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1. Introduction

The fuzzy differential and integral equation (see e.g. [2, 3, 4, 6, 7, 10, 11, 19, 20,
22, 23, 24] and references therein) are a very important topic of fuzzy analytic theory
as well as on their applications (see e.g.[1, 12, 21]). The study of fuzzy differential
equation has been extended to the random fuzzy differential equations (see e.g.
[13, 14, 15, 16, 25, 26, 27]). The random fuzzy differential equations (RFDEs) can
provide good models of the dynamics of real phenomena which are subjected to two
kinds of uncertainty: randomness and fuzziness, simultaneously. Here, it is called
a fuzzy random variable. We can find various definitions of fuzzy random variables
in [17, 18, 28]. The relations between different concepts of measurability for fuzzy
random variables are contained in the paper of Kim [28]. Malinowski [13] studied the
existence and uniqueness of solution to RFDEs under classical Hukuhara derivative.
In [14, 15] the different types of solution to RFDEs with kinds of two different
concepts of fuzzy derivative is studied. For the existence and uniqueness of solution
to RFDEs in [13, 14, 15, 16], author used the method of successive approximations.
From the idea of the paper [13, 14, 15, 16], Park and Jeong [9] discussed the existence
and uniqueness of solution to random functional fuzzy differential equations.

In this paper, inspired and motivated by Fei (see [25, 26]) and Malinowski (see
e.g. [13, 14, 15, 16]). We consider the random fuzzy integral equations of Urysohn-



Dong. S-Le et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 1, 145–157

Volterra type. The paper will be organized as follows: In section 2 we collect the
fundamental notions and facts about fuzzy set space. We recall the notions of fuzzy
random variable and fuzzy stochastic process. In section 3, we prove the existence
and uniqueness results for the random fuzzy integral equations of Urysohn- Volterra
type. The continuity of solutions with respect to the coefficients of the equations is
discussed. In Section 4, we provide examples to illustrate the results.

2. Preliminaries

Let Kc(Rd) denote the collection of all nonempty compact and convex subsets
of Rd. The addition and scalar multiplication in Kc(Rd), we define as usual, i.e.
A,B ∈ Kc(Rd) and λ ∈ R, then we have

A+B = {a+ b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}.

The Hausdorff distance dH in Kc(Rd) is defined as follows

dH(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖Rd , sup

b∈B
inf
a∈A
‖a− b‖Rd},

where A,B ∈ Kc(Rd), ‖.‖Rn denotes the Euclidean norm in Rd. It is known that
(Kc(Rd), dH) is a complete a metric space.

Denote Ed = {u : Rd → [0, 1] such that u(z) satisfies (i)-(iv) below}
(i) u is normal, that is, there exists an z0 ∈ Rd such that u(z0) = 1;

(ii) u is fuzzy convex, that is, for 0 ≤ λ ≤ 1, u(λz1+(1−λ)z2) ≥ min{u(z1), u(z2)},
for any z1, z2 ∈ Rd;

(iii) u is upper semicontinuous;
(iv) [u]0 = cl{z ∈ Rd : u(z) > 0} is compact.

Although elements of Ed are often called the fuzzy numbers, we shall just call them
the fuzzy sets. For α ∈ (0, 1], denote [u]α = {z ∈ Rd |u(z) ≥ α}. We will call this set
an α−cut ( α− level set) of the fuzzy set u. For u ∈ Ed one has that [u]α ∈ Kc(Rd)
for every α ∈ [0, 1]. For two number fuzzys u1, u2 ∈ Ed , we denote u1 ≤ u2 if and
only if [u1]

α ⊂ [u2]
α

.
If g : Rd × Rd → Rd is a function then, according to Zadeh’s extension principle,

one can extend g to Ed × Ed → Ed by the formula

g(u1, u2)(z) = sup
z=g(z1,z2)

min {u1(z1), u2(z2)} .

It is well known that if g is continuous then [g(u1, u2)]α = g([u1]α, [u2]α) for all
u1, u2 ∈ Ed, α ∈ [0, 1]. Especially, for addition and scalar multiplication in fuzzy set
space Ed, we have

[u1 + u2]α = [u1]α + [u2]α, [λu1]α = λ[u1]α.

where u1, u2 ∈ Ed, λ ∈ R \ {0} and α ∈ [0, 1].
Let us denote

D(u1, u2) = sup{dH([u1]α, [u2]α) : 0 ≤ α ≤ 1}

the distance between u1 and u2 in Ed, where dH([u1]α, [u2]α) is Hausdorff distance
between two set [u1]α, [u2]α of Kc(Rd). It is easy to see that D is a metric in Ed.
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Some properties of metric D are as follows:

D(u1 + u3, u2 + u3) = D(u1, u2),

D(λu1, λu2) = |λ|D(u1, u2),

D(u1, u2) ≤ D(u1, u3) +D(u3, u2),

for all u1, u2, u3 ∈ Ed and λ ∈ R.
Let u1, u2 ∈ Ed, if there exists u3 ∈ Ed such that u1 = u2 + u3 then u3 is

called the H-difference of u1, u2 and it is denoted u1 	 u2. Let us remark that
u1 	 u2 6= u1 + (−1)u2.

We define 0̂ ∈ Ed as 0̂(x) = 1 if x = 0, and 0̂(x) = 0 if x 6= 0.
The following remarks can be verified (see [4, 14, 15]).

Remark 2.1. If for fuzzy sets u1, u2, u3 ∈ Ed there exist H-difference of u1 	 u2
and u1 	 u3 then D(u1 	 u2, 0̂) ≤ D(u1, u2) and D(u1 	 u2, u1 	 u3) ≤ D(u1, u3).

Remark 2.2. If for fuzzy sets u1, u2, u3, u4 ∈ Ed there exist H-difference of u1	u2
and u3 	 u4 then D(u1 	 u2, u3 	 u4) ≤ D(u1 + u3, u2 + u4).

Let (Ω,F ,P) be a complete probability space. A function x : Ω → Ed is called
fuzzy random variable, if the set-valued mapping [x(·)]α : Ω→ Kc(Rd) is a measur-
able multiplication for all α ∈ [0, 1], i.e. {ω ∈ Ω| [x (ω)]

α ∩B 6= ∅} ∈ F for every
closed set B ⊂ Rn. A mapping x : [a, b] × Ω → Ed is said to be a fuzzy stochastic
process if x(·, ω) is a fuzzy set-valued function with any fixed ω ∈ Ω, and x(t, ·) is
a fuzzy random variable for any fixed t ∈ R+. In [13], x(·, ω) function is called a
trajectory. Beside concepts above, a fuzzy stochastic process x(t, ω) ∈ Ed is called
continuous if for almost all ω ∈ Ω the trajectory x(·, ω) is a continuous function on
[a, b] with respect to the metric D.

Assume that u : [0, b]× Ω× Ed → Ed satisfies:

(c1) u·(t, x) : Ω → Ed is a fuzzy random variable for every t ∈ [0, b] and every
x ∈ Ed;

(c2) with P.1, the function uω(·, ·) : [0, b] × Ed → Ed is a continuous fuzzy
mapping at every point (t0, x0) ∈ [0, b] × Ed i.e. there exists Ω0 ⊂ Ω with
P(Ω0) = 1 and such that for every ω ∈ Ω0 the following is true: for every
ε > 0 there exists δ > 0 such that for every t ∈ [0, b], and every x ∈ Ed it
holds

max{|t− t0|, D(x, x0)} < δ =⇒ D(uω(t, x), uω(t0, x0)) < ε.

3. Main result

In this paper, we consider the two kinds of random fuzzy integral equations of
Urysohn- Volterra type as follows:

x(t, ω)
[0,b], P.1

= x0(ω) +

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds(3.1)

and

x0(ω)
[0,b], P.1

= x(t, ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds(3.2)
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Where g : Ω × [0, b] × [0, b] × Ed → Ed, x0 : Ω → Ed is fuzzy random variable and
u : Ω× [0, b]× Ed → Ed are a fuzzy stochastic process.

Denote Bρ(x0) = {x ∈ Ed : D(x, x0) ≤ ρ}, ρ ≥ 0. Assume that g : Ω × [0, b] ×
[0, b]×Bρ(x0)→ Ed and u : Ω× [0, b]×Bρ(x0)→ Ed and satisfy the conditions:

(g1) there exists a constant Mg > 0 such that D(gω(t, s, x), 0̂) ≤ Mg, for every
(t, s) ∈ [0, b]× [0, b], every x ∈ Bρ(x0).

(g2) there exists a stochastic process Lg : [0, b] × Ω → R+, Lg(·, ω) is continu-
ous with P.1 such that D(gω(t, s, x), gω(t, s, y)) ≤ Lg(t, ω)D(x, y), for every
(t, s) ∈ [0, b]× [0, b], every x, y ∈ Bρ(x0).

(u1) there exists a stochastic process Lu : [0, b]×Ω→ R+, Lu(·, ω) is continuous
with P.1, such that D(uω(t, x), uω(t, y)) ≤ Lu(t, ω)D(x, y), for every t ∈
[0, b], every x, y ∈ Bρ(x0).

Theorem 3.1. Let g : Ω× [0, b]× [0, b]×Bρ(x0)→ Ed and u : Ω× [0, b]×Bρ(x0)→
Ed satisfy assumptions (g1) - (g2), (u1) and (c1) - (c2). Assume that there exist

some positive constant Mu such that D(uω(t, x0(t, ω)), 0̂)
[0,b], P.1
≤ Mu. Then (3.1) has

unique solution x(t, ω) on [0, b].

Proof. The proof of Theorem 3.1 is similarly the proof of Theorem 3.2. Therefore,
we shall prove Theorem 3.2. �

Theorem 3.2. Let g : Ω× [0, b]× [0, b]×Bρ(x0)→ Ed and u : Ω× [0, b]×Bρ(x0)→
Ed satisfy assumptions (g1) - (g2), (u1) and (c1) - (c2). Assume that there exist

some positive constant Mu such that D(uω(t, x0(t, ω)), 0̂)
[0,b], P.1
≤ Mu. Assume that

there exists η > 0 such that the sequence {xn}∞n=0 to (3.2) given by

x0(t, ω)
[0,η], P.1

= x0(ω),

xn(t, ω)
[0,η], P.1

= x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn−1(s, ω)))ds, n = 1, 2, . . . .

is well-defined, i.e. the foregoing Hukuhara differences do exist. Then (3.2) has
unique solution x(t, ω) on [0, r], r ≤ b.

Proof. Define γ := {b, ρM−1g }. Note that for every t ∈ [0, γ], every ω ∈ Ω we have

D(x1(t, ω), x0(t, ω))
[0,γ], P.1

= D

(
x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x0(ω)))ds, x0(ω)

)
[0,γ], P.1
≤ D

(∫ t

0

gω(t, s, uω(s, x0(ω)))ds, 0̂

)
[0,γ], P.1
≤ Mgγ.
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and for every n ≥ 2

D(xn(t, ω), xn−1(t, ω))
[0,γ], P.1

= D

(∫ t

0

gω(t, s, uω(s, xn−1(s, ω)))ds,

∫ t

0

gω(t, s, uω(s, xn−2(s, ω)))ds

)
[0,γ], P.1
≤

∫ t

0

D(gω(t, s, uω(s, xn−1(s, ω))), gω(t, s, uω(s, xn−2(ω))))ds

[0,γ], P.1
≤

∫ t

0

Lg(s, ω)D(uω(s, xn−1(s, ω)), uω(s, xn−2(s, ω)))ds

[0,γ], P.1
≤ Lg(ω)

∫ t

0

Lu(s, ω)D(xn−1(s, ω), xn−2(s, ω))ds

[0,γ], P.1
≤ Lg(ω)Lu(ω)

∫ t

0

D(xn−1(s, ω), xn−2(s, ω))ds

where Lg(ω)
P.1
= sup

s∈[0,γ]
Lg(s, ω), Lu(ω)

P.1
= sup

s∈[0,γ]
Lu(s, ω).

In particular,

D(x2(t, ω), x1(t, ω))
[0,γ], P.1

= D

(∫ t

0

gω(t, s, uω(s, x1(s, ω)))ds,

∫ t

0

gω(t, s, uω(s, x0(s, ω)))ds

)
[0,γ], P.1
≤

∫ t

0

D(gω(t, s, uω(s, x1(ω))), gω(t, s, uω(s, x0(s, ω))))ds

[0,γ], P.1
≤

∫ t

0

Lg(s, ω)D(uω(s, x1(s, ω)), uω(s, x0(s, ω)))ds

[0,γ], P.1
≤ Lg(ω)Lu(ω)

∫ t

0

D(x1(s, ω), x0(s, ω))ds

[0,γ], P.1
≤ Mg

Lg(ω)Lu(ω)
· [Lg(ω)Lu(ω) · t)]2

2!
,

where Lg(ω)
P.1
= sup

s∈[0,γ]
Lg(s, ω), Lu(ω)

P.1
= sup

s∈[0,γ]
Lu(s, ω).

Further, if we assume that

D(xn−1(t, ω), xn−2(t, ω))
[0,γ], P.1
≤ Lg(ω)Lu(ω)

∫ t

0

D(xn−2(s, ω), xn−1(s, ω))ds

[0,γ], P.1
≤ Mg

Lg(ω)Lu(ω)
· [Lg(ω)Lu(ω) · t]n−1

(n− 1)!
.

then we have

D(xn(t, ω), xn−1(t, ω)])
[0,γ], P.1
≤ Lg(ω)Lu(ω)

∫ t

0

D(xn−1(s, ω), xn−2(s, ω))ds

[0,γ], P.1
≤ Mg

Lg(ω)Lu(ω)
· [Lg(ω)Lu(ω) · t]n

n!
.
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Hence, for n > m > 0 we have

sup
t∈[0,γ]

D(xn(t, ω), xm(t, ω))
P.1
≤ Mg

Lg(ω)Lu(ω)
·

n∑
k=m+1

[Lg(ω)Lu(ω) · t]k

k!
.

The almost sure convergence of the series
n∑

k=m+1

[Lg(ω)Lu(ω) · t]k

k!
implies that for

any ε > 0 one can find n ∈ N large enough, such that for n ≥ m ≥ n0,

sup
t∈[0,γ]

D(xn(t, ω), xm(t, ω))
P.1
≤ ε.(3.3)

We can infer that there exists Ω0 ⊂ Ω such that P(Ω0) = 1 and for every ω ∈ Ω0 the
sequence {xn(·, ω)} is uniformly convergent. For ω ∈ Ω0, let us define x : [0, γ]×Ω→
Ed in the following way: x(·, ω) = x∗(·, ω) if ω ∈ Ω0, and in the case ω ∈ Ω\Ω0,
x(·, ω) as freely chosen fuzzy function. Then sup

t∈[0,γ]
D(xn(t, ω), x(t, ω))→ 0, as n→

∞ with P.1 and x(t, ω) is a continuous fuzzy stochastic process.
We shall prove that x(t, ω) is a solution of the problem (3.2). Since for every

t ∈ [0, γ] one has

sup
t∈[0,γ]

D

(
x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn(s, ω)))ds, x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds

)
P.1
≤ Lg(ω)Lu(ω) sup

t∈[0,γ]
D(xn(t, ω), x(t, ω)).

Thus, by Lesbesgue dominated convergence theorem, as n→∞, we infer that

D

(
x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn(s, ω)))ds, x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds

)
P.1→ 0.

Note that

sup
t∈[0,γ]

D

(
x(t, ω), x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds

)
P.1
≤ sup

t∈[0,γ]
D(x(t, ω), xn(t, ω)) + sup

t∈[0,γ]
D

(
xn(t, ω), x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn−1(s, ω)))ds

)

+ sup
t∈[0,γ]

D

(
x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn−1(s, ω)))ds, x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds

)
P.1
≤ sup

t∈[0,γ]
D(x(t, ω), xn(t, ω)) + sup

t∈[0,γ]
D

(
xn(t, ω), x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn−1(s, ω)))ds

)
+ Lg(ω)Lu(ω) sup

t∈[0,γ]
D(xn−1(t, ω), x(t, ω))
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It is easy to see the first term of the right-hand side of the inequality uniformly
converges to zero, whereas the second is equal to zero. One obtains

D

(
x(t, ω), x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds

)
[0,γ], P.1

= 0.

Hence the fuzzy process x(t, ω) is a solution to (3.2). �

In what follows, we will discuss the continuity of the solution to the random fuzzy
integral equations of Urysohn- Volterra type with respect to the coefficients of the
equations. Let us consider the equation

x(t, ω)
[0,γ], P.1

= x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds(3.4)

and a sequence of equation

xn(t, ω)
[0,γ], P.1

= x0,n(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn(s, ω)))ds.(3.5)

Theorem 3.3. Let g : Ω× [0, b]× [0, b]×Bρ(x0)→ Ed and u : Ω× [0, b]×Bρ(x0)→
Ed be such as in Theorem 3.2. Let x(t, ω) denote the solution of (3.4) and xn(t, ω)
denote the solution of (3.5). Then

sup
t∈[0,γ]

D(xn(t, ω), x(t, ω))
P.1
≤ M exp {Lg(ω)Lu(ω)b},

whereM
[0,γ], P.1

= D(x0,n(ω), x0(ω)), Lg(ω)
P.1
= sup

s∈[0,γ]
Lg(s, ω), Lu(ω)

P.1
= sup

s∈[0,γ]
Lu(s, ω).

Proof. For every t ∈ [0, γ], every ω ∈ Ω we have

D(xn(t, ω), x(t, ω))

= D

(
x0(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, x(s, ω)))ds, x0,n(ω)	 (−1)

∫ t

0

gω(t, s, uω(s, xn(s, ω)))ds

)
[0,γ], P.1
≤ D(x0,n(ω), x0(ω)) +D

(∫ t

0

gω(t, s, uω(s, x(s, ω)))ds,

∫ t

0

gω(t, s, uω(s, xn(s, ω)))ds

)
[0,γ], P.1
≤ D(x0,n(ω), x0(ω)) +

∫ t

0

D(gω(t, s, uω(s, x(s, ω))), gω(t, s, uω(s, xn(s, ω))))ds

[0,γ], P.1
≤ D(x0,n(ω), x0(ω)) + Lg(ω)Lu(ω)

∫ t

0

D(xn(s, ω), x(s, ω))ds

Due to Gronwall’s lemma in [13] we obtain

D(xn(t, ω), x(t, ω))
[0,γ], P.1
≤ M exp {Lg(ω)Lu(ω)t},

whereM
[0,γ], P.1

= D(x0,n(ω), x0(ω)), Lg(ω)
P.1
= sup

s∈[0,γ]
Lg(s, ω), Lu(ω)

P.1
= sup

s∈[0,γ]
Lu(s, ω).
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Corollary 3.4. Under the assumptions of Theorem 3.3. Let x(t, ω) and xn(t, ω)
denotes the solution of (3.5). Then

sup
t∈[0,γ]

D(xn(t, ω), x(t, ω))
P.1
≤ 0.

4. Example

In the section, we shall consider the special case of the random fuzzy integral
equations of Urysohn- Volterra type. If uω(t, x(t, ω)) = x(t, ω) then the problem
(3.2) can be written as

x(t, ω)
[0,b], P.1

= x0(ω)	 (−1)

∫ t

0

gω(t, s, x(t, ω))ds.(4.1)

Let us denote the α-cuts (α ∈ [0, 1]) of x as [x(t, ω)]α = [xαl (t, ω), xαr (t, ω)] and
[x0(ω)]α = [fαl (t, ω), fαr (t, ω)], where xαl (t, ω), xαr (t, ω) fαl (t, ω) and fαr (t, ω) are
some real-valued stochastic process. Let (Ω,F ,P) be a complete probability space.
Consider the following random fuzzy integral equations

x(t, ω)
[0,b], P.1

= x0(ω)	 (−1)

∫ t

0

k(t, s, ω)x(s, ω)ds.(4.2)

Using the α-cuts of x, f we obtain
xαl (t, ω)

[0,b], P.1
= fαl (t, ω) +

∫ t
0
k(t, s, ω)xα(s, ω)ds,

xαr (t, ω)
[0,b], P.1

= fαr (t, ω) +
∫ t
0
k(t, s, ω)xα(s, ω)ds

xαl (0, ω)
P.1
= fαl (0, ω),

xαr (0, ω)
P.1
= fαr (0, ω).

(4.3)

or 
xαr (t, ω)

[0,b], P.1
= fαl (t, ω) +

∫ t
0
k(t, s, ω)xα(s, ω)ds,

xαl (t, ω)
[0,b], P.1

= fαr (t, ω) +
∫ t
0
k(t, s, ω)xα(s, ω)ds,

xαl (0, ω)
P.1
= fαl (0, ω),

xαr (0, ω)
P.1
= fαr (0, ω).

(4.4)

where

k(t, s, ω)xα(s, ω) =

k(t, s, ω)xαl (s, ω), k(t, s, ω)
[0,b], P.1
≥ 0,

k(t, s, ω)xαr (s, ω), k(t, s, ω)
[0,b], P.1
< 0,

k(t, s, ω)xα(s, ω) =

k(t, s, ω)xαr (s, ω), k(t, s, ω)
[0,b], P.1
≥ 0,

k(t, s, ω)xαl (s, ω), k(t, s, ω)
[0,b], P.1
< 0.

Example 4.1. Let Ω = (0, 1), F- Borel σ-field of subsets of Ω, P-Lebesgue measure
on (Ω,F). Let us consider the integral equation

x(t, ω)
[0,5], P.1

= [−ω, 0, ω]−
∫ t

0

x(s, ω)ds,(4.5)
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where x0(ω)
[0,5], P.1

= [−ω, 0, ω], k(t, s, ω)
[0,5], P.1

= 1.
To determine the initial condition, we substitute t = 0 into both sides of (4.5)

to find x(0, ω)
P.1
= [−ω, 0, ω]. Then the problem (4.5) is equivalent to the following

system: 
xαl (t, ω)

[0,5], P.1
= (α− 1)ω −

∫ t
0
xαr (s, ω)ds,

xαr (t, ω)
[0,5], P.1

= (1− α)ω −
∫ t
0
xαl (s, ω)ds,

xαl (0, ω)
P.1
= (α− 1)ω,

xαr (0, ω)
P.1
= (1− α)ω.

(4.6)

The exact solution x(·, ·) : [0, 5]× Ω→ E1 is given by

[x(t, ω)]α = [(α− 1)ωe−t, 0, (1− α)ωe−t].

Figure 1. Graph 2D of the solution to (4.5)

From the graph of [x(t, ω)]α is drawn Fig 1. We see that diameter of valued of
solution [x(·, ω)]α, ω is fixed, is decreasing with P.1.
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Figure 2. Graph 3D of the solution to (4.5)

Example 4.2. Let Ω = (1, 3), F- Borel σ-field of subsets of Ω, P-Lebesgue measure
on (Ω,F). Let us consider the integral equation

x(t, ω)
[0,5], P.1

= [1 + ω, 2 + ω, 3 + ω]−
∫ t

0

e−(1+ω)x(s, ω)ds,(4.7)

where x0(ω)
[0,5], P.1

= 0, k(t, s, ω)
[0,5], P.1

= 1.
To determine the initial condition, we substitute t = 0 into both sides of (4.7)

to find x(0, ω)
P.1
= [1 + ω, 2 + ω, 3 + ω]. Then the problem (4.7) is equivalent to the

following a system:
xαl (t, ω)

[0,5], P.1
= (1 + ω − α)−

∫ t
0
e−(1+ω)xαr (s, ω)ds,

xαr (t, ω)
[0,5], P.1

= (3 + ω − α)−
∫ t
0
e−(1+ω)xαl (s, ω)ds,

xαl (0, ω)
P.1
= 1 + ω − α,

xαr (0, ω)
P.1
= 3 + ω − α.

(4.8)

The exact solution x(·, ·) : [0, 5]× Ω→ E1 is given by

[x(t, ω)]α = [(1 + ω − α)e−(1+ω)t, (3 + ω − α)e−(1+ω)t].
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Figure 3. Graph 2D of the solution to (4.7)

Figure 4. Graph 3D of the solution to (4.7)

From the graph of [x(t, ω)]α is drawn Fig 3. We see that diameter of valued of
solution [x(·, ω)]α, ω is fixed, is decreasing with P.1.

Acknowledgements

The authors would like to thank the anonymous referee and the editors for the
important comments that lead to a greatly improved paper.

155



Dong. S-Le et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 1, 145–157

References

[1] A. Bencsik, B. Bede, J. Tar and J. Fodor, Fuzzy differential equations in modeling hydraulic
differential servo cylinders, in: Third Romanian-Hungarian Joint Symposium on Applied Com-

putational Intelligence, SACI, Timisoara, Romania 2006.

[2] A. Esfahani, O. S. Fard and T. A. Bidgoli, On the existence and uniqueness of solutions to
fuzzy boundary value problems, Ann. Fuzzy Math. Inform. 7 (2014) 14–25.

[3] B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equation sunder

generalized differentiability, Inform. Sci. 177 (2007) 1648–1662.
[4] B. Bede and Sorin G. Gal, Generalizations of the differentiability of fuzzy-number-valued

functions with applications to fuzzy differential equations, Fuzzy Sets and Systems 151 (2005)

581–599.
[5] C. Lungan and V. Lupulescu, Random dynamical systems on time scales, Electron. J. Differ-

ential Equations 86 (2012) 01–14.
[6] V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential. Equations and In-

clusions, Taylor & Francis, UK 2004.

[7] V. Lupulescu and U. Abbas, Fuzzy delay differential equations, Fuzzy Optim. Decis. Mak. 11
(2012) 99–111.

[8] V. Lupulescu, On a class of fuzzy functional differential equations, Fuzzy Sets and Systems

160 (2009) 1547–1562.
[9] J. Y. Park and J. U. Jeong, On random fuzzy functional differential equations, Fuzzy Sets and

Systems 223 (2013) 89–99.

[10] J. Y. Park, S. Y. Lee and J. U. Jeong, The approximate solutions of fuzzy functional integral
equations, Fuzzy Sets and Systems 110 (2000) 79–90.

[11] Juan J. Nieto and Rosana Rodriguez-Lopez, Bounded solutions for fuzzy differential and in-

tegral equations, Chaos Solitons Fractals 27 (2006) 1376–1386.
[12] L. C. Barros, R. C. Bassanezi and P. A. Tonelli, Fuzzy modelling in population dynamics,

Ecol. Model. 128 (2000) 27–33.
[13] M. T. Malinowski, On random fuzzy differential equations, Fuzzy Sets and Systems 160 (2009)

3152–3165.

[14] M. T. Malinowski, Existence theorems for solutions to random fuzzy differential equations,
Nonlinear Analysis: Theory, Methods & Applications 72 (2010) 1515–1532.

[15] M. T. Malinowski, Random fuzzy differential equations under generalized Lipschitz condition,

Nonlinear Anal. Real World Appl. 13 (2012) 860–881.
[16] M. T. Malinowski, Peano type theorem for random fuzzy initial value problem, Discuss. Math.

Differ. Incl. Control Optim. 31 (2011 ) 5–22.

[17] M. L. Puri and D. A. Ralescu, The concept of normality for fuzzy random variables , Ann.
Probab. 13 (1985) 1373–1379.

[18] M. L. Puri and D. A. Ralescu , Fuzzy random variables, J. Math. Anal. Appl. 114 (1986)

409–422.
[19] M. Friedman, M. Ma and A. Kandel, Numerical solutions of fuzzy differential and integral

equations, Fuzzy Sets and Systems 106 (1999) 35–48.

[20] M. A. Darwish, On the existence of a fuzzy integral equation of Urysohn-Volterra type, Discuss.
Math. Differ. Incl. Control Optim. 28 (2008) 75–82.

[21] M. Oberguggenberger, S. Pittschmann, Differential equations with fuzzy parameters,Math.
Modelling Syst. 5 (1999) 181–202.

[22] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987) 301–317.
[23] P. Diamond and P. Kloede, Metric spaces of fuzzy sets, World Scientific, UK 1998.
[24] Congxin Wu, Shiji Song, Haiyan Wang, On the basic solutions to the generalized fuzzy integral

equation, Fuzzy Sets and Systems 95 (1998) 255–260.

[25] Weiyin Fei, Existence and uniqueness of solution for fuzzy random differential equations with
non-Lipschitz coefficients, Inform. Sci. 177 (2007) 4329–4337

[26] Weiyin Fei, A generalization of Bihari’s inequality and fuzzy random differential equations
with non-Lipschitz coefficients, International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 15 (2007) 425–439.

156



Dong. S-Le et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 1, 145–157

[27] Y. Feng, Fuzzy stochastic differential systems, Fuzzy Sets and Systems 115 (2000) 351–363.
[28] Y. K. Kim, Measurability for fuzzy valued functions, Fuzzy Sets and Systems 129 (2002)

105–109.

Dong. S-Le
Faculty of Mathematical Economics, Banking University Ho Chi Minh City, Viet
Nam

Vu-H
Faculty of Mathematical Economics, Banking University Ho Chi Minh City, Viet
Nam

157


	 Random fuzzy integral equations of Urysohn- Volterra type. By 

