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1. Introduction

Fuzzy rough set theory, firstly proposed by Dubois and Prade [8] as a fuzzy gen-
eralization of rough sets by replacing crisp binary relations to fuzzy relations, has
now developed significantly [8, 13, 15, 18, 21, 22]. Simultaneously, the relationship
between fuzzy rough sets and fuzzy topological spaces were studied by different re-
searchers(cf., [3, 15, 18, 25]). Among these works in [18], it has shown that there is a
bijective correspondence between the set of all fuzzy preorder approximation spaces
and the set of all saturated topological spaces satisfying a certain extra condition. In
order to find such correspondence for fuzzy reflexive/tolerance approximation spaces
and some set of fuzzy topological spaces; recently, in [24], it has shown that there
exists a bijective correspondence between the set of fuzzy reflexive/tolerance approx-
imation spaces and the set of fuzzy closure spaces satisfying a certain extra condition.

After introduction of an intuitionistic fuzzy set by Atanassov [1], the researchers
proposed a new hybrid model, namely intuitionistic fuzzy rough set theory, to de-
scribe the uncertain information by combining intuitionistic fuzzy set theory and
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rough set theory (cf., [4, 6, 7, 14, 16, 17]) [At this point, we mention that in [9], it
has been argued, rather convincingly, that the use of the term intuitionistic for the
concept introduced by Atanassov [1], is inappropriate. Accordingly, we use in this
paper the prefix IF - in place of intuitionistic fuzzy, thus for example, an intuitionis-
tic fuzzy set is renamed here as an IF-set. This terminology has already been used in
[20, 22].]. Simultaneously, the relationship between IF-rough sets and IF-topological
spaces were studied (cf., [22, 23, 27, 28, 29]).

Among these works, in [22, 26], it has been shown that there is a bijective cor-
respondence between the family of all IF-preorders and the family of all saturated
IF-topological spaces satisfying a ‘certain extra condition’, which is a consequence
of the similar result introduced in [18] and [21] respectively. Still there is a silence
on the bijective correspondence between the set of all IF-reflexive/tolerance approx-
imation spaces and some set of IF-topological spaces. Throughout this paper, we
try to fill this gap by using the concept of IF-closure spaces.

2. Preliminaries

In this section, we recall some basic concepts and results related to IF-set, IF-
rough set and IF-binary relation, which will be used in the subsequent sections.
Throughout, I stands for [0, 1]. For a nonempty set X and A ⊆ X, IX and
1A : X → I shall, respectively denote the set of all fuzzy sets in X and the charac-
teristic function of A. Throughout, J is an index set.

We begin with the following.

Definition 2.1 ([1]). An IF-set A in X is a pair (µA, νA) of fuzzy sets in X, i.e.,
functions µA, νA : X → I, such that µA(x) + νA(x) ≤ 1; ∀x ∈ X.

(µA(x) and νA(x), appearing in the above definition, are usually interpreted re-
spectively as the degree of membership and the degree of non-membership of x in A).

Throughout, IFS(X) will denote the family of all IF-sets in X and I∗ means the
set {(x1, x2) : (x1, x2) ∈ I × I, x1 + x2 ≤ 1}.

Remark 2.2. We shall usually denote the two parts of an IF-set A also as µA

and νA and express A as (µA, νA). An IF-set A = (µA, νA) in X will frequently
be also viewed as a function A : X → I∗, given by A(x) = (µA(x), νA(x)), x ∈
X. In particular, the IF-set (α̂, β) is given by (α̂, β)(x) = (α, β), where α and β
are respectively the α-valued and the β-valued constant fuzzy sets in X such that

α+β ≤ 1. We shall denote the IF-set by 1̂, which is given by (1̂, 0)(x) = (1,0), x ∈ X,
where 1 and 0 are respectively the 1-valued and the 0-valued constant fuzzy sets in
X.

Definition 2.3 ([28]). For y ∈ X, an IF-singleton set 1y = (µ1y , ν1y ), is defined as
follows:

µ1y (x) =

{
1 if x = y
0 if x ̸= y

ν1y (x) =

{
0 if x = y
1 if x ̸= y .
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Definition 2.4 ([26]). Let R be an IF-binary relation on X. Then R is called

(i) reflexive if µR(x, x) = 1 and νR(x, x) = 0, ∀x ∈ X;
(ii) symmetric if µR(x, y) = µR(y, x) and νR(x, y) = νR(y, x),∀x, y ∈ X;
(iii) transitive if ∀x, y, z ∈ X,µR(x, y) ∧ µR(y, z) ≤ µR(x, z) and νR(x, y) ∨

νR(y, z) ≥ νR(x, z).

Definition 2.5. Let R be an IF-binary relation on X. Then R is called an IF-
tolerance relation if it is IF-reflexive and IF-symmetric.

Definition 2.6 ([29]). A pair (X,R) is called an IF-approximation space if X is a
nonempty set and R is an IF-relation on X.

For an IF-reflexive relation R, we call the IF-approximation space (X,R), an IF-
reflexive approximation space. Also, if R is an IF-tolerance relation, we call (X,R)
an IF-tolerance approximation space.

Definition 2.7 ([29]). Let (X,R) be an IF-approximation space and A ∈ IFS(X).
The lower and upper approximation of A, denoted by R(A) and R(A), are two IF-
sets and are respectively defined as follows:

R(A) = (µR(A), νR(A)), R(A) = (µR(A), νR(A)), where

µR(A)(x) = ∧{µRc(x, y) ∨ µA(y) : y ∈ X},

νR(A)(x) = ∨{νRc(x, y) ∧ νA(y) : y ∈ X},

µR(A)(x) = ∨{µR(x, y) ∧ µA(y) : y ∈ X},

νR(A)(x) = ∧{νR(x, y) ∨ νA(y) : y ∈ X}.

The pair (R(A), R(A)) is called an IF-rough set.

Remark 2.8 ([28]). For an IF-binary relation R on X and A ∈ IFS(X), the
pair R and R are ‘dual’ i.e., R(A) = [R(Ac)]c and R(A) = [R(Ac)]c, since ∀x ∈
X, [R(Ac)]c(x) = 1− ∨{R(x, y) ∧Ac(y) : y ∈ X} = 1− ∨{R(x, y) ∧ (1−A(y)) : y ∈
X} = ∧{1−R(x, y) ∨A(y) : y ∈ X} = ∧{Rc(x, y) ∨A(y) : y ∈ X}.

Proposition 2.9 ([29]). Let (X,R) be an IF-reflexive approximation space and
A,B ∈ IFS(X). Then

(i) R(A ∧B) = R(A) ∧R(B);
(ii) R(A ∨B) = R(A) ∨R(B);
(iii) R(A) ≤ A, A ≤ R(A).

Proposition 2.10 ([29]). Let (X,R) be an IF-approximation space and A ∈ IFS(X).
Then R is an IF-transitive relation on X if and only if R(R(A))
≤ R(A).

The IF-topological concepts, we use here are fairly standard and based on [5].
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Definition 2.11. An IF-topology on a nonempty set X is a family τ of IF-sets in
X, such that

(i) (α̂, β) ∈ τ,∀(α, β) ∈ I∗;
(ii) {Ai : i ∈ J} ∈ τ ⇒ ∨{Ai : i ∈ J} ∈ τ ;
(iii) A,B ∈ τ ⇒ A ∧B ∈ τ .

The pair (X, τ) is called an IF-topological space. The IF-set in τ are called IF τ -
open set and there complements are called IF τ -closed set. Further, an IF-topological
space (X, τ) is called saturated if {Aj : j ∈ J} ∈ τ ⇒ ∧{Aj : j ∈ J} ∈ τ .

Definition 2.12. A Kuratowski IF-closure operator on X is a map k : IFS(X) →
IFS(X), such that ∀A,B ∈ IFS(X) and ∀(α, β) ∈ I∗, the following condition holds:

(i) k((α̂, β)) = (α̂, β),
(ii) A ≤ k(A),
(iii) k(A ∨B) = k(A) ∨ k(B),
(iv) k(k(A)) = k(A).

Definition 2.13. A Kuratowski IF-closure space is a pair (X, k), where X is a
nonempty set and k : IFS(X) → IFS(X) is a Kuratowski IF-closure operator on
X.

Proposition 2.14 ([26]). Let (X,R) be an IF-reflexive approximation space. Then
τR = {A ∈ IFS(X) : R(A) = A} is a saturated IF-topology (in the sense that
arbitrary supremum of an IF τc-closed set is also IF τc-closed) on X.

Proposition 2.15 ([26]). Let k be Kuratowski IF-closure operator on X. Then
there exists an IF-reflexive and IF-transitive relation Sk = (µSk

, νSk
) on X such

that ∀A ∈ IFS(X) and ∀(α, β) ∈ I∗, Sk(A) = k(A) if and only if k(A ∧ (α̂, β)) =

k(A) ∧ (α̂, β).

3. IF-closure space

The notion of fuzzy closure space was introduced in [12, 19]. In literature [2, 11,
26] several generalizations of fuzzy closure space have been studied. In this section,
we introduce the concepts of IF-closure space and investigate their relationship with
Kuratowski IF-closure operators. Lastly, we show that the Kuratowski IF-closure
operator associated with a quasi-discrete IF-closure space induces a saturated IF-
topology.

We begin by introducing the following concept of an IF-closure space.

Definition 3.1. An IF-closure space is a pair (X, c), where X is a nonempty set
and c : IFS(X) → IFS(X) is a map such that

(i) c((α̂, β)) = (α̂, β),
(ii) A ≤ c(A),
(iii) c(A ∨B) = c(A) ∨ c(B),

∀A,B ∈ IFS(X) and ∀(α, β) ∈ I∗.

Remark 3.2. It is not necessary that every IF-closure space is a Kuratowski IF-
closure space.
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The following example shows that how a IF-closure space differ from a Kura-
towski IF-closure space. Specifically, it is shown here that for an IF-closure space
c, c(c(A)) ̸= c(A), ∀A ∈ IFS(X).

Example 3.3. Let X be any set containing at least two points. Define a map
c : IFS(X) → IFS(X) as follows : for A = (µA, νA) ∈ IFS(X) and x ∈ X,
c(A)(x) = (µc(A)(x), νc(A)(x)), where

µc(A)(x) =


2µA(x) if µA(x) < k1/2,

where k1 = ∨{µA(z)}z∈X

k1 if µA(x) > k1/2 ,

and

νc(A)(x) =


2νA(x) if νA(x) > k2/2,

where k2 = ∧{νA(z)}z∈X

k2 if νA(x) < k2/2 .

Then the conditions (i) c((α̂, β)) = (α̂, β) and (ii) A ≤ c(A) are obvious. To
prove condition (iii) c(A ∨ B) = c(A) ∨ c(B), let ∨{µA∪B(z)}z∈X = k1. Now, if
µA∪B(x) < k1/2, then µA(x) < k1/2 or µB(x) < k1/2. Thus µA(x) < k1/2, µB(x) <
k1/2, or that µc(A)(x) = 2µA(x) and µc(B)(x) = 2µB(x). Therefore µc(A∪B)(x) =
2µA∪B(x) = 2µA(x) ∪ 2µB(x) = µc(A)(x) ∪ µc(B)(x) = (µc(A) ∪ µc(B))(x) and
∧{νA∩B(z)}z∈X = k2. Then if νA∩B(x) > k2/2, then νA(x) > k2/2 and νB(x) >
k2/2. Thus νA(x) > k2/2, νB(x) > k2/2. Hence νc(A)(x) = 2νA(x) and νc(B)(x) =
2νB(x). Therefore νc(A∩B)(x) = 2νA∩B(x) = 2νA(x)∩2νB(x) = νc(A)(x)∩νc(B)(x) =
(νc(A) ∩ νc(B))(x). Hence in this case, c(A ∪B) = c(A) ∪ c(B).
Further, if µA∪B(x) ≥ k1/2, then µA(x) ≥ k1/2 or µB(x) ≥ k1/2. Thus µA(x) ≥
k1/2, µB(x) ≥ k1/2. Therefore µc(A)(x) = µc(B)(x) = k1 and if νA∩B(x) ≤ k2/2,
then νA(x) ≤ k2/2 and νB(x) ≤ k2/2. Thus νA(x) ≤ k2/2, νB(x) ≤ k2/2. Therefore
νc(A)(x) = νc(B)(x) = k2. Thus in this case also c(A∪B) = c(A)∪ c(B). Hence, c is
an IF-closure space in the sense of Definition 3.1. On the other hand, it is not a Ku-
ratowaski IF-closure operator, since if we take a non-constant IF-sets A = (µA, νA) ∈
IFS(X) such that A(x0) = (µA(x0), νA(x0)) = k/16 = (k1/16, k2/16),i.e., µA(x0) =
k1/16, νA(x0) = k2/16 for some x0 ∈ X, where ∨{µA(z)}z∈X and k2 = ∧{νA(z)}z∈X .
Thus µc(A)(x0) = k1/8, νc(A)(x0) = k2/8 but µc(c(A))(x0) = k1/4, νc(c(A))(x0) =
k2/4, showing that c(c(A)) ̸= c(A).

Definition 3.4. An IF-closure space (X, c) is called quasi-discrete if c(∨{Ai : i ∈
J}) = ∨{c(Ai) : i ∈ J}, ∀A ∈ IFS(X), i ∈ J .

Definition 3.5. An IF-closure space (X, c) is called symmetric if µc(1y)(x)

= µc(1x)(y) and νc(1y)(x) = νc(1x)(y), ∀x, y ∈ X.

Definition 3.6. Let (X, c) be an IF-closure space and A ∈ IFS(X). Then the IF-
interior i(A) = (µi(A), νi(A)) of A is given by µi(A) = µ[c(Ac)]c and νi(A) = ν[c(Ac)]c .

Definition 3.7. Let (X, c) be an IF-closure space and A ∈ IFS(X). Then A is
IF-closed if µc(A) = µA and νc(A) = νA.
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Proposition 3.8. Let (X, c) be an IF-closure space. Then

(i) c(∧i∈JAi) ≤ ∧i∈Jc(Ai), ∀Ai ∈ IFS(X), i ∈ J ; and
(ii) if A ≤ B then c(A) ≤ c(B), ∀A,B ∈ IFS(X).

Proof. The proof is straightforward. □
Definition 3.9. For an IF-closure space (X, c̄), a Kuratowski IF-closure operator
c̄ : IFS(X) → IFS(X) is defined by c̄(A) = ∩{B ∈ IFS(X) : A ≤ B and c(B) =
B}.

It follows immediately from the above definition that A ≤ c̄(A).

We shall denote by τc̄, the IF-topology induced by c̄, which is given by τc̄ = {A ∈
IFS(X) : c̄(Ac) = Ac}.

Proposition 3.10. Let (X, c) be an IF-closure space. Then ∀A ∈ IFS(X).

(i) c(c̄(A)) = c̄(A), (i.e., c̄(A) is IF τc̄-closed),
(ii) c(A) ≤ c̄(A),
(iii) c(A) = A if and only if c̄(A) = A.

Proof. (i) Let A ∈ IFS(X). Then from Proposition 3.8 (i), we have

µc(c̄(A)) = µc(∧{B:A≤B and c(B)=B}) ≤ ∧ µ{c(B):A≤B and c(B)=B}

= ∧ µ{B:A≤B and c(B)=B} = µc̄(A)

and

νc(c̄(A)) = νc(∨{B:A≥B and c(B)=B}) ≥ ∨ ν{c(B):A≥B and c(B)=B}

= ∨ ν{B:A≥B and c(B)=B} = νc̄(A).
Thus c(c̄(A)) ≤ c̄(A). Also, c̄(A) ≤ c(c̄(A)) obviously. So c(c̄(A)) = c̄(A).

(ii) Since µA ≤ µc̄(A) and νA ≥ νc̄(A), µc(A) ≤ µc(c̄(A)) = µc̄(A) and νc(A) ≥ νc(c̄(A)) =
νc̄(A). Thus c(A) ≤ c̄(A).

(iii) Let µc(A) = µA and νc(A) = νA,∀A ∈ IFS(X). Then A is an IF τc̄-closed. Thus,
µc̄(A) ≤ µA and νc̄(A) ≥ νA, (cf., Definition 3.9). Also, µA ≤ µc̄(A) and νA ≥ νc̄(A).
So µc̄(A) = µA and νc̄(A) = νA. Conversly, let µc̄(A) = µA and νc̄(A) = νA. Then
from (ii), we have µA ≤ µc(A) ≤ µc̄(A) and νA ≥ νc(A) ≥ νc̄(A). Now, if µc̄(A) = µA

and νc̄(A) = νA. Then, we have µc(A) = µA and νc(A) = νA. Thus c(A) = A. □
Proposition 3.11. Let (X, c) be an IF-closure space. Then ∀A ∈ IFS(X), c(A) =
c̄(A) if and only if c(c(A)) = c(A).

Proof. Let c(A) = c̄(A), i.e., µc(A) = µc̄(A) and νc(A) = νc̄(A), ∀A ∈ IFS(X). Then
µc(c(A)) = µc(c̄(A)) = µc̄(A) = µc(A) and νc(c(A)) = νc(c̄(A)) = νc̄(A) = νc(A). Thus
c(c(A)) = c(A). Conversly, let c(c(A)) = c(A), i.e., µc(c(A)) = µc(A) and νc(c(A)) =
νc(A). Then c(A) is an IF τc̄-closed. Thus by Proposition 3.10 (iii), µc̄(A) = µc(A)

and νc̄(A) = νc(A). So c(A) = c̄(A). □
Proposition 3.12. Let (X, c) be a quasi-discrete IF-closure space. Then the IF-
topology τc̄ induced by c̄ on X is a saturated IF-topology.
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Proof. Follows from Definitions 3.4, 3.9 and Proposition 3.11. □

4. IF-closure spaces and IF-rough sets

In this section, we show that there exists a bijective correspondence between the
family of all IF-reflexive/IF-tolerance approximation spaces and the family of all
quasi-discrete IF-closure spaces satisfying certain extra conditions.

We begin by introducing the following.

Proposition 4.1. Let (X,R) be an IF-reflexive approximation space. Then (X,R)

is a quasi-discrete IF-closure space such that R(A ∧ (α̂, β)) = R(A) ∧ (α̂, β), ∀A ∈
IFS(X) and ∀(α, β) ∈ I∗.

Proof. From Proposition 2.9, it follows that (X,R) is an IF-closure space. Now, let
Ai = (µAi

, νAi
) ∈ IFS(X), i ∈ J and x ∈ X. Then

µR(∨Ai:i∈J)(x) = ∨{µR(x, y) ∧ (∨{µAi : i ∈ J})(y) : y ∈ X}

=∨{∨{µR(x, y) ∧ µAi(y) : y ∈ X} : i ∈ J}

=∨{µR(Ai)
: i ∈ J}

and

νR(∧Ai:i∈J)(x) = ∧{νR(x, y) ∨ (∧{νAi : i ∈ J})(y) : y ∈ X}

=∧{∧{νR(x, y) ∨ νAi(y) : y ∈ X} : i ∈ J}

=∧{νR(Ai)
: i ∈ J},

whereby R(∨{Ai : i ∈ J}) = ∨{R(Ai) : i ∈ J}. Hence (X,R) is a quasi-discrete

IF-closure space. Also, for each A ∈ IFS(X) and (α, β) ∈ I∗, R(A ∧ (α̂, β)) =

R(A) ∧ (α̂, β) follows trivially. □

Proposition 4.2. For a quasi-discrete IF-closure space (X,R), R is an IF-interior
operator on X.

Proof. Follows from Remark 2.8 and Definition 3.12.
□

Before stating next, recall the following from [10].

Definition 4.3. For y ∈ X and (α, β) ∈ I∗, with α + β ≤ 1. The IF-subset
(1y ∧ (α, β)) = (µ1y ∧ α, ν1y ∨ β) of X is called an IF-point in X, and is denoted as
y(α,β), where

y(α,β)(x) =

{
(α, β) if x = y
(0, 1) if x ̸= y .

Proposition 4.4. Let (X, c) be a quasi-discrete IF-closure space such that c(A ∧
(α̂, β)) = c(A) ∧ (α̂, β),∀A ∈ IFS(X) and ∀(α, β) ∈ I∗. Then there exists a unique
IF-reflexive relation Rc = (µRc , νRc) on X such that Rc(A) = c(A), ∀A ∈ IFS(X).
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Proof. Let (X, c) be a quasi-discrete IF-closure space such that c(A ∧ (α̂, β)) =

c(A) ∧ (α̂, β), ∀A ∈ IFS(X) and ∀(α, β) ∈ I∗. Also, let Rc be an IF-relation
on X given by µRc(x, y) = µc(1y)(x) and νRc(x, y) = νc(1y)(x), ∀x, y ∈ X. Then

1̂ = (1̂, 0) = (µ1x(x), ν1x(x)) ≤ (µc(1x)(x), νc(1x)(x)). Thus c(1x)(x) = 1̂, i.e.,

(µc(1x)(x), νc(1x)(x)) = (1̂, 0) = 1̂, whereby Rc is an IF-reflexive relation on X.
Now, for x ∈ X,

µRc(A)(x) = µRc(∪y∈Xyα̂)(x) = ∪y∈XµRc(yα̂)(x)

and

νRc(A)(x) = νRc(∩y∈Xy
β̂
)(x) = ∩y∈XνRc(yβ̂

)(x).

Also,

µRc(yα̂)(x) = ∨{µRc(x, u) ∧ µyα̂
(u) : u ∈ X} = µRc(x, y) ∧ α = µc(1y)(x) ∧ α

= µ(c(1y)∧α̂)(x) = µc(1y∧α̂)(x)
and

νRc(yβ̂
)(x) = ∧{νRc(x, u) ∨ νy

β̂
(u) : u ∈ X} = νRc(x, y) ∨ β = νc(1y)(x) ∨ β

=ν(c(1y)∨β̂)(x) = νc(1y∨β̂)(x).

Thus Rc(y(̂α,β))(x) = c(1y ∧ (̂α, β))(x) = c(y
(̂α,β)

)(x). Further,

µRc(A)(x) = ∪y∈Xµc(y
(̂α,β)

)(x) = µc(∪y∈Xy(α,β))(x) = µc(A)(x)

and

νRc(A)(x) = ∩y∈Xνc(y(α,β))(x) = νc(∩y∈Xy(α,β))(x) = νc(A)(x)

and

µRc(A)(x) = ∪y∈Xµc(y
(̂α,β)

)(x) = µc(∪y∈Xy
(̂α,β)

)(x) = µc(A)(x)

and

νRc(A)(x) = ∩y∈Xνc(y
(̂α,β)

)(x) = νc(∩y∈Xy
(̂α,β)

)(x) = νc(A)(x).

Thus, Rc(A) = c(A), ∀A ∈ IFS(X). To show the uniqueness of IF-relation Rc, let
R′ = (µR′ , νR′) be another IF-reflexive relation on X such that µR′(A)(x) = µc(A)

and νR′(A)(x) = νc(A), ∀A ∈ IFS(X). Then

µRc(x, y) = µc(1y)(x) = µR′(1y)
(x) = ∨{µR′(x, u)∧ µ1y (u) : u ∈ X} = µR′(x, y)

and

νRc(x, y) = νc(1y)(x) = νR′(1y)
(x) = ∧{µR′(x, u) ∨ ν1y (u) : u ∈ X} = νR′(x, y).

Thus Rc = R′. Hence the IF-relation Rc on X is unique. □
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Proposition 4.5. Let F be the set of all IF-reflexive approximation space and T

be the set of all quasi-discrete IF-closure spaces satisfying c(A ∧ (α̂, β)) = c(A) ∧
(α̂, β), ∀A ∈ IFS(X) and ∀(α, β) ∈ I∗. Then there exists a bijective correspondence
between F and T.

Proof. Follows from Propositions 4.1 and 4.4. □
Proposition 4.6. Let (X, c) be a quasi-discrete IF-closure space satisfying c(A ∧
(α̂, β)) = c(A) ∧ (α̂, β),∀A ∈ IFS(X) and ∀(α, β) ∈ I∗ and Rc be an IF-reflexive
relation on X such that Rc(A) = c(A), ∀A ∈ IFS(X). Then τRc = τc̄.

Proof. Let A ∈ τc̄. Then c̄(Ac) = Ac, i.e., µc̄(Ac) = µAc and νc̄(Ac) = νAc . As
from Proposition 3.10, µc(A) ≤ µc̄(A) and νc(A) ≥ νc̄(A),∀A ∈ IFS(X), we have
µc(Ac) ≤ µAc and νc(Ac) ≥ νAc , or that µA ≤ µ[c(Ac)]c and νA ≥ ν[c(Ac)]c , showing
that µA ≤ µRc(A) and νA ≥ νRc(A). Also µRc(A) ≤ µA and νRc(A) ≥ νA, whereby

Rc(A) = A. Thus τc̄ ≤ τRc . Conversly, let A ∈ τRc . Then µRc(A) = µA and
νRc(A) = νA, or that µ[Rc(Ac)]c = µA and ν[Rc(Ac)]c = νA, i.e., µRc(Ac) = µAc and

νRc(Ac) = νAc , whereby µc(Ac) = µAc and νc(Ac) = νAc . Thus from Proposition

3.10, µc̄(Ac) = µAc and νc̄(Ac) = νAc , whereby A ∈ τc̄, or that τRc ≤ τc̄. Hence
τRc = τc̄. □

For a given quasi-discrete IF-closure space (X, c) satisfying c(A∧ (α̂, β)) = c(A)∧
(α̂, β), ∀A ∈ IFS(X), ∀(α, β) ∈ I∗ and its associated Kuratowski IF-closure opera-

tor c̄, (X, c̄) is obviously a quasi-discrete IF-closure space such that c̄(A ∧ (α̂, β)) =

c̄(A) ∧ (α̂, β), ∀A ∈ IFS(X), ∀(α, β) ∈ I∗ and hence Proposition 4.4, will induce an
IF-reflexive relation, say, Sc̄ = (µSc̄ , νSc̄) on X, given by Sc̄(x, y) = c̄(1y)(x), i.e.,
µSc̄

(x, y) = µc̄(1y)(x), νSc̄
(x, y) = νc̄(1y)(x), ∀x, y ∈ X.

Before stating next, we recall the following concept of IF-transitive closure.

Definition 4.7. Let R and T be two IF-relations on X. Then T is called IF-
transitive closure of R if

(i) T is an IF-transitive,
(ii) R ≤ T , and
(iii) if S is an IF-transitive with R ≤ S, then T ≤ S, i.e., T is the smallest

IF-transitive relation containing R.

Before stating the next proposition we need to prove the following lemma.

Lemma 4.8. Let (X,R) and (X,S) be two IF-approximation spaces. Then R ≤ S
if and only if R(A) = (µR(A), νR(A)) ≤ (µS(A), νS(A)) = S(A), ∀A ∈ IFS(X).

Proof. Let µR(A) ≤ µS(A) and νR(A) ≥ νS(A), ∀A ∈ IFS(X). Then

µR(A)(x) ≤ µS(A)(x), ∀x ∈ X, whereby

∨{µR(x, y) ∧ µA(y) : y ∈ X} ≤ ∨{µS(x, y) ∧ µA(y) : y ∈ X}

⇒ µR(x, y) ≤ µS(x, y),∀x, y ∈ X
and
νR(A)(x) ≥ νS(A)(x), ∀x ∈ X, whereby
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∧{νR(x, y) ∨ νA(y) : y ∈ X} ≥ ∧{νS(x, y) ∨ νA(y) : y ∈ X}

⇒ νR(x, y) ≥ νS(x, y), ∀x, y ∈ X.
Hence R ≤ S.
Conversly, let R ≤ S, i.e., µR ≤ µS and νR ≥ νS . We have to show that µR(A) ≤
µS(A) and νR(A) ≥ νS(A),∀A ∈ IFS(X). Now,

µR(A)(x) = ∨{µR(x, y) ∧ µA(y) : y ∈ X} ≤ ∨{µS(x, y) ∧ µA(y) : y ∈ X}

=µS(A)(x), ∀x ∈ X

and

νR(A)(x) = ∧{νR(x, y) ∨ νA(y) : y ∈ X} ≥ ∧{νS(x, y) ∨ νA(y) : y ∈ X}

=νS(A)(x), ∀x ∈ X.

Hence µR(A) ≤ µS(A) and νR(A) ≥ νS(A), ∀A ∈ IFS(X), i.e., R(A) ≤ S(A), ∀A ∈
IFS(X). □

Proposition 4.9. Let (X, c) be a quasi-discrete IF-closure space such that c(A ∧
(α̂, β)) = c(A) ∧ (α̂, β), ∀A ∈ IFS(X) and ∀(α, β) ∈ I∗ and c̄ be the associated
Kuratowski IF-closure operator. Then the IF-relation Sc̄ = (µSc̄ , νSc̄) is the IF-
transitive closure of IF-relation Rc = (µRc , νRc).

Proof. Let Sc̄(x, y) = c̄(1y)(x), i.e., (µSc̄(x, y), νSc̄(x, y)) = (µc̄(1y)(x), νc̄(1y)(x)), ∀x,
y ∈ X. Then from Propositions 2.10 and 4.4, Sc̄ is the IF-transitive relation on X.
Also, from Proposition 3.10, it follows that µRc ≤ µSc̄ and νRc ≥ νSc̄ . To show that
relation Sc̄ is the IF-transitive closure of IF-relation Rc, it only remains to show that
Sc̄ is the smallest IF-reflexive transitive relation containing Rc. So, let T = (µT , νT )
be another IF-reflexive transitive relation on X such that µRc ≤ µT and νRc ≥ νT .
Then from the reflexivity of T, (X,T ) is quasi-discrete IF-closure space. Now by
using the fact that T is IF-transitive also, and by using Proposition 3.11 followed by
Proposition 2.15,

µT (A) = µ∧{B∈IFS(X):A≤B,T (B)=B}

and

νT (A) = ν∨{B∈IFS(X):A≥B,T (B)=B},

∀A ∈ IFS(X). Also, Sc̄ being IF-reflexive and IF-transitive relation associated with
Kuratowski IF-closure operator c̄, from Proposition 2.15, it follows that µSc̄(A) =

µc̄(A) and νSc̄(A) = νc̄(A), ∀A ∈ IFS(X). Finally, c̄ being Kuratowski IF-closure

operator associated with quasi-discrete IF-closure space (X, c),

µc̄(A) = ∧ µ{B∈IFS(X):A≤B,c(B)=B} = ∧µ{B∈IFS(X):A≤B,Rc(B)=B}

and

νc̄(A) = ∨ ν{B∈IFS(X):A≥B,c(B)=B} = ∨ ν{B∈IFS(X):A≥B,Rc(B)=B},

∀A ∈ IFS(X) (cf., Proposition 4.4). Thus from Lemma 4.8,
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µSc̄(A) = ∧ µ{B∈IFS(X):A≤B,Rc(B)=B} ≤ ∧ µ{B∈IFS(X):A≤B,T (B)=B} = µT (A)

and

νSc̄(A) = ∨ ν{B∈IFS(X):A≥B,Rc(B)=B} ≥ ∨ ν{B∈IFS(X):A≥B,T (B)=B} = νT (A),

whereby µSc̄(A) ≤ µT (A) and νSc̄(A) ≥ νT (A), showing that Sc̄ ≤ T . □

Now, we show that there is a bijective correspondence between the set of all IF-
tolerance approximation spaces and the set of all symmetric quasi-discrete IF-closure
spaces satisfying an extra condition.

Proposition 4.10. Let (X,R) be an IF-tolerance approximation space. Then (X,R)

is a symmetric quasi-discrete IF-closure space such that R(A ∧ (α̂, β)) = R(A) ∧
(α̂, β), ∀A ∈ IFS(X) and ∀(α, β) ∈ I∗.

Proof. Similar to that of Proposition 4.1. □

Proposition 4.11. Let (X, c) be a symmetric quasi-discrete IF-closure space such

that c(A∧ (α̂, β)) = c(A)∧ (α̂, β), ∀A ∈ IFS(X) and ∀(α, β) ∈ I∗. Then there exists
a unique IF-tolerance relation Rc on X such that Rc(A) = c(A),∀A ∈ IFS(X).

Proof. Follows from Proposition 4.4 and the fact that (X, c) is a symmetric IF-closure
space. □

Proposition 4.12. Let F be the set of all IF-tolerance approximation spaces and T

be the set of all symmetric quasi-discrete IF- closure spaces satisfying c(A∧(α̂, β)) =

c(A) ∧ (α̂, β), ∀A ∈ IFS(X) and ∀(α, β) ∈ I∗. Then there exists a bijective corre-
spondence between F and T.

Proof. Follows from Propositions 4.10 and 4.11. □

Proposition 4.13. Let (X, c) be a symmetric quasi-discrete IF-closure space such

that c(A∧(α̂, β)) = c(A)∧(α̂, β), ∀A ∈ IFS(X), ∀(α, β) ∈ I∗ and c̄ be the associated
Kuratowski IF-closure operator. Then the IF-relation Sc̄ is an IF-transitive closure
of an IF-relation Rc.

Proof. Follows from Proposition 4.9. □

5. Conclusions

We have tried to introduce the concept of IF-closure spaces and establish their
relationship with IF-approximation spaces. The notable results we have shown here
are the bijective correspondence between the family of all IF-reflexive approximation
spaces and the family of all quasi-discrete IF-closure spaces satisfying certain extra
conditions as well as the bijective correspondence between the family of all IF-
tolerance approximation spaces and the family of all symmetric quasi-discrete IF-
closure spaces satisfying certain extra conditions.
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