Annals of Fuzzy Mathematics and Informatics Volume 11, No. 1, (January 2016), pp. 159–171 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On IF-closure spaces vs IF-rough sets

ANUPAM K. SINGH, S. P. TIWARI

Received 1 June 2015; Revised 23 June 2015; Accepted 2 August 2015

ABSTRACT. The objective of this paper is to study the relationship between IF-rough sets, IF-closure spaces and IF-topology. We show that the bijective correspondence between the family of all IF-reflexive approximation spaces and the family of all quasi-discrete IF-closure spaces satisfying a certain extra condition. We also introduce and study the similar correspondence between the family of all IF-tolerance approximation spaces and the family of all symmetric quasi-discrete IF-closure spaces satisfying a certain extra condition.

2010 AMS Classification: 54A40, 03E72

Keywords: IF-rough set, IF-reflexive approximation space, IF-tolerance approximation space, IF-closure space, IF-topology.

Corresponding Author: Anupam K. Singh (anupam09.bhu@gmail.com)

1. INTRODUCTION

L'uzzy rough set theory, firstly proposed by Dubois and Prade [8] as a fuzzy generalization of rough sets by replacing crisp binary relations to fuzzy relations, has now developed significantly [8, 13, 15, 18, 21, 22]. Simultaneously, the relationship between fuzzy rough sets and fuzzy topological spaces were studied by different researchers(cf., [3, 15, 18, 25]). Among these works in [18], it has shown that there is a bijective correspondence between the set of all fuzzy preorder approximation spaces and the set of all saturated topological spaces satisfying a certain extra condition. In order to find such correspondence for fuzzy reflexive/tolerance approximation spaces and some set of fuzzy topological spaces; recently, in [24], it has shown that there exists a bijective correspondence between the set of fuzzy reflexive/tolerance approximation spaces and the set of fuzzy closure spaces satisfying a certain extra condition.

After introduction of an intuitionistic fuzzy set by Atanassov [1], the researchers proposed a new hybrid model, namely intuitionistic fuzzy rough set theory, to describe the uncertain information by combining intuitionistic fuzzy set theory and rough set theory (cf., [4, 6, 7, 14, 16, 17]) [At this point, we mention that in [9], it has been argued, rather convincingly, that the use of the term intuitionistic for the concept introduced by Atanassov [1], is inappropriate. Accordingly, we use in this paper the prefix IF- in place of intuitionistic fuzzy, thus for example, an intuitionistic fuzzy set is renamed here as an IF-set. This terminology has already been used in [20, 22].]. Simultaneously, the relationship between IF-rough sets and IF-topological spaces were studied (cf., [22, 23, 27, 28, 29]).

Among these works, in [22, 26], it has been shown that there is a bijective correspondence between the family of all IF-preorders and the family of all saturated IF-topological spaces satisfying a 'certain extra condition', which is a consequence of the similar result introduced in [18] and [21] respectively. Still there is a silence on the bijective correspondence between the set of all IF-reflexive/tolerance approximation spaces and some set of IF-topological spaces. Throughout this paper, we try to fill this gap by using the concept of IF-closure spaces.

2. Preliminaries

In this section, we recall some basic concepts and results related to IF-set, IFrough set and IF-binary relation, which will be used in the subsequent sections. Throughout, I stands for [0,1]. For a nonempty set X and $A \subseteq X$, I^X and $1_A: X \to I$ shall, respectively denote the set of all fuzzy sets in X and the characteristic function of A. Throughout, J is an index set.

We begin with the following.

Definition 2.1 ([1]). An IF-set A in X is a pair (μ_A, ν_A) of fuzzy sets in X, i.e., functions $\mu_A, \nu_A : X \to I$, such that $\mu_A(x) + \nu_A(x) \le 1$; $\forall x \in X$.

 $(\mu_A(x) \text{ and } \nu_A(x), \text{ appearing in the above definition, are usually interpreted respectively as the degree of membership and the degree of non-membership of x in A).$

Throughout, IFS(X) will denote the family of all IF-sets in X and I^* means the set $\{(x_1, x_2) : (x_1, x_2) \in I \times I, x_1 + x_2 \leq 1\}$.

Remark 2.2. We shall usually denote the two parts of an IF-set A also as μ_A and ν_A and express A as (μ_A, ν_A) . An IF-set $A = (\mu_A, \nu_A)$ in X will frequently be also viewed as a function $A : X \to I^*$, given by $A(x) = (\mu_A(x), \nu_A(x)), x \in$ X. In particular, the IF-set (α, β) is given by $(\alpha, \beta)(x) = (\alpha, \beta)$, where α and β are respectively the α -valued and the β -valued constant fuzzy sets in X such that $\alpha + \beta \leq 1$. We shall denote the IF-set by $\hat{1}$, which is given by $(\hat{1}, \hat{0})(x) = (\mathbf{1}, \mathbf{0}), x \in X$, where $\mathbf{1}$ and $\mathbf{0}$ are respectively the 1-valued and the 0-valued constant fuzzy sets in X.

Definition 2.3 ([28]). For $y \in X$, an IF-singleton set $1_y = (\mu_{1_y}, \nu_{1_y})$, is defined as follows:

$$\mu_{1_y}(x) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases} \quad \begin{array}{c} \nu_{1_y}(x) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}.$$

Definition 2.4 ([26]). Let R be an IF-binary relation on X. Then R is called

- (i) reflexive if $\mu_R(x, x) = 1$ and $\nu_R(x, x) = 0, \forall x \in X$;
- (ii) symmetric if $\mu_R(x, y) = \mu_R(y, x)$ and $\nu_R(x, y) = \nu_R(y, x), \forall x, y \in X$;
- (iii) transitive if $\forall x, y, z \in X, \mu_R(x, y) \land \mu_R(y, z) \leq \mu_R(x, z)$ and $\nu_R(x, y) \lor \nu_R(y, z) \geq \nu_R(x, z)$.

Definition 2.5. Let R be an IF-binary relation on X. Then R is called an IF-tolerance relation if it is IF-reflexive and IF-symmetric.

Definition 2.6 ([29]). A pair (X, R) is called an IF-approximation space if X is a nonempty set and R is an IF-relation on X.

For an IF-reflexive relation R, we call the IF-approximation space (X, R), an IF-reflexive approximation space. Also, if R is an IF-tolerance relation, we call (X, R) an IF-tolerance approximation space.

Definition 2.7 ([29]). Let (X, R) be an IF-approximation space and $A \in IFS(X)$. The lower and upper approximation of A, denoted by $\underline{R}(A)$ and $\overline{R}(A)$, are two IFsets and are respectively defined as follows:

$$\underline{R}(A) = (\mu_{\underline{R}(A)}, \nu_{\underline{R}(A)}), R(A) = (\mu_{\overline{R}(A)}, \nu_{\overline{R}(A)}), \text{ where }$$

$$\mu_{R(A)}(x) = \wedge \{\mu_{R^c}(x, y) \lor \mu_A(y) : y \in X\},\$$

 $\nu_{R(A)}(x) = \lor \{\nu_{R^c}(x, y) \land \nu_A(y) : y \in X\},\$

$$\mu_{\overline{R}(A)}(x) = \lor \{\mu_R(x, y) \land \mu_A(y) : y \in X\},\$$

$$\nu_{\overline{R}(A)}(x) = \wedge \{\nu_R(x, y) \lor \nu_A(y) : y \in X\}$$

The pair $(\underline{R}(A), \overline{R}(A))$ is called an IF-rough set.

Remark 2.8 ([28]). For an IF-binary relation R on X and $A \in IFS(X)$, the pair \overline{R} and \underline{R} are 'dual' i.e., $\overline{R}(A) = [\underline{R}(A^c)]^c$ and $\underline{R}(A) = [\overline{R}(A^c)]^c$, since $\forall x \in X, [\overline{R}(A^c)]^c(x) = 1 - \lor \{R(x,y) \land A^c(y) : y \in X\} = 1 - \lor \{R(x,y) \land (1 - A(y)) : y \in X\} = \land \{1 - R(x,y) \lor A(y) : y \in X\} = \land \{R^c(x,y) \lor A(y) : y \in X\}.$

Proposition 2.9 ([29]). Let (X, R) be an IF-reflexive approximation space and $A, B \in IFS(X)$. Then

- (i) $\underline{R}(A \wedge B) = \underline{R}(A) \wedge \underline{R}(B);$
- (ii) $\overline{R}(A \lor B) = \overline{R}(A) \lor \overline{R}(B);$
- (iii) $\underline{R}(A) \le A, A \le R(A)$.

Proposition 2.10 ([29]). Let (X, R) be an IF-approximation space and $A \in IFS(X)$. Then R is an IF-transitive relation on X if and only if $\overline{R}(\overline{R}(A)) \leq \overline{R}(A)$.

The IF-topological concepts, we use here are fairly standard and based on [5].

Definition 2.11. An IF-topology on a nonempty set X is a family τ of IF-sets in X, such that

- (i) $(\alpha, \beta) \in \tau, \forall (\alpha, \beta) \in I^*;$
- (ii) $\{A_i : i \in J\} \in \tau \Rightarrow \lor \{A_i : i \in J\} \in \tau;$
- (iii) $A, B \in \tau \Rightarrow A \land B \in \tau$.

The pair (X, τ) is called an IF-topological space. The IF-set in τ are called IF τ open set and there complements are called IF τ -closed set. Further, an IF-topological
space (X, τ) is called saturated if $\{A_j : j \in J\} \in \tau \Rightarrow \land \{A_j : j \in J\} \in \tau$.

Definition 2.12. A Kuratowski IF-closure operator on X is a map $k : IFS(X) \to IFS(X)$, such that $\forall A, B \in IFS(X)$ and $\forall (\alpha, \beta) \in I^*$, the following condition holds:

- (i) $k((\hat{\alpha}, \hat{\beta})) = (\hat{\alpha}, \hat{\beta}),$
- (ii) $A \leq k(A)$,
- (iii) $k(A \lor B) = k(A) \lor k(B),$
- (iv) k(k(A)) = k(A).

Definition 2.13. A Kuratowski IF-closure space is a pair (X, k), where X is a nonempty set and $k : IFS(X) \to IFS(X)$ is a Kuratowski IF-closure operator on X.

Proposition 2.14 ([26]). Let (X, R) be an IF-reflexive approximation space. Then $\tau_R = \{A \in IFS(X) : \underline{R}(A) = A\}$ is a saturated IF-topology (in the sense that arbitrary supremum of an IF $\tau_{\overline{c}}$ -closed set is also IF $\tau_{\overline{c}}$ -closed) on X.

Proposition 2.15 ([26]). Let k be Kuratowski IF-closure operator on X. Then there exists an IF-reflexive and IF-transitive relation $S_k = (\mu_{S_k}, \nu_{S_k})$ on X such that $\forall A \in IFS(X)$ and $\forall (\alpha, \beta) \in I^*$, $\overline{S_k}(A) = k(A)$ if and only if $k(A \land (\alpha, \beta)) = k(A) \land (\alpha, \beta)$.

3. IF-CLOSURE SPACE

The notion of fuzzy closure space was introduced in [12, 19]. In literature [2, 11, 26] several generalizations of fuzzy closure space have been studied. In this section, we introduce the concepts of IF-closure space and investigate their relationship with Kuratowski IF-closure operators. Lastly, we show that the Kuratowski IF-closure operator associated with a quasi-discrete IF-closure space induces a saturated IF-topology.

We begin by introducing the following concept of an IF-closure space.

Definition 3.1. An IF-closure space is a pair (X, c), where X is a nonempty set and $c: IFS(X) \to IFS(X)$ is a map such that

(i)
$$c((\widehat{\alpha,\beta})) = (\widehat{\alpha,\beta}),$$

(ii) $A \le c(A),$
(iii) $c(A \lor B) = c(A) \lor c(B),$
 $\forall A, B \in IFS(X) \text{ and } \forall (\alpha,\beta) \in I^*.$

Remark 3.2. It is not necessary that every IF-closure space is a Kuratowski IFclosure space. The following example shows that how a IF-closure space differ from a Kuratowski IF-closure space. Specifically, it is shown here that for an IF-closure space $c, c(c(A)) \neq c(A), \forall A \in IFS(X).$

Example 3.3. Let X be any set containing at least two points. Define a map $c : IFS(X) \to IFS(X)$ as follows : for $A = (\mu_A, \nu_A) \in IFS(X)$ and $x \in X$, $c(A)(x) = (\mu_{c(A)}(x), \nu_{c(A)}(x))$, where

$$\mu_{c(A)}(x) = \begin{cases} 2\mu_A(x) & \text{if } \mu_A(x) < k_1/2, \\ & \text{where } k_1 = \lor \{\mu_A(z)\}_{z \in X} \\ k_1 & \text{if } \mu_A(x) > k_1/2 \end{cases},$$

and

$$\nu_{c(A)}(x) = \begin{cases} 2\nu_A(x) & \text{if } \nu_A(x) > k_2/2, \\ & \text{where } k_2 = \wedge \{\nu_A(z)\}_{z \in X} \\ k_2 & \text{if } \nu_A(x) < k_2/2 . \end{cases}$$

Then the conditions (i) $c((\alpha,\beta)) = (\alpha,\beta)$ and (ii) $A \leq c(A)$ are obvious. To prove condition (iii) $c(A \vee B) = c(A) \vee c(B)$, let $\vee \{\mu_{A \cup B}(z)\}_{z \in X} = k_1$. Now, if $\mu_{A \cup B}(x) < k_1/2$, then $\mu_A(x) < k_1/2$ or $\mu_B(x) < k_1/2$. Thus $\mu_A(x) < k_1/2, \mu_B(x) < k_1/2$ $k_1/2$, or that $\mu_{c(A)}(x) = 2\mu_A(x)$ and $\mu_{c(B)}(x) = 2\mu_B(x)$. Therefore $\mu_{c(A\cup B)}(x) = 2\mu_B(x)$. $2\mu_{A\cup B}(x) = 2\mu_A(x) \cup 2\mu_B(x) = \mu_{c(A)}(x) \cup \mu_{c(B)}(x) = (\mu_{c(A)} \cup \mu_{c(B)})(x)$ and $(1 \leq \nu_{A \cap B}(z))_{z \in X} = k_2$. Then if $\nu_{A \cap B}(x) > k_2/2$, then $\nu_A(x) > k_2/2$ and $\nu_B(x) > k_2/2$ $k_2/2$. Thus $\nu_A(x) > k_2/2, \nu_B(x) > k_2/2$. Hence $\nu_{c(A)}(x) = 2\nu_A(x)$ and $\nu_{c(B)}(x) = 2\nu_A(x)$ $2\nu_B(x)$. Therefore $\nu_{c(A\cap B)}(x) = 2\nu_{A\cap B}(x) = 2\nu_A(x) - 2\nu_B(x) = \nu_{c(A)}(x) - \nu_{c(B)}(x) = 2\nu_{A\cap B}(x) = 2\nu_{A\cap B}(x) - 2\nu_{B}(x) = 2\nu_{B}(x) - 2\nu_{B}(x) - 2\nu_{B}(x) - 2\nu_{B}(x) - 2\nu_{B}(x) = 2\nu_{B}(x) - 2\nu$ $(\nu_{c(A)} \cap \nu_{c(B)})(x)$. Hence in this case, $c(A \cup B) = c(A) \cup c(B)$. Further, if $\mu_{A\cup B}(x) \ge k_1/2$, then $\mu_A(x) \ge k_1/2$ or $\mu_B(x) \ge k_1/2$. Thus $\mu_A(x) \ge k_1/2$. $k_1/2, \mu_B(x) \ge k_1/2$. Therefore $\mu_{c(A)}(x) = \mu_{c(B)}(x) = k_1$ and if $\nu_{A \cap B}(x) \le k_2/2$, then $\nu_A(x) \leq k_2/2$ and $\nu_B(x) \leq k_2/2$. Thus $\nu_A(x) \leq k_2/2, \nu_B(x) \leq k_2/2$. Therefore $\nu_{c(A)}(x) = \nu_{c(B)}(x) = k_2$. Thus in this case also $c(A \cup B) = c(A) \cup c(B)$. Hence, c is an IF-closure space in the sense of Definition 3.1. On the other hand, it is not a Kuratowaski IF-closure operator, since if we take a non-constant IF-sets $A = (\mu_A, \nu_A) \in$ IFS(X) such that $A(x_0) = (\mu_A(x_0), \nu_A(x_0)) = k/16 = (k_1/16, k_2/16)$, i.e., $\mu_A(x_0) = k/16 = (k_1/16, k_2/16)$, i.e., $\mu_A(x_0) = k/16 = (k_1/16, k_2/16)$. $k_1/16, \nu_A(x_0) = k_2/16$ for some $x_0 \in X$, where $\lor \{\mu_A(z)\}_{z \in X}$ and $k_2 = \land \{\nu_A(z)\}_{z \in X}$. Thus $\mu_{c(A)}(x_0) = k_1/8, \nu_{c(A)}(x_0) = k_2/8$ but $\mu_{c(c(A))}(x_0) = k_1/4, \nu_{c(c(A))}(x_0) = k_1/4, \nu_{c(c(A))}(x_0) = k_1/4, \nu_{c(A)}(x_0) = k_1/4, \nu$ $k_2/4$, showing that $c(c(A)) \neq c(A)$.

Definition 3.4. An IF-closure space (X, c) is called quasi-discrete if $c(\lor \{A_i : i \in J\}) = \lor \{c(A_i) : i \in J\}, \forall A \in IFS(X), i \in J.$

Definition 3.5. An IF-closure space (X, c) is called symmetric if $\mu_{c(1_y)(x)} = \mu_{c(1_x)(y)}$ and $\nu_{c(1_y)(x)} = \nu_{c(1_x)(y)}, \forall x, y \in X$.

Definition 3.6. Let (X, c) be an IF-closure space and $A \in IFS(X)$. Then the IFinterior $i(A) = (\mu_{i(A)}, \nu_{i(A)})$ of A is given by $\mu_{i(A)} = \mu_{[c(A^c)]^c}$ and $\nu_{i(A)} = \nu_{[c(A^c)]^c}$.

Definition 3.7. Let (X, c) be an IF-closure space and $A \in IFS(X)$. Then A is IF-closed if $\mu_{c(A)} = \mu_A$ and $\nu_{c(A)} = \nu_A$.

Proposition 3.8. Let (X, c) be an IF-closure space. Then

- (i) $c(\wedge_{i \in J} A_i) \leq \wedge_{i \in J} c(A_i), \forall A_i \in IFS(X), i \in J; and$
- (ii) if $A \leq B$ then $c(A) \leq c(B), \forall A, B \in IFS(X)$.

Proof. The proof is straightforward.

Definition 3.9. For an IF-closure space (X, \bar{c}) , a Kuratowski IF-closure operator $\bar{c} : IFS(X) \to IFS(X)$ is defined by $\bar{c}(A) = \cap \{B \in IFS(X) : A \leq B \text{ and } c(B) = B\}.$

It follows immediately from the above definition that $A \leq \bar{c}(A)$.

We shall denote by $\tau_{\bar{c}}$, the IF-topology induced by \bar{c} , which is given by $\tau_{\bar{c}} = \{A \in IFS(X) : \bar{c}(A^c) = A^c\}.$

Proposition 3.10. Let (X, c) be an IF-closure space. Then $\forall A \in IFS(X)$.

- (i) $c(\bar{c}(A)) = \bar{c}(A)$, (i.e., $\bar{c}(A)$ is IF $\tau_{\bar{c}}$ -closed), (ii) $c(A) < \bar{c}(A)$,
- (iii) c(A) = A if and only if $\bar{c}(A) = A$.

Proof. (i) Let $A \in IFS(X)$. Then from Proposition 3.8 (i), we have

$$\mu_{c(\bar{c}(A))} = \mu_{c(\wedge\{B:A \leq B \text{ and } c(B)=B\})} \leq \wedge \ \mu_{\{c(B):A \leq B \text{ and } c(B)=B\}}$$

$$= \wedge \mu_{\{B:A \leq B \text{ and } c(B) = B\}} = \mu_{\overline{c}(A)}$$

and

$$\nu_{c(\bar{c}(A))} = \nu_{c(\vee\{B:A \ge B \text{ and } c(B) = B\})} \ge \vee \nu_{\{c(B):A \ge B \text{ and } c(B) = B\}}$$

 $= \vee \nu_{\{B:A \ge B \text{ and } c(B) = B\}} = \nu_{\bar{c}(A)}.$ Thus $c(\bar{c}(A)) \le \bar{c}(A)$. Also, $\bar{c}(A) \le c(\bar{c}(A))$ obviously. So $c(\bar{c}(A)) = \bar{c}(A)$.

(ii) Since $\mu_A \leq \mu_{\bar{c}(A)}$ and $\nu_A \geq \nu_{\bar{c}(A)}$, $\mu_{c(A)} \leq \mu_{c(\bar{c}(A))} = \mu_{\bar{c}(A)}$ and $\nu_{c(A)} \geq \nu_{c(\bar{c}(A))} = \nu_{\bar{c}(A)}$. Thus $c(A) \leq \bar{c}(A)$.

(iii) Let $\mu_{c(A)} = \mu_A$ and $\nu_{c(A)} = \nu_A$, $\forall A \in IFS(X)$. Then A is an IF $\tau_{\bar{c}}$ -closed. Thus, $\mu_{\bar{c}(A)} \leq \mu_A$ and $\nu_{\bar{c}(A)} \geq \nu_A$, (cf., Definition 3.9). Also, $\mu_A \leq \mu_{\bar{c}(A)}$ and $\nu_A \geq \nu_{\bar{c}(A)}$. So $\mu_{\bar{c}(A)} = \mu_A$ and $\nu_{\bar{c}(A)} = \nu_A$. Conversly, let $\mu_{\bar{c}(A)} = \mu_A$ and $\nu_{\bar{c}(A)} = \nu_A$. Then from (ii), we have $\mu_A \leq \mu_{c(A)} \leq \mu_{\bar{c}(A)}$ and $\nu_A \geq \nu_{c(A)} \geq \nu_{\bar{c}(A)}$. Now, if $\mu_{\bar{c}(A)} = \mu_A$ and $\nu_{\bar{c}(A)} = \nu_A$. Then, we have $\mu_{c(A)} = \mu_A$ and $\nu_{c(A)} = \nu_A$. Thus c(A) = A.

Proposition 3.11. Let (X, c) be an IF-closure space. Then $\forall A \in IFS(X), c(A) = \overline{c}(A)$ if and only if c(c(A)) = c(A).

Proof. Let $c(A) = \bar{c}(A)$, i.e., $\mu_{c(A)} = \mu_{\bar{c}(A)}$ and $\nu_{c(A)} = \nu_{\bar{c}(A)}$, $\forall A \in IFS(X)$. Then $\mu_{c(c(A))} = \mu_{c(\bar{c}(A))} = \mu_{\bar{c}(A)} = \mu_{c(A)}$ and $\nu_{c(c(A))} = \nu_{c(\bar{c}(A))} = \nu_{\bar{c}(A)} = \nu_{c(A)}$. Thus c(c(A)) = c(A). Conversely, let c(c(A)) = c(A), i.e., $\mu_{c(c(A))} = \mu_{c(A)}$ and $\nu_{c(c(A))} = \nu_{c(A)}$. Then c(A) is an IF $\tau_{\bar{c}}$ -closed. Thus by Proposition 3.10 (iii), $\mu_{\bar{c}(A)} = \mu_{c(A)}$ and $\nu_{\bar{c}(A)} = \mu_{c(A)}$.

Proposition 3.12. Let (X, c) be a quasi-discrete IF-closure space. Then the IFtopology $\tau_{\bar{c}}$ induced by \bar{c} on X is a saturated IF-topology.

Proof. Follows from Definitions 3.4, 3.9 and Proposition 3.11.

4. IF-CLOSURE SPACES AND IF-ROUGH SETS

In this section, we show that there exists a bijective correspondence between the family of all IF-reflexive/IF-tolerance approximation spaces and the family of all quasi-discrete IF-closure spaces satisfying certain extra conditions.

We begin by introducing the following.

Proposition 4.1. Let (X, R) be an IF-reflexive approximation space. Then (X, \overline{R}) is a quasi-discrete IF-closure space such that $\overline{R}(A \land (\widehat{\alpha}, \beta)) = \overline{R}(A) \land (\widehat{\alpha}, \beta), \forall A \in IFS(X)$ and $\forall (\alpha, \beta) \in I^*$.

Proof. From Proposition 2.9, it follows that (X, \overline{R}) is an IF-closure space. Now, let $A_i = (\mu_{A_i}, \nu_{A_i}) \in IFS(X), i \in J$ and $x \in X$. Then

$$\mu_{\overline{R}(\vee A_i:i\in J)}(x) = \vee \{\mu_R(x,y) \land (\vee \{\mu_{A_i}:i\in J\})(y): y\in X\}$$
$$= \vee \{\vee \{\mu_R(x,y) \land \mu_{A_i}(y): y\in X\}: i\in J\}$$
$$= \vee \{\mu_{\overline{R}(A_i)}: i\in J\}$$

and

$$\nu_{\overline{R}(\wedge A_i:i\in J)}(x) = \wedge \{\nu_R(x,y) \lor (\wedge \{\nu_{A_i}:i\in J\})(y): y\in X\}$$
$$= \wedge \{\wedge \{\nu_R(x,y) \lor \nu_{A_i}(y): y\in X\}: i\in J\}$$

$$= \land \{\nu_{\overline{R}(A_i)} : i \in J\},\$$

whereby $\overline{R}(\vee\{A_i : i \in J\}) = \vee\{\overline{R}(A_i) : i \in J\}$. Hence (X, \overline{R}) is a quasi-discrete IF-closure space. Also, for each $A \in IFS(X)$ and $(\alpha, \beta) \in I^*, \overline{R}(A \wedge (\widehat{\alpha, \beta})) = \overline{R}(A) \wedge (\widehat{\alpha, \beta})$ follows trivially. \Box

Proposition 4.2. For a quasi-discrete IF-closure space $(X, \overline{R}), \underline{R}$ is an IF-interior operator on X.

Proof. Follows from Remark 2.8 and Definition 3.12.

Before stating next, recall the following from [10].

Definition 4.3. For $y \in X$ and $(\alpha, \beta) \in I^*$, with $\alpha + \beta \leq 1$. The IF-subset $(1_y \land (\alpha, \beta)) = (\mu_{1_y} \land \alpha, \nu_{1_y} \lor \beta)$ of X is called an IF-point in X, and is denoted as $y_{(\alpha,\beta)}$, where

$$y_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta) & \text{if } x = y\\ (0,1) & \text{if } x \neq y \end{cases}$$

Proposition 4.4. Let (X, c) be a quasi-discrete IF-closure space such that $c(A \land (\widehat{\alpha}, \beta)) = c(A) \land (\widehat{\alpha}, \beta), \forall A \in IFS(X)$ and $\forall (\alpha, \beta) \in I^*$. Then there exists a unique IF-reflexive relation $R_c = (\mu_{R_c}, \nu_{R_c})$ on X such that $\overline{R}_c(A) = c(A), \forall A \in IFS(X)$.

Proof. Let (X, c) be a quasi-discrete IF-closure space such that $c(A \land (\widehat{\alpha, \beta})) = c(A) \land (\widehat{\alpha, \beta}), \forall A \in IFS(X)$ and $\forall (\alpha, \beta) \in I^*$. Also, let R_c be an IF-relation on X given by $\mu_{R_c}(x, y) = \mu_{c(1_y)}(x)$ and $\nu_{R_c}(x, y) = \nu_{c(1_y)}(x), \forall x, y \in X$. Then $\hat{1} = (\widehat{1, 0}) = (\mu_{1_x}(x), \nu_{1_x}(x)) \leq (\mu_{c(1_x)}(x), \nu_{c(1_x)}(x))$. Thus $c(1_x)(x) = \hat{1}$, i.e., $(\mu_{c(1_x)}(x), \nu_{c(1_x)}(x)) = (\widehat{1, 0}) = \hat{1}$, whereby R_c is an IF-reflexive relation on X. Now, for $x \in X$,

$$\mu_{\overline{R}_c(A)}(x) = \mu_{\overline{R}_c(\bigcup_{y \in X} y_{\widehat{\alpha}})}(x) = \bigcup_{y \in X} \mu_{\overline{R}_c(y_{\widehat{\alpha}})}(x)$$

and

$$\nu_{\overline{R}_c(A)}(x) = \nu_{\overline{R}_c(\cap_{y \in X} y_{\widehat{\beta}})}(x) = \cap_{y \in X} \nu_{\overline{R}_c(y_{\widehat{\beta}})}(x)$$

Also,

$$\mu_{\overline{R}_{c}(y_{\widehat{\alpha}})}(x) = \bigvee \{\mu_{R_{c}}(x, u) \land \mu_{y_{\widehat{\alpha}}}(u) : u \in X\} = \mu_{R_{c}}(x, y) \land \alpha = \mu_{c(1_{y})}(x) \land \alpha$$
$$= \mu_{(c(1_{y})\land\widehat{\alpha})}(x) = \mu_{c(1_{y}\land\widehat{\alpha})}(x)$$

and

$$\nu_{\overline{R}_c(y_{\widehat{\beta}})}(x) = \wedge \{\nu_{R_c}(x, u) \lor \nu_{y_{\widehat{\beta}}}(u) : u \in X\} = \nu_{R_c}(x, y) \lor \beta = \nu_{c(1_y)}(x) \lor \beta$$

 $=\!\!\nu_{(c(1_y)\vee\hat{\beta})}(x)=\nu_{c(1_y\vee\hat{\beta})}(x).$ Thus $\overline{R}_c(y_{\widehat{(\alpha,\beta)}})(x)=c(1_y\wedge\widehat{(\alpha,\beta)})(x)=c(y_{\widehat{(\alpha,\beta)}})(x).$ Further,

$$\mu_{\overline{R}_c(A)}(x) = \bigcup_{y \in X} \mu_{c(y_{(\alpha,\beta)})}(x) = \mu_{c(\bigcup_{y \in X} y_{(\alpha,\beta)})}(x) = \mu_{c(A)}(x)$$

and

$$\nu_{\overline{R}_c(A)}(x) = \bigcap_{y \in X} \nu_{c(y_{(\alpha,\beta)})}(x) = \nu_{c(\bigcap_{y \in X} y_{(\alpha,\beta)})}(x) = \nu_{c(A)}(x)$$

and

$$\mu_{\overline{R}_{c}(A)}(x) = \bigcup_{y \in X} \mu_{c(y_{(\widehat{\alpha,\beta})})}(x) = \mu_{c(\bigcup_{y \in X} y_{(\widehat{\alpha,\beta})})}(x) = \mu_{c(A)}(x)$$

and

$$\nu_{\overline{R}_{c}(A)}(x) = \cap_{y \in X} \nu_{c(y_{\widehat{(\alpha,\beta)}})}(x) = \nu_{c(\cap_{y \in X} y_{\widehat{(\alpha,\beta)}})}(x) = \nu_{c(A)}(x)$$

Thus, $\overline{R}_c(A) = c(A), \forall A \in IFS(X)$. To show the uniqueness of IF-relation R_c , let $R' = (\mu_{R'}, \nu_{R'})$ be another IF-reflexive relation on X such that $\mu_{\overline{R'}(A)}(x) = \mu_{c(A)}$ and $\nu_{\overline{R'}(A)}(x) = \nu_{c(A)}, \forall A \in IFS(X)$. Then

$$\mu_{R_c}(x,y) = \mu_{c(1_y)}(x) = \mu_{\overline{R'}(1_y)}(x) = \vee \{\mu_{R'}(x,u) \land \mu_{1_y}(u) : u \in X\} = \mu_{R'}(x,y)$$
 and

$$\begin{split} \nu_{R_c}(x,y) &= \nu_{c(1_y)}(x) = \nu_{\overline{R'}(1_y)}(x) = \wedge \{\mu_{R'}(x,u) \lor \nu_{1_y}(u) : u \in X\} = \nu_{R'}(x,y). \end{split}$$
 Thus $R_c = R'$. Hence the IF-relation R_c on X is unique. \Box

Proposition 4.5. Let **F** be the set of all IF-reflexive approximation space and **T** be the set of all quasi-discrete IF-closure spaces satisfying $c(A \land (\widehat{\alpha}, \beta)) = c(A) \land (\widehat{\alpha}, \beta), \forall A \in IFS(X)$ and $\forall (\alpha, \beta) \in I^*$. Then there exists a bijective correspondence between **F** and **T**.

Proof. Follows from Propositions 4.1 and 4.4.

Proposition 4.6. Let (X, c) be a quasi-discrete IF-closure space satisfying $c(A \land (\widehat{\alpha}, \widehat{\beta})) = c(A) \land (\widehat{\alpha}, \widehat{\beta}), \forall A \in IFS(X) \text{ and } \forall (\alpha, \beta) \in I^* \text{ and } R_c \text{ be an IF-reflexive relation on } X \text{ such that } \overline{R}_c(A) = c(A), \forall A \in IFS(X). \text{ Then } \tau_{R_c} = \tau_{\overline{c}}.$

Proof. Let $A \in \tau_{\bar{c}}$. Then $\bar{c}(A^c) = A^c$, i.e., $\mu_{\bar{c}(A^c)} = \mu_{A^c}$ and $\nu_{\bar{c}(A^c)} = \nu_{A^c}$. As from Proposition 3.10, $\mu_{c(A)} \leq \mu_{\bar{c}(A)}$ and $\nu_{c(A)} \geq \nu_{\bar{c}(A)}$, $\forall A \in IFS(X)$, we have $\mu_{c(A^c)} \leq \mu_{A^c}$ and $\nu_{c(A^c)} \geq \nu_{A^c}$, or that $\mu_A \leq \mu_{[c(A^c)]^c}$ and $\nu_A \geq \nu_{[c(A^c)]^c}$, showing that $\mu_A \leq \mu_{\underline{R}_c(A)}$ and $\nu_A \geq \nu_{\underline{R}_c(A)}$. Also $\mu_{\underline{R}_c(A)} \leq \mu_A$ and $\nu_{\underline{R}_c(A)} \geq \nu_A$, whereby $\underline{R}_c(A) = A$. Thus $\tau_{\bar{c}} \leq \tau_{R_c}$. Conversity, let $A \in \tau_{R_c}$. Then $\mu_{\underline{R}_c(A)} = \mu_A$ and $\nu_{\underline{R}_c(A)} = \nu_A$, or that $\mu_{[\overline{R}_c(A^c)]^c} = \mu_A$ and $\nu_{[\overline{R}_c(A^c)]^c} = \nu_A$, i.e., $\mu_{\overline{R}_c(A^c)} = \mu_{A^c}$ and $\nu_{\overline{R}_c(A^c)} = \nu_{A^c}$, whereby $\mu_{c(A^c)} = \mu_{A^c}$ and $\nu_{c(A^c)} = \nu_{A^c}$. Thus from Proposition 3.10, $\mu_{\bar{c}(A^c)} = \mu_{A^c}$ and $\nu_{\bar{c}(A^c)} = \nu_{A^c}$, whereby $A \in \tau_{\bar{c}}$, or that $\tau_{R_c} \leq \tau_{\bar{c}}$. Hence $\tau_{R_c} = \tau_{\bar{c}}$.

For a given quasi-discrete IF-closure space (X, c) satisfying $c(A \land (\alpha, \beta)) = c(A) \land (\widehat{\alpha, \beta}), \forall A \in IFS(X), \forall (\alpha, \beta) \in I^*$ and its associated Kuratowski IF-closure operator $\overline{c}, (X, \overline{c})$ is obviously a quasi-discrete IF-closure space such that $\overline{c}(A \land (\widehat{\alpha, \beta})) = \overline{c}(A) \land (\widehat{\alpha, \beta}), \forall A \in IFS(X), \forall (\alpha, \beta) \in I^*$ and hence Proposition 4.4, will induce an IF-reflexive relation, say, $S_{\overline{c}} = (\mu_{S_{\overline{c}}}, \nu_{S_{\overline{c}}})$ on X, given by $S_{\overline{c}}(x, y) = \overline{c}(1_y)(x)$, i.e., $\mu_{S_{\overline{c}}}(x, y) = \mu_{\overline{c}(1_y)}(x), \nu_{S_{\overline{c}}}(x, y) = \nu_{\overline{c}(1_y)}(x), \forall x, y \in X.$

Before stating next, we recall the following concept of IF-transitive closure.

Definition 4.7. Let R and T be two IF-relations on X. Then T is called IF-transitive closure of R if

- (i) T is an IF-transitive,
- (ii) $R \leq T$, and
- (iii) if S is an IF-transitive with $R \leq S$, then $T \leq S$, i.e., T is the smallest IF-transitive relation containing R.

Before stating the next proposition we need to prove the following lemma.

Lemma 4.8. Let (X, R) and (X, S) be two IF-approximation spaces. Then $R \leq S$ if and only if $\overline{R}(A) = (\mu_{\overline{R}(A)}, \nu_{\overline{R}(A)}) \leq (\mu_{\overline{S}(A)}, \nu_{\overline{S}(A)}) = \overline{S}(A), \forall A \in IFS(X).$

Proof. Let $\mu_{\overline{R}(A)} \leq \mu_{\overline{S}(A)}$ and $\nu_{\overline{R}(A)} \geq \nu_{\overline{S}(A)}, \forall A \in IFS(X)$. Then $\mu_{\overline{R}(A)}(x) \leq \mu_{\overline{S}(A)}(x), \forall x \in X$, whereby

$$\forall \{\mu_R(x,y) \land \mu_A(y) : y \in X\} \leq \forall \{\mu_S(x,y) \land \mu_A(y) : y \in X\}$$
$$\Rightarrow \mu_R(x,y) \leq \mu_S(x,y), \forall x, y \in X$$

and

 $\nu_{\overline{R}(A)}(x) \ge \nu_{\overline{S}(A)}(x), \forall x \in X, \text{ whereby}$

 $\wedge \{\nu_R(x,y) \lor \nu_A(y) : y \in X\} \ge \wedge \{\nu_S(x,y) \lor \nu_A(y) : y \in X\}$

 $\Rightarrow \nu_R(x,y) \ge \nu_S(x,y), \forall x, y \in X.$

Hence $R \leq S$.

Conversely, let $R \leq S$, i.e., $\mu_R \leq \mu_S$ and $\nu_R \geq \nu_S$. We have to show that $\mu_{\overline{R}(A)} \leq \mu_{\overline{S}(A)}$ and $\nu_{\overline{R}(A)} \geq \nu_{\overline{S}(A)}, \forall A \in IFS(X)$. Now,

$$\mu_{\overline{R}(A)}(x) = \vee \{\mu_R(x, y) \land \mu_A(y) : y \in X\} \le \vee \{\mu_S(x, y) \land \mu_A(y) : y \in X\}$$
$$= \mu_{\overline{S}(A)}(x), \forall x \in X$$

and

$$\nu_{\overline{R}(A)}(x) = \wedge \{\nu_R(x, y) \lor \nu_A(y) : y \in X\} \ge \wedge \{\nu_S(x, y) \lor \nu_A(y) : y \in X\}$$

$$=\nu_{\overline{S}(A)}(x), \forall x \in X.$$

Hence $\mu_{\overline{R}(A)} \leq \mu_{\overline{S}(A)}$ and $\nu_{\overline{R}(A)} \geq \nu_{\overline{S}(A)}, \forall A \in IFS(X)$, i.e., $\overline{R}(A) \leq \overline{S}(A), \forall A \in IFS(X)$.

Proposition 4.9. Let (X, c) be a quasi-discrete IF-closure space such that $c(A \land (\widehat{\alpha}, \beta)) = c(A) \land (\widehat{\alpha}, \beta), \forall A \in IFS(X)$ and $\forall (\alpha, \beta) \in I^*$ and \overline{c} be the associated Kuratowski IF-closure operator. Then the IF-relation $S_{\overline{c}} = (\mu_{S_{\overline{c}}}, \nu_{S_{\overline{c}}})$ is the IF-transitive closure of IF-relation $R_c = (\mu_{R_c}, \nu_{R_c})$.

Proof. Let $S_{\bar{c}}(x,y) = \bar{c}(1_y)(x)$, i.e., $(\mu_{S_{\bar{c}}}(x,y), \nu_{S_{\bar{c}}}(x,y)) = (\mu_{\bar{c}(1_y)}(x), \nu_{\bar{c}(1_y)}(x)), \forall x, y \in X$. Then from Propositions 2.10 and 4.4, $S_{\bar{c}}$ is the IF-transitive relation on X. Also, from Proposition 3.10, it follows that $\mu_{R_c} \leq \mu_{S_{\bar{c}}}$ and $\nu_{R_c} \geq \nu_{S_{\bar{c}}}$. To show that relation $S_{\bar{c}}$ is the IF-transitive closure of IF-relation R_c , it only remains to show that $S_{\bar{c}}$ is the smallest IF-reflexive transitive relation containing R_c . So, let $T = (\mu_T, \nu_T)$ be another IF-reflexive transitive relation on X such that $\mu_{R_c} \leq \mu_T$ and $\nu_{R_c} \geq \nu_T$. Then from the reflexivity of $T, (X, \overline{T})$ is quasi-discrete IF-closure space. Now by using the fact that T is IF-transitive also, and by using Proposition 3.11 followed by Proposition 2.15,

$$\mu_{\overline{T}(A)} = \mu_{\wedge \{B \in IFS(X) : A \le B, \overline{T}(B) = B\}}$$

and

$$\nu_{\overline{T}(A)} = \nu_{\vee\{B \in IFS(X): A \ge B, \overline{T}(B) = B\}},$$

 $\forall A \in IFS(X)$. Also, $S_{\bar{c}}$ being IF-reflexive and IF-transitive relation associated with Kuratowski IF-closure operator \bar{c} , from Proposition 2.15, it follows that $\mu_{\overline{S}_{\bar{c}}(A)} = \mu_{\bar{c}(A)}$ and $\nu_{\overline{S}_{\bar{c}}(A)} = \nu_{\bar{c}(A)}, \forall A \in IFS(X)$. Finally, \bar{c} being Kuratowski IF-closure operator associated with quasi-discrete IF-closure space (X, c),

$$\mu_{\bar{c}(A)} = \wedge \ \mu_{\{B \in IFS(X): A \leq B, c(B) = B\}} = \wedge \mu_{\{B \in IFS(X): A \leq B, \overline{R}_c(B) = B\}}$$

and

$$\nu_{\bar{c}(A)} = \bigvee \nu_{\{B \in IFS(X): A \ge B, c(B) = B\}} = \bigvee \nu_{\{B \in IFS(X): A \ge B, \overline{R}_c(B) = B\}}$$

 $\forall A \in IFS(X)$ (cf., Proposition 4.4). Thus from Lemma 4.8,

$$\mu_{\overline{S}_{\overline{c}}(A)} = \wedge \mu_{\{B \in IFS(X): A \leq B, \overline{R}_{c}(B) = B\}} \leq \wedge \mu_{\{B \in IFS(X): A \leq B, \overline{T}(B) = B\}} = \mu_{\overline{T}(A)}$$

and

$$\nu_{\overline{S}_{\overline{c}}(A)} = \vee \nu_{\{B \in IFS(X): A \ge B, \overline{R}_{c}(B) = B\}} \ge \vee \nu_{\{B \in IFS(X): A \ge B, \overline{T}(B) = B\}} = \nu_{\overline{T}(A)},$$

whereby $\mu_{\overline{S}_{\overline{c}}(A)} \leq \mu_{\overline{T}(A)}$ and $\nu_{\overline{S}_{\overline{c}}(A)} \geq \nu_{\overline{T}(A)}$, showing that $S_{\overline{c}} \leq T$.

Now, we show that there is a bijective correspondence between the set of all IFtolerance approximation spaces and the set of all symmetric quasi-discrete IF-closure spaces satisfying an extra condition.

Proposition 4.10. Let (X, R) be an IF-tolerance approximation space. Then (X, \overline{R}) is a symmetric quasi-discrete IF-closure space such that $\overline{R}(A \land (\widehat{\alpha}, \beta)) = \overline{R}(A) \land (\widehat{\alpha}, \beta), \forall A \in IFS(X) \text{ and } \forall (\alpha, \beta) \in I^*.$

Proof. Similar to that of Proposition 4.1.

Proposition 4.11. Let (X, c) be a symmetric quasi-discrete IF-closure space such that $c(A \land (\widehat{\alpha}, \widehat{\beta})) = c(A) \land (\widehat{\alpha}, \widehat{\beta}), \forall A \in IFS(X) \text{ and } \forall (\alpha, \beta) \in I^*$. Then there exists a unique IF-tolerance relation R_c on X such that $\overline{R}_c(A) = c(A), \forall A \in IFS(X)$.

Proof. Follows from Proposition 4.4 and the fact that (X, c) is a symmetric IF-closure space.

Proposition 4.12. Let **F** be the set of all IF-tolerance approximation spaces and **T** be the set of all symmetric quasi-discrete IF- closure spaces satisfying $c(A \land (\widehat{\alpha}, \beta)) = c(A) \land (\widehat{\alpha}, \beta), \forall A \in IFS(X) \text{ and } \forall (\alpha, \beta) \in I^*$. Then there exists a bijective correspondence between **F** and **T**.

Proof. Follows from Propositions 4.10 and 4.11.

Proposition 4.13. Let (X,c) be a symmetric quasi-discrete IF-closure space such that $c(A \land (\widehat{\alpha}, \widehat{\beta})) = c(A) \land (\widehat{\alpha}, \widehat{\beta}), \forall A \in IFS(X), \forall (\alpha, \beta) \in I^*$ and \overline{c} be the associated Kuratowski IF-closure operator. Then the IF-relation $S_{\overline{c}}$ is an IF-transitive closure of an IF-relation R_c .

Proof. Follows from Proposition 4.9.

5. Conclusions

We have tried to introduce the concept of IF-closure spaces and establish their relationship with IF-approximation spaces. The notable results we have shown here are the bijective correspondence between the family of all IF-reflexive approximation spaces and the family of all quasi-discrete IF-closure spaces satisfying certain extra conditions as well as the bijective correspondence between the family of all IFtolerance approximation spaces and the family of all symmetric quasi-discrete IFclosure spaces satisfying certain extra conditions.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] H. Aygun, V. Cetkin and S. E. Abbas, On (L, M)-Fuzzy closure spaces, Iran. J. Fuzzy Syst. 9 (2012) 41–62.
- [3] D. Boixader, J. Jacas and J. Recasens, Upper and lower approximations of fuzzy sets, Int. J. Gen. Syst. 29 (2000) 555–568.
- [4] K. Chakrabarty, T. Gedeon and L. Koczy, Intuitionistic fuzzy rough set, in: JCIS Proceeding of 4th Joint Conference on Information Sciences, Durham, NC (1998) 211–214.
- [5] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997) 81–89.
- [6] D. Coker, Fuzzy rough sets are intuitionistic L-fuzzy sets, Fuzzy Sets and Systems 96 (1998) 381–383.
- [7] C. Cornelis, M. D. Cock and E. E. Kerre, intuitionistic fuzzy rough set: at the crossroads of imperfect knowledge, Expert Systems 20 (2003) 260–270.
- [8] D. Dubois and H. Prade, Rough fuzzy set and fuzzy rough set, Int. J. Gen. Syst. 17 (1990) 191-209.
- D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade, Terminological difficulties in fuzzy set theory the case of intuitionistic fuzzy sets, Fuzzy Sets and Systems 156 (2005) 485– 491.
- [10] Y. B. Jun and S. Z. Song, Intuitionistic fuzzy semipreopen sets and Intuitionistic fuzzy semiprecontinuous mappings, J. Appl. Math. Comput. 19 (1–2) (2005) 467–474.
- [11] Y. C. Kim, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems 133 (2003) 277–297.
- [12] A. S. Mashhour and M. H. Ghanim, Fuzzy closure spaces, J. Math. Anal. Appl. 108 (1985) 154–170.
- [13] A. Mukherjee and A. K. Das, Intuitionistic fuzzy rough relation, Ann. Fuzzy Math. Inform. 6 (1) (2013) 115–126.
- [14] A. Mukherjee and M. Datta, Rough interval-valued intuitionistic fuzzy sets, Ann. Fuzzy Math. Inform. 9 (1) (2015) 111–123.
- [15] K. Qin and Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy sets and Systems 151 (2005) 601–613.
- [16] S. Rizvi, H. J. Naqvi and D. Nadeem, Rough intuitionistic fuzzy set, in: JCIS Proceedings of the 6th Joint Conference on Informations sciences, Durham, NC (2002) 101–104.
- [17] S. K. Samanta and T. K. Mondal, Intuitionistic fuzzy rough sets and rough intuitionistic fuzzy sets, J. Fuzzy Math. 9 (3) (2001) 561–582.
- [18] Y. H. She and G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Comput. Math. Appl. 58 (2009) 189–201.
- [19] R. Srivastava, A. K. Srivastava and A. Choubey, Fuzzy closure spaces, J. Fuzzy Math. 2 (3) (1994) 525–534.
- [20] A. K. Srivastava and S. P. Tiwari, IF-topologies and IF-automata, Soft Comput. 14 (2010) 571–578.
- [21] S. P. Tiwari and Arun K. Srivastava, Fuzzy rough sets, fuzzy preorders and fuzzy topologies, Fuzzy Sets and Systems 210 (2013) 63–68.
- [22] S. P. Tiwari and Anupam K. Singh, On bijective correspondence between IF-preorders and saturated IF-topologies, Int. J. Mach. Learn. Cybernet. 4 (2013) 733–737.
- [23] S. P. Tiwari and Anupam K. Singh, IF-preorder, IF-topology and IF-automata, Int. J. Mach. Learn. Cybernet. 6 (2015) 205–211.
- [24] S. P. Tiwari, S. Sharan and V. K. Yadav, Fuzzy closure spaces vs fuzzy rough sets, Fuzzy Inf. Eng. 6 (2014) 93–100.
- [25] W. Z. Wu, A study on relationship between fuzzy rough approximation operators and fuzzy topological spaces, Fuzzy Systems and Knowledge Discovery, in: Lect. Notes Comput. Sci. 3613 (2005) 167–174.
- [26] W. Z. Wu and L. Zhou, On intuitionistic fuzzy topologies based on intuitionistic fuzzy reflexive and transitive relations, Soft Comput. 15 (2011) 1183–1194.

- [27] N. X. Xie, On topological properties of IF approximation spaces, Fuzzy Inf. Eng. 7 (2015) 183–193.
- [28] W. N. Zhou, Generalization of L-closure spaces, Fuzzy Sets and Systems 149 (2005) 415–432.
- [29] L. Zhou and W. Z. Wu, On generalized intuitionistic fuzzy rough approximation operators, Inform. Sci. 178 (2008) 2448–2465.

ANUPAM K. SINGH (anupam09.bhu@gmail.com)

Amity Institute of Applied Science (AIAS), Amity University, Sector-125, Noida Uttar Pradesh-201313, India

S. P. TIWARI (sptiwarimaths@gmail.com)

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India