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ABSTRACT. The objective of this paper is to study the relationship be-
tween IF-rough sets, IF-closure spaces and IF-topology. We show that the
bijective correspondence between the family of all IF-reflexive approxima-
tion spaces and the family of all quasi-discrete IF-closure spaces satisfying
a certain extra condition. We also introduce and study the similar cor-
respondence between the family of all IF-tolerance approximation spaces
and the family of all symmetric quasi-discrete IF-closure spaces satisfying
a certain extra condition.
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1. INTRODUCTION

Fuzzy rough set theory, firstly proposed by Dubois and Prade [8] as a fuzzy gen-
eralization of rough sets by replacing crisp binary relations to fuzzy relations, has
now developed significantly [8, 13, 15, 18, 21, 22]. Simultaneously, the relationship
between fuzzy rough sets and fuzzy topological spaces were studied by different re-
searchers(cf., [3, 15, 18, 25]). Among these works in [18], it has shown that there is a
bijective correspondence between the set of all fuzzy preorder approximation spaces
and the set of all saturated topological spaces satisfying a certain extra condition. In
order to find such correspondence for fuzzy reflexive/tolerance approximation spaces
and some set of fuzzy topological spaces; recently, in [24], it has shown that there
exists a bijective correspondence between the set of fuzzy reflexive/tolerance approx-
imation spaces and the set of fuzzy closure spaces satisfying a certain extra condition.

After introduction of an intuitionistic fuzzy set by Atanassov [1], the researchers
proposed a new hybrid model, namely intuitionistic fuzzy rough set theory, to de-
scribe the uncertain information by combining intuitionistic fuzzy set theory and
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rough set theory (cf., [4, 6, 7, 14, 16, 17]) [At this point, we mention that in [J], it
has been argued, rather convincingly, that the use of the term intuitionistic for the
concept introduced by Atanassov [1], is inappropriate. Accordingly, we use in this

paper the prefix I F- in place of intuitionistic fuzzy, thus for example, an intuitionis-
tic fuzzy set is renamed here as an IF-set. This terminology has already been used in
[20, 22].]. Simultaneously, the relationship between IF-rough sets and IF-topological
spaces were studied (cf., [22, 23, 27, 28, 29]).

Among these works, in [22, 26], it has been shown that there is a bijective cor-
respondence between the family of all IF-preorders and the family of all saturated
IF-topological spaces satisfying a ‘certain extra condition’, which is a consequence
of the similar result introduced in [18] and [21] respectively. Still there is a silence
on the bijective correspondence between the set of all IF-reflexive/tolerance approx-
imation spaces and some set of IF-topological spaces. Throughout this paper, we
try to fill this gap by using the concept of IF-closure spaces.

2. PRELIMINARIES

In this section, we recall some basic concepts and results related to IF-set, IF-
rough set and IF-binary relation, which will be used in the subsequent sections.
Throughout, I stands for [0,1]. For a nonempty set X and A C X, I and
14 : X — I shall, respectively denote the set of all fuzzy sets in X and the charac-
teristic function of A. Throughout, J is an index set.

We begin with the following.

Definition 2.1 ([1]). An IF-set A in X is a pair (pua,va) of fuzzy sets in X, i.e.,
functions pa,va : X — I, such that pa(z) +va(z) < 1; Vo € X.

(na(z) and v4(z), appearing in the above definition, are usually interpreted re-
spectively as the degree of membership and the degree of non-membership of z in A).

Throughout, IFS(X) will denote the family of all IF-sets in X and I* means the
set {(x1,x2) : (z1,22) € I X I, 1 + 29 < 1}.

Remark 2.2. We shall usually denote the two parts of an IF-set A also as pa
and v4 and express A as (pua,va). An IF-set A = (pa,va4) in X will frequently
be also viewed as a function A : X — TI* given by A(z) = (pa(z),va(x)),x €
X. In particular, the TF-set (07,\5) is given by (c;,\ﬁ)(x) = (a, 3), where a and 8
are respectively the a-valued and the S-valued constant fuzzy sets in X such that
a+83 < 1. We shall denote the IF-set by 1, which is given by (1,0)(z) = (1,0),z € X,
where 1 and 0 are respectively the 1-valued and the 0-valued constant fuzzy sets in
X.

Definition 2.3 ([25]). For y € X, an IF-singleton set 1, = (u1,,v1,), is defined as

follows: ; ;
1 ifz=y _J 0 ifz=y
:Ufly(x){ 0 ifex#y 1/11/(1’){ 1 ifzx#y.
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Definition 2.4 ([20]). Let R be an IF-binary relation on X. Then R is called
(i) reflexive if pr(z,z) =1 and vgr(z,z) = 0,Vx € X;
(11) symmetric if ,LLR(if,y) = :U‘R(yax) and VR(‘xa y) - VR(y,ZL’),VI, y e X7
(iii) transitive if Vz,y,z € X,pr(x,y) A pr(y,2) < pr(z,z) and vg(z,y) vV
vr(y, z) > vr(z, 2).
Definition 2.5. Let R be an IF-binary relation on X. Then R is called an IF-
tolerance relation if it is IF-reflexive and IF-symmetric.

Definition 2.6 ([29]). A pair (X, R) is called an IF-approximation space if X is a
nonempty set and R is an I[F-relation on X.

For an IF-reflexive relation R, we call the IF-approximation space (X, R), an IF-
reflexive approximation space. Also, if R is an IF-tolerance relation, we call (X, R)
an [F-tolerance approximation space.

Definition 2.7 ([29]). Let (X, R) be an IF-approximation space and A € IFS(X).
The lower and upper approximation of A, denoted by R(A) and R(A), are two IF-
sets and are respectively defined as follows:

R(A) = (kr(a), VR(4)), R(A) = (bga)> VR(a))> where

prea) (@) = Mpgre(z,y) V paly) 1y € X},
vr(a) () = V{vge(w,y) Avaly) : y € X},
tzcay (@) = V{pr(z,y) Apaly) 1y € X},
Ve (@) = Mrr(z,y) Vvaly) 1y € X}

The pair (R(A), R(A)) is called an IF-rough set.
Remark 2.8 ([25]). For an IF-binary relation R on X and A € IFS(X), the

pair R and R are ‘dual’ i.e., R(A) = [R(A°)]¢ and R(A) = [R(A°)]¢, since Vz €
X [R(A)*(@) =1 = V{R(z,y) AN A(y) 1y € X} =1 V{R(z,y) N(1 - A(y)) 1y €
X}=NM1-R(z,y) VA(y) :y € X} = N{R(z,y) VA(y) : y € X }.

Proposition 2.9 ([29]). Let (X, R) be an IF-reflexive approzimation space and
A,B e IFS(X). Then
(i) R(AANB) = R(A)
(ii) R(AV B) = R(A)
(i) R(A) < 4, A < R(A).
Proposition 2.10 ([29]). Let (X, R) be an IF-approzimation space and A € IFS(X).

Then R is an IF-transitive relation on X if and only if R(R(A))
< R(A).

(B);

R(A)ANR
R(A)V R(B);

The IF-topological concepts, we use here are fairly standard and based on [5].
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Definition 2.11. An IF-topology on a nonempty set X is a family 7 of IF-sets in
X, such that

(i) (. 5) € 7.¥(a, 9) € I';

(i) {Aj:iedJter=V{A4:ieJ}er

(i) AL Betr=AABeT.
The pair (X, 7) is called an IF-topological space. The IF-set in 7 are called IF 7-
open set and there complements are called IF 7-closed set. Further, an IF-topological
space (X, 7) is called saturated if {A; : je J} et = A{A;:jeJ}erT.

Definition 2.12. A Kuratowski IF-closure operator on X is a map k: IFS(X) —
IFS(X), such that VA, B € IFS(X) and V(«, 8) € I*, the following condition holds:
(i) k((a, 8)) = (o, B),
(ii) A <k(A),
(iii) k(AV B) =k(A)V k(B),
(iv) k(k(A)) = k(A).

Definition 2.13. A Kuratowski IF-closure space is a pair (X, k), where X is a
nonempty set and k : IFS(X) — IFS(X) is a Kuratowski IF-closure operator on
X.

Proposition 2.14 ([26]). Let (X, R) be an IF-reflexive approximation space. Then
TR = {A € IFS(X) : R(A) = A} is a saturated IF-topology (in the sense that
arbitrary supremum of an IF 1z-closed set is also IF Tz-closed) on X.

Proposition 2.15 ([26]). Let k be Kuratowski IF-closure operator on X. Then
there exists an IF-reflexive and IF-transitive relation Sy = (us,,vs,) on X such
that VA € IFS(X) and V(a, B) € I*, Si(A) = k(A) if and only if k(A A (o, B)) =
K(A) A (@ B).

3. IF-CLOSURE SPACE

The notion of fuzzy closure space was introduced in [12, 19]. In literature [2, 11,

] several generalizations of fuzzy closure space have been studied. In this section,
we introduce the concepts of IF-closure space and investigate their relationship with
Kuratowski IF-closure operators. Lastly, we show that the Kuratowski IF-closure
operator associated with a quasi-discrete IF-closure space induces a saturated IF-
topology.

We begin by introducing the following concept of an IF-closure space.

Definition 3.1. An IF-closure space is a pair (X, ¢), where X is a nonempty set
and ¢: IFS(X) — IFS(X) is a map such that
(i) (e B)) = (o B),
(ii) A < c(A),
(iii) ¢(AV B) =c¢(A) V ¢(B),
VA,B € IFS(X) and V(«, 8) € T*.

Remark 3.2. It is not necessary that every IF-closure space is a Kuratowski TF-
closure space.
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The following example shows that how a IF-closure space differ from a Kura-
towski IF-closure space. Specifically, it is shown here that for an IF-closure space
c,c(c(A)) # c(A),VA € IFS(X).

Example 3.3. Let X be any set containing at least two points. Define a map
c¢: IFS(X) — IFS(X) as follows : for A = (pua,va) € IFS(X) and z € X,

c(A)(z) = (tea)(x), ve(a)(z)), where

2ua(x) if pa(z) < k1/2,
here k1 = V .
He(a) () = where k1 = Vipa(e)hrex
k1 if pa(x) >ki/2 ,
and
2Z/A(.’13) if Z/A<.’17) > k2/2,
Vo) (@) = where ky = AM{va(2)}zex
ko ifl/A(l’)<k’2/2.

Then the conditions (i) c((oj,\ﬁ)) = (07,\6) and (ii) A < ¢(A) are obvious. To
prove condition (iii) ¢(A V B) = ¢(A) V ¢(B), let V{uaup(2)}.ex = k1. Now, if
taup(x) < k1/2, then pa(x) < k1/2 or pp(z) < ki/2. Thus pa(x) < k1/2, up(x) <
k1/2, or that pieay(x) = 2ua(z) and pepy(x) = 2up(x). Therefore poaupy(x) =
2pauB(x) = 2pa(@) U 2u8(x) = pie(a)(®) U pien) (@) = (te(a) U pep)) (@) and
Mvanp(2)}zex = ka. Then if vanp(x) > ka/2, then vu(x) > ko/2 and vp(z) >
ko/2. Thus va(z) > ka2/2,vp(x) > ko/2. Hence vea)(z) = 2va(z) and v p)(z) =
2vp(x). Therefore v, anp)(z) = 2vanB(z) = 2vA(2)N2vB(T) = Ve(a)(T) ey (T) =
(Ve(a)y NVe(py)(x). Hence in this case, c(AU B) = ¢(A) U ¢(B).

Further, if paup(x) > k1/2, then pa(x) > k1/2 or pup(x) > ki1/2. Thus pa(z) >
k1/2,up(x) > k1/2. Therefore poa)(z) = pep)(z) = k1 and if vanp(z) < k2/2,
then v4(z) < ko/2 and vp(x) < ko/2. Thus va(x) < ko/2,vp(x) < ko/2. Therefore
Ve(ay(w) = ve)(z) = kp. Thus in this case also ¢(AU B) = ¢(A) Uc(B). Hence, c is
an IF-closure space in the sense of Definition 3.1. On the other hand, it is not a Ku-
ratowaski IF-closure operator, since if we take a non-constant IF-sets A = (ua,v4) €
IFS(X) such that A(zo) = (pa(xo),va(zo)) = k/16 = (k1/16, k2/16) i.e., pa(zo) =
k1/16,v4(x0) = ko/16 for some xg € X, where V{4 (2)}.ex and ks = A{va(2)}.ex.
Thus pe(ay(@o) = k1/8,ve(a)(w0) = ka/8 but pic(e(ay)(wo) = k1/4,Ve(e(ay)(20) =
ka/4, showing that c(c(A4)) # c(A).

Definition 3.4. An IF-closure space (X,c) is called quasi-discrete if ¢(V{4; : i €
J} =V{c(4;) i e J},VA€IFS(X),i € J.

Definition 3.5. An IF-closure space (X,c) is called symmetric if fie(1,)@)
= He(1)(y) A0 Ve(1,) (@) = Ve(1,)(y), VoY € X

Definition 3.6. Let (X, ¢) be an IF-closure space and A € TFS(X). Then the IF-
interior i(A) = (pi(a), Vi(a)) of A is given by p;ay = pje(aeye and v ay = Vie(aeye-

Definition 3.7. Let (X, c) be an IF-closure space and A € IFS(X). Then A is
IF-closed if pe(a) = pra and vea) = va.
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Proposition 3.8. Let (X, c) be an IF-closure space. Then
(i) c(NiesAsi) < Niege(A;),VA; € IFS(X),i € J; and
(ii) if A < B then ¢(A) < ¢(B),VA,B € IFS(X).
Proof. The proof is straightforward. a

Definition 3.9. For an IF-closure space (X, ¢), a Kuratowski IF-closure operator
¢:IFS(X) - IFS(X) is defined by ¢(4) = N{B € IFS(X) : A < B and ¢(B) =
B}.

It follows immediately from the above definition that A < &(A).

We shall denote by 7z, the IF-topology induced by &, which is given by 7= = {4 €
IFS(X):¢(A%) = A°}.
Proposition 3.10. Let (X, ¢) be an IF-closure space. Then VA € IFS(X).

(i) c(E(A)) = E( ), (i-e., ¢(A) is IF 7z-closed),
(i) ¢(A) <
(iii) ¢(A) = zf and only if ¢(A) = A.
Proof. (i) Let A € IFS(X). Then from Proposition 3.8 (i), we have

He(a(A)) = He(A{B:A<B and ¢(B)=B}) < A {c(B):A<B and ¢(B)=B}

= A U{B:A<B and ¢(B)=B} = Hz(A)
and

Ve(e(A)) = Ve(V{B:A>B and ¢(B)=B}) Y V{c(B):A>B and ¢(B)=B}

= V V{B:A>B and «(B)=B} = Vz(A)-
Thus ¢(¢(A)) < ¢(A). Also, ¢(A) < ¢(¢(A)) obviously. So c¢(¢(A)) = ¢(A).

(ii) Since pra < pigay and va > Ve(ay, fle(a) < He(e(A)) = He(a) and Ve(ay = Ve(a(a)) =
Ve(a)- Thus c¢(A) < ¢(A).

(iii) Let pie(a) = pa and ve(a) = va, YA € IFS(X). Then Ais an IF 7¢-closed. Thus,
pecay < pa and vgq) > va, (cf., Definition 3.9). Also, pa < pga) and va > vga).
S0 ple(a)y = pa and I/C(A) = va. Conversly, let pga) = pa and vgay = va. Then
from (11), we have HA < He(A) < He(A) and Va2 Ve(A) > Ve(A)- NOW7 if He(A) = 1A
and vg4) = va. Then, we have 14y = pa and ve4y = va. Thus ¢(A) = A, O

Proposition 3.11. Let (X,c) be an IF-closure space. Then YA € IFS(X),c(A) =
c(A) if and only if c(c(A)) = c(A).

Proof. Let c(A) = ¢(A), i.e., pe(a)y = Heay and ve(ay = Vga), VA € IFS(X). Then
He(e(A)) = He(e(A)) = He(a) = He(a) AN Ve(e(a) = Ve(e(4)) = Ve(a) = Ve(a). Thus
c(c(A)) = c¢(A). Conversly, let c(c(A)) = c(A), i.e., fle(e(a)y) = te(ay and Ve(ea)y) =
Ve(ay- Then c¢(A) is an IF 7e-closed. Thus by Proposition 3.10 (iii), a4y = fe(a)
and vz a) = Ve(ay. S0 c(A) = ¢(A). O

Proposition 3.12. Let (X,c¢) be a quasi-discrete IF-closure space. Then the IF-
topology Tz induced by ¢ on X is a saturated IF-topology.
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Proof. Follows from Definitions 3.4, 3.9 and Proposition 3.11. O

4. ITF-CLOSURE SPACES AND IF-ROUGH SETS

In this section, we show that there exists a bijective correspondence between the
family of all IF-reflexive/IF-tolerance approximation spaces and the family of all
quasi-discrete IF-closure spaces satisfying certain extra conditions.

We begin by introducing the following.
Proposition 4.1. Let (X, R) be an IF-reflexive approzimation space. Then (X, R)

—

is a quasi-discrete IF-closure space such that R(A A (o/z,\ﬂ)) = R(A) A (o, 8),VA €
IFS(X) and ¥Y(a, ) € IT*.

Proof. From Proposition 2.9, it follows that (X, R) is an IF-closure space. Now, let
A; = (pa,,va,) € IFS(X),i € Jand x € X. Then

1 aic) (@) = Vipr(@,y) A (V{pa, i € J})(y) : y € X}
=V{V{ur(z,y) A pa,(y) 1y € X}rie J}

:\/{NE(Ai) 11 € J}
and

VE(naien) (@) = Myr(z,y) V (Mya, 1i € J})(y) 1y € X}
=MNN{vr(z,y) Vs, (y):ye X}:ie J}
whereby R(V{A; : i € J}) = V{R(A;) : i € J}. Hence (X, R) is a quasi-discrete
)

)
IF-closure space. Also, for each A € IFS(X) and (o,8) € I*,R(AA (o, B)) =
R(A) A (a, B) follows trivially. O

Proposition 4.2. For a quasi-discrete IF-closure space (X, R), R is an IF-interior
operator on X.

Proof. Follows from Remark 2.8 and Definition 3.12.
Before stating next, recall the following from [10].

Definition 4.3. For y € X and («o,3) € I*, with a + 8 < 1. The IF-subset
(1y A (o, B)) = (u1, Aa,v1, V B) of X is called an IF-point in X, and is denoted as
Y(a,8), Where

(e, ) fz=y
Y(ap) (@) = { (0,1) ifx#y.
Proposition 4.4. Let (X,c) be a quasi-discrete IF-closure space such that ¢(A A
(o, 8)) = c(A) A (o, 8),VA € IFS(X) and V(a, B) € I*. Then there exists a unique

IF-reflezive relation R. = (ur,,vr.) on X such that R.(A) = c¢(A),VA € IFS(X).
165



Anupam K. Singh et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 1, 159-171

Proof. Let (X,c) be a quasi-discrete IF-closure space such that c¢(A4 A (&,\6)) =
c(A) A (o, 8), VA € IFS(X) and V(«o, ) € I*. Also, let R. be an IF-relation
on X given by pg,(z,y) = pe(,)(x) and vg (z,y) = ve,)(z),¥2,y € X. Then

1= (1/7\0) = (/’le(x)7ylz(x)) < (Nc(lx)(m)7VC(lm)(x))' Thus C(lx)(l') = 17 Le.,
(He(1) (@), ve1,) () = (1,0) = 1, whereby R. is an IF-reflexive relation on X.
Now, for z € X,

KR, (a)(T) = “Ec(uyexya)(x) = UyeX iR, (y,) (%)
and
VR.(A)(x) = Vﬁc(ﬂyexyg)(l‘) = ﬁyeXl’R(yg)(I)-
Also,
1F, () (@) = ViR (@, 0) A py, (v) 1 u € X} = pp. (2,9) Ao = pea,)(2) A

= We(1,)a)(T) = fe(1,ra)(T)
and

VR, () (&) = MR (2,u) Vv, (u) tu € X} = vp (2,9) VB = v, (2) V B

B =Vie(1,)v8) () = Ve, vp) (0)-
Thus R”(y(fﬂ\))(x) =c(1y Ao, B))(x) = C(y(;ﬁ\))(:r) Further,

/”'ﬁc(A) (Z‘) = UyEX,uc(ym)(m) = Mc(uygxy(ayﬁ))(x) = He(A) (.23)

and

VR, () (%) = NyexVe(ya 5) (T) = Ve(yexyia,0) (T) = Ve(a) (2)
and

1B, () () = Uyexfe(y—) (T) = feUyexyzs) (2) = pe(a) (@)
and

VR, (4)(T) = NyexVe(y—) (¥) = Ve(nyexy ) (£) = Ve(a) ().

(a,8)

Thus, R.(A) = ¢(A),YA € IFS(X). To show the uniqueness of IF-relation R.., let
R' = (ur:,vrr) be another IF-reflexive relation on X such that g 4)(2) = pe(a)
and Vﬁ(A)(a:‘) = I/C(A),VA S IFS(X) Then

pr (2, y) = pe,) (@) = pgr )y (@) = V{pr (z,u) A, (u) s u € X} = pre(2,y)
and

Vi, (5,9) = Veqay) () = v (@) = Ap (2,0) V i, (0) £ 4 € X} = v (3,9).
Thus R, = R’. Hence the IF-relation R, on X is unique. O
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Proposition 4.5. Let F be the set of all IF-reflexive approzimation space and T
be the set of all quasi-discrete IF-closure spaces satisfying c(A A (o, B)) = ¢(A) A

(o, B),YA € IFS(X) and ¥(«, B) € I*. Then there exists a bijective correspondence
between F and T.

Proof. Follows from Propositions 4.1 and 4.4. O
Proposition 4.6. Let (X,c¢) be a quasi-discrete IF-closure space satisfying c(A A

—

(c;,\ﬁ)) =c(A) A (o, 8),YA € IFS(X) and ¥Y(a, B) € I* and R, be an IF-reflexive
relation on X such that R.(A) = c(A),YA € IFS(X). Then Tr, = Tz.

Proof. Let A € 7z. Then ¢(A®) = A°, ie., pgaey = pac and vgae) = Vae. As
from Proposition 3.10, pie(ay < piaay and veay > vga), VA € TFS(X), we have
He(aey < prac and Vegey = Vae, or that pa < pijeaeye and va 2> Vieae)e, showing
that pa < pg (a) and va > vp_(a). Also ugr (a) < pa and vg_(a) > va, whereby
R (A) = A. Thus 7z < 7g,. Conversly, let A € 7r,. Then up (1) = pa and
VR (A) = Va, or that R, (Ac)e = HA and ViR, (Ac))e = VA ie., PR, (Ac) = HaAe and
VR, (Ac) = VaAc, whereby pie(ac)y = pac and vog4ey = vae. Thus from Proposition
3.10, pg(aey = pac and vgaey = Vae, whereby A € 7¢, or that 7r, < 7. Hence
TR, = Te- O

For a given quasi-discrete IF-closure space (X, ¢) satisfying c¢(AA (CZ\B)) =c(A)A
(oj,\ﬂ),VA € IFS(X), Y(a, B) € I* and its associated Kuratowski IF-closure opera-
tor ¢, (X, ¢) is obviously a quasi-discrete IF-closure space such that ¢(A A ((5,78)) =
c(A) A (m),VA € IFS(X), Y(a, B) € I'* and hence Proposition 4.4, will induce an
IF-reflexive relation, say, Sz = (us,,vs,) on X, given by Sz(x,y) = ¢(1,)(x), ie.,
MSa(x’y) = /Jé(ly)(‘r)a VSa(x7y) = VE(ly)(‘T)?vxay € X.

Before stating next, we recall the following concept of IF-transitive closure.
Definition 4.7. Let R and T be two IF-relations on X. Then T is called IF-
transitive closure of R if
(i) T is an IF-transitive,
(i) R<T, and
(iii) if S is an IF-transitive with R < S, then T < S, i.e., T is the smallest
IF-transitive relation containing R.

Before stating the next proposition we need to prove the following lemma.
Lemma 4.8. Let (X, R) and (X, S) be two IF-approzimation spaces. Then R < S
if and only if R(A) = (Lgeays VR(a)) < (B50a): V5(a)) = S(A), VA € IFS(X).

Proof. Let pg ) < b5y and Vg4 = Vg4, VA € IFS(X). Then
1) (@) < pg(a) (@), Vo € X, whereby
Vipr(,y) Apaly) ry € X} < Vi{ps(e,y) Apaly) 1y € X}

= pr(@,y) < ps(@,y), ¥o,y € X
and
VR(a)(®) 2 vg4)(2), Vo € X, whereby
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Mrr(z,y) Vvaly) iy € X} > Mug(z,y) Vvaly) cy € X}

= vr(z,y) > vs(z,y),Ve,y € X.
Hence R < S.
Conversly, let R < S, i.e., pug < ps and vg > vg. We have to show that IR ) <
H5cay and Vg 4y = Vg4, VA € IFS(X). Now,

igcay (@) = V{pr(z,y) Apaly) cy € X} < V{us(@,y) Apaly) 1y € X}

=pga(2), Vo € X
and

VR (@) = Myr(z,y) Vvaly) 1y € X} > Mus(a,y) Vvaly) 1y € X}

=rg(4)(@), Vo € X.
Hence pizz 4y < pg(a) and vg ) = vg(4), VA € IFS(X), ie., R(A) < S(A),VA €
IFS(X). O
Proposition 4.9. Let (X,c¢) be a quasi-discrete IF-closure space such that ¢(A A
(o:\ﬂ)) = ¢(A) A (oj,\ﬂ),VA € IFS(X) and V(a,B) € I* and ¢ be the associated
Kuratowski IF-closure operator. Then the IF-relation Sz = (ps,,vs,) is the IF-
transitive closure of IF-relation R. = (ur,, VR, )-

Proof. Let Sé(xay) = 5(13;)(55)7 Le., (MSa(xay>’ VSa(xa y)) = (Né(ly)(z)a Vé(ly)(x))vvx7
y € X. Then from Propositions 2.10 and 4.4, Sz is the IF-transitive relation on X.
Also, from Proposition 3.10, it follows that pur, < us, and vr, > vg,. To show that
relation Sz is the IF-transitive closure of IF-relation R, it only remains to show that
Sz is the smallest IF-reflexive transitive relation containing R.. So, let T' = (ur, vr)
be another IF-reflexive transitive relation on X such that yur, < pr and vg, > vr.
Then from the reflexivity of T, (X,T) is quasi-discrete IF-closure space. Now by
using the fact that T is IF-transitive also, and by using Proposition 3.11 followed by
Proposition 2.15,

HT(A) = MA{BEIFS(X):A<B,T(B)=B}

and

VTA) = YW{BeIFS(X):A>B,T(B)=B}
VA € IFS(X). Also, Sz being IF-reflexive and IF-transitive relation associated with
Kuratowski IF-closure operator ¢, from Proposition 2.15, it follows that HS.(a) =
4y and Vg.(4) = Ve(ay, VA € IFS(X). Finally, ¢ being Kuratowski IF-closure
operator associated with quasi-discrete IF-closure space (X, ¢),
He(a) = N H{BEIFS(X):A<B.c(B)=B} = MNY{BeIFS(X):A<B R.(B)=B}

and

Ve(A) =V V{BEIFS(X):A>B,c(B)=B} = V V(BelFS(X):A>B,R.(B)=B}>

VA € IFS(X) (cf., Proposition 4.4). Thus from Lemma 4.8,
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HS.a) = N H{BeIFS(X):A<B.R.(B)=B} = N\ H{BeIFS(X):A<BT(B)=B} = MT(a)

and

Vs.a) = V Y(BelFS(X):A>B,R.(B)=B} = Y V[BeIFS(X):A>B,T(B)=B} = VT(A)’
whereby 15,4y < HT(a) and V5,(4) 2 VT(A) showing that Sz < T. O

Now, we show that there is a bijective correspondence between the set of all IF-
tolerance approximation spaces and the set of all symmetric quasi-discrete IF-closure
spaces satisfying an extra condition.

Proposition 4.10. Let (X, R) be an IF-tolerance approzimation space. Then (X, R)
is a symmetric quasi-discrete IF-closure space such that R(A A (a, B)) = R(A) A
(o, B), VA€ IFS(X) and V(«, B) € I*.

Proof. Similar to that of Proposition 4.1. O

Proposition 4.11. Let (X,c) be a symmetric quasi-discrete IF-closure space such
that c(AN (o, B)) = c(A)A (o, B), VA € TFS(X) and ¥(«, B) € T*. Then there exists
a unique IF-tolerance relation R. on X such that R.(A) = ¢(A),VA € IFS(X).

Proof. Follows from Proposition 4.4 and the fact that (X, ¢) is a symmetric IF-closure
space. O

Proposition 4.12. Let F be the set of all IF-tolerance approzimation spaces and T
be the set of all symmetric quasi-discrete IF- closure spaces satisfying c(AN(a, ) =

c(A) A (a/,\ﬁ), VA € IFS(X) and ¥(«, B) € I*. Then there exists a bijective corre-
spondence between F and T.

Proof. Follows from Propositions 4.10 and 4.11. O

Proposition 4.13. Let (X, c) be a symmetric quasi-discrete IF-closure space such
that c(A/\(oT,zf)) = C(A)/\(Oj,\ﬂ), VA € IFS(X), V(a,8) € I and ¢ be the associated
Kuratowski IF-closure operator. Then the IF-relation Sz is an IF-transitive closure
of an IF-relation R..

Proof. Follows from Proposition 4.9. g

5. CONCLUSIONS

We have tried to introduce the concept of IF-closure spaces and establish their
relationship with [F-approximation spaces. The notable results we have shown here
are the bijective correspondence between the family of all [F-reflexive approximation
spaces and the family of all quasi-discrete IF-closure spaces satisfying certain extra
conditions as well as the bijective correspondence between the family of all IF-
tolerance approximation spaces and the family of all symmetric quasi-discrete IF-
closure spaces satisfying certain extra conditions.
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