}; \widetilde{t})$ and $x \in R$, then $xy \in \widetilde{Q}(\widetilde{\mu}; \widetilde{t})$. Again let $x, y \in R$ and $z \in \widetilde{Q}(\widetilde{\mu}; \widetilde{t})$ be such that $\widetilde{\mu}(z) + \widetilde{t} > [1, 1]$. Since $\widetilde{\mu}$ is an interval valued $(\in, \in \lor q)$ -fuzzy ideal of R, then we have $\widetilde{\mu}((x+z)y-xy) \geq \min^{i} \{\widetilde{\mu}(z), [0.5, 0.5]\}$. If $\widetilde{\mu}(z) \ge [0.5, 0.5], \text{ then } \widetilde{\mu}((x+z)y - xy) \ge [0.5, 0.5] > [1, 1] - \widetilde{t} \text{ and if } \widetilde{\mu}(z) < [0.5, 0.5],$ then $\widetilde{\mu}((x+z)y-xy) \geq \widetilde{\mu}(z) > [1,1] - \widetilde{t}$ and thus $(x+z)y-xy \in \widetilde{Q}(\widetilde{\mu};\widetilde{t})$. Therefore $Q(\tilde{\mu}; \tilde{t})$ is an ideal of R.

References

- [1] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy sets and Systems 44 (1991) 139–146.
- [2] S. Asger Khan, Young Bae Jun and Muhammad Shabir, A study of generalized fuzzy ideals in ordered semigroups, Neural Comput and Applic 21 (3) (2012) S69–S78.
- [3] S K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and System 80 (1996) 359–368.
- [4] S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup Fuzzy Sets and System 51 (1992) 235–241.
- [5] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -level sunset, Fuzzy Sets and System 103 (1999) 529–533.
- [6] R. Biswas, Rosenfeld's fuzzy subgroups with interval valued membership functions, Fuzzy Sets and System 63 (1994) 87–90.
- [7] B. Davvaz, Fuzzy *R*-subgroups with thresholds of near-rings and implication operator, Soft Comput 12 (2008) 875–879.
- [8] B. Davvaz, $(\in, \in \lor q)$ -Fuzzy subnear-rings and ideals, Soft Comput 10 (2006) 206–211.
- [9] B. Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, J. Sci.I.R.Iran 12 (2001) 171–175.
- [10] B. Davvaz, Jianming Zhan and K. P. Shum, Generalized fuzzy H_v-submodules endowed with interval valued membership functions, Infor. Sci. 178 (2008) 3147–3159.
- [11] P. Deena and S.Coumaressane, Generalization of $(\in, \in \lor q)$ -fuzzy subnear-rings and ideals, Iranian Journal of Fuzzy Systems 5 (2008) 79–97.
- [12] W. A. Dudek, M. Shabir and M. Irfan Ali, (α, β)-fuzzy ideals of hemirings, Computers and Mathematics with Applications, 58(2009), 310-321.
- [13] Jiamning Zhan, Bijan Davvaz and K. P.Shum, Generalized fuzzy hyperideals of hyperrings, Computers and Mathematics with Applications 56 (2008) 1732–1740.
- [14] Jiamning Zhan, Bijan Davvaz and K. P.Shum, A new view of fuzzy hypernear-rings, Computers and Mathematics with Applications 178 (2008) 425–438.

- [15] Muhammad Aslam, Saleem Abdullah and Samreen Aslam, Characteizations of regular LAsemigroups by interval valued $(\overline{\alpha}, \overline{\beta})$ -fuzzy ideals, Computers and Mathematics with Applications 25 (2014) 501–518.
- [16] Al. Narayanan and T. Manikantan, $(\in, \in \lor q)$ -fuzzy subnear-rings and $(\in, \in \lor q)$ -fuzzy ideals of near-rings, J. Appl. Math. and Computing 18 (2005) 419–430.
- [17] G. Pilz, Near-rings, The theory and applications, North-Holland publishing company, Amsterdam 1983.
- [18] Pu Pao-Ming and Liu-Ming, Fuzzy topology 1: Neighbour hood structure of fuzzy points and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980) 235–241.
- [19] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971) 512–517.
- [20] N.Thillaigovindan and V.Chinnadurai, On Interval Valued Fuzzy Quasi-Ideals of Semigroups, East Asian Mathematics Journals 25 (4) (2009) 449–467.
- [21] N. Thillaigovindan, V. Chinnadurai and S. Kadalarasi, Interval Valued (∈, ∈ ∨q)-Fuzzy Subnear-rings of Near-rings, Proceedings of the International Conference on Mathematical Sciences, published by Elsevier (2014) 426–429.
- [22] Young Bae Jun, Genaralizations of $(\in, \in \lor q)$ -fuzzy subalgebras in BCK—BCI-algebras, Computers and Mathematics with Applications 58 (2009) 1383–1390.
- [23] Young Bae Jun, Note on (α, β) -fuzzy ideals of hemirings, Computers and Mathematics with Applications 59 (2010) 2582–2586.
- [24] L. A. Zadeh, Fuzzy sets, Informatin and Control 8 (1965) 338–353.
- [25] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975) 199–249.

<u>N. THILLAIGOVINDAN</u> (thillaigovindan.natesan@gmail.com)

Veltech Arts college, Avadi, Chennai, postal code 600 062, India

V. CHINNADURAI (kv.chinnadurai@yahoo.com)

Department of mathematics, Annamalai University, Annamalainagar, postal code 608 002, India

<u>S. KADALARASI</u> (kadalarasi89@gmail.com)

Department of mathematics, Annamalai University, Annamalainagar, postal code 608 002, India