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1. Introduction

After the introduction of the Intuitionistc fuzzy set theory by Atanassov [5], the
fuzzy matrix theory has been extended to IFM theory using max-min composition by
Im [11] et.al., and developed by several authors [15, 16, 24, 25, 26, 27]. Yager et.al[28]
represented an Intuitionistic Fuzzy element as Intuitionistic Fuzzy values and for
any two Intuitionistic Fuzzy values ⟨a, a′⟩, ⟨b, b′⟩, the addition and multiplication
have been defined as, ⟨a, a′⟩ + ⟨b, b′⟩ = ⟨max{a, b},min{a′, b′}⟩ and ⟨a, a′⟩⟨b, b′⟩ =
⟨min{a, b},max{a′, b′}⟩. The set of all IFMs of order m×n is denoted by Fmn and
Fn means square IFMs of order n. For A ∈ Fmn, B ∈ Fnp the Intuitionistic fuzzy
matrix multiplication is defined as

1.AB = (
∨
k

(aik ∧ bkj),
∧
k

(a′ik ∨ b′kj)) by Lee and Jeong [13],

2. AB = (max{min{aik, bkj}},min{max{a′ik, b′kj}}) by Liu and Huang[14] and

3. AB = (⟨
n∑

k=1

aikbkj ,
n∏

k=1

(a′ik + b′kj)⟩) by Sriram and Murugadas[24].

All the above three definitions have the same meaning. Pal et al.[20] studied and
developed IFM in 2002. Shyamal and Pal[23] obtained the distance between IFM.
Bhowmik and Pal [6, 7] studied about circulant IFM and generalized IFMs. Khan
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and Pal [12] discussed about intuitionistic fuzzy tautological matrix. Adak et. al
[1, 2, 3, 4] discussed some properties of generalized intuitionistic nilpotent fuzzy
matrices over distributive lattice, applied generalized IFM in multi-criteria decision
making and studied some properties of intuitionistic fuzzy block matrix. Mondal
and Pal [17, 18] studied similarity relation, invertibility, eigen values of IFM and
inclined IFM. Further Pradhan and Pal [21, 22] discussed some results on g-inverse
of IFM and Atanassov’s IFMs. The idempotent IFM, transitive IFM and nilpotent
IFM play a vital role in the study of similarity measures in IFM theory.
Lee and Jeong[13] decomposed a transitive IFM into a sum of nilpotent IFM and
symmetric IFM. Sriram and Murugadas[26] decomposed an IFM as a sum of ⟨α, α′⟩-
cut IFMs. Hiroshi Hashimoto[8, 9, 10] used ←,↽ operators in Fuzzy matrices
and obtained some interesting results. Sriram and Murugadas[24] applied this ←
operator to IFM and studied about g-inverse and sub-inverse of IFMs. Normally for
A,B either in FM or in IFM A ← B ≥ A, is true if we apply ← component wise,
which is used to find superiority between A and B. Similarly A ↽ B ≤ A, is true if
we apply ↽ component wise, which is used to find inferiority between A and B.
Murugadas and Lalitha [19] obtained some relations between the operators ← and
↽ . In this paper we decompose an IFM into a product of idempotent IFM and
rectangular IFM.

2. Preliminaries

Definition 2.1 ([5]). An Intuitionistic Fuzzy Set(IFS) A in E (universal set) is
defined as an object of the following form A = {⟨x, µA(x), νA(x)⟩/x ∈ E}, where
the functions: µA(x) : E → [0, 1] and νA(x) : E → [0, 1] define the membership
and non-membership functions of the element x ∈ E respectively and for every
x ∈ E : 0 ≤ µA(x) + νA(x) ≤ 1.

Definition 2.2 ([24]). For ⟨x, x′⟩, ⟨y, y′⟩ ∈ IFS, define

⟨x, x′⟩ ← ⟨y, y′⟩ =

{
⟨1, 0⟩ if ⟨x, x′⟩ ≥ ⟨y, y′⟩
⟨x, x′⟩ if ⟨x, x′⟩ < ⟨y, y′⟩

and

⟨x, x′⟩↽ ⟨y, y′⟩ =

{
⟨x, x′⟩ if ⟨x, x′⟩ > ⟨y, y′⟩
⟨0, 1⟩ if ⟨x, x′⟩ ≤ ⟨y, y′⟩.

Here ⟨x, x′⟩ ≥ ⟨y, y′⟩ means x ≥ y and x′ ≤ y′ and ⟨x, x′⟩ > ⟨y, y′⟩ means either
x > y or x′ < y.

Definition 2.3 ([26]). Let X = {x1, x2, ...xm} be a set of alternatives and Y =
{y1, y2, ...yn} be the attribute set of each element of X. An Intuitionistic Fuzzy
Matrix (IFM) is defined by A = (⟨(xi, yj), µA(xi, yj), νA(xi, yj)⟩) for i = 1, 2...m
and j = 1, 2, ...n, where µA : X × Y → [0, 1] and νA : X × Y → [0, 1] satisfy the
condition 0 ≤ µA(xi, yj) + νA(xi, yj) ≤ 1. For simplicity we denote an intuitionistic
fuzzy matrix (IFM) as a matrix of pairs A = (

⟨
aij , a

′
ij

⟩
) of non negative real numbers

satisfying aij + a′ij ≤ 1 for all i, j.

For any two elements A = (
⟨
aij , a

′
ij

⟩
), B = (

⟨
bij , b

′
ij

⟩
) ∈ Fmn and C ∈ Fnp, define

1. A⊕B = (
⟨
max{aij , bij},min{a′ij , b′ij}

⟩
), (component wise addition).

12
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2. A ⊙ B = (
⟨
min{aij , bij},max{a′ijb′ij}

⟩
) = A ⊙ B, (component wise multipli-

cation) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
3. J = (⟨1, 0⟩) the Universal matrix(matrix in which all entries are ⟨1, 0⟩).

4. I = (⟨δij , δ′ij⟩) (Identity Matrix) where ⟨δij , δ′ij⟩ =

{
⟨1, 0⟩ if i = j

⟨0, 1⟩ if i ̸= j
.

The Zero matrix O is the matrix in which all the entries are ⟨0, 1⟩.
5. A ≥ B if aij ≥ bij and a′ij ≤ b′ij for all i, j and A > B if aij > bij or a′ij < b′ij

for atleast one i, j, in which case A and B are comparable.
6.A = (⟨a′ij , aij⟩), (complement of A).

7. AT = (⟨aji, a′ji⟩), (transpose of A).

8. AC = (⟨maxn
k=1min{aik, ckj},minn

k=1max{a′ik, c′kj}⟩) = (⟨
∑n

k=1 aikckj ,
∏n

k=1(a
′
ik+

c′kj)⟩).
9. A← C = (minn

k=1(⟨aik, a′ik⟩ ← ⟨ckj , c′kj⟩)) = (
∧n

k=1(⟨aik, a′ik⟩ ← ⟨ckj , c′kj⟩)).
10. A ↽ B = (⟨aij , a′ij⟩↽ ⟨bij , b′ij⟩), (component wise).

11. For R ∈ Fn,∆R = R ↽ RT , (component wise).

Definition 2.4 ([27]). Let R ∈ Fn, then
1. If R ≥ In, then R is reflexive.
2. If R2 ≤ R, then R is transitive.
3. If R2 ≥ R, then R is compact.
4. If R is reflexive and transitive, then R is idempotent.
5. In R, if all the diagonal entries are ⟨0, 1⟩, then R is irreflexive.
6. R is symmetric if and only if ⟨rij , r′ij⟩ = ⟨rji, r′ji⟩, for all i, j.
7.R is antisymmetric if and only if R⊙RT ≤ In, where In is the unit matrix with

all entries in the main diagonal as ⟨1, 0⟩ and remaining entries with ⟨0, 1⟩. R⊙RT ≤
In means ⟨rij , r′ij⟩⟨rji, r′ji⟩ = ⟨0, 1⟩ for all i ̸= j and ⟨rii, r′ii⟩ ≤ ⟨1, 0⟩ for all i. So if
⟨rij , r′ij⟩ = ⟨1, 0⟩, then ⟨rji, r′ji⟩ = ⟨0, 1⟩.

8. If R is irreflexive and transitive, then R is nilpotent.

Lemma 2.5 ([24] ). If A = (⟨aij , a′ij⟩) is an m× n IFM, then A← AT is reflexive
and transitive.

3. Decomposition of an IFM using ← and ↽ operators

Throughout this section matrix means IFM.
Let Ai be the ith row of A, if Ai ≥ Aj , then ⟨gij , g′ij⟩ = ⟨1, 0⟩, where ⟨gij , g′ij⟩ is the
(i, j)th entry of G = A ← AT . Hence the matrix G represents inclusion among the
rows of A.

Proposition 3.1. Let G = (⟨gij , g′ij⟩) ∈ Fm. Then the following conditions are
equivalent.
1. G is reflexive and transitive.
2.G← GT = G.

Proof. 1⇒ 2
Suppose

∧n
k=1(⟨gik, g′ik⟩ ← ⟨gjk, g′jk⟩) = ⟨c, c′⟩ > ⟨0, 1⟩.

Setting k = j we have ⟨gij , g′ij⟩ > ⟨c, c′⟩.
Next we show that G ≤ G← GT .

13
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Suppose that ⟨gij , g′ij⟩ = ⟨c, c′⟩ > ⟨0, 1⟩
If ⟨gil, g′il⟩ < ⟨c, c′⟩ and ⟨gil, g′il⟩ < ⟨gjl, g′jl⟩ for some l, then

⟨gil, g′il⟩ ≥ ⟨gij , g′ij⟩⟨gjl, g′jl⟩ = ⟨c, c′⟩⟨gjl, g′jl⟩ ≥ ⟨c, c′⟩⟨gil, g′il⟩ = ⟨gil, g′il⟩. So that

⟨gil, g′il⟩ = ⟨gjl, g′jl⟩, which is a contradiction.

Hence
∧n

k=1(⟨gik, g′ik⟩ ← ⟨gjk, g′jk⟩) ≥ ⟨c, c′⟩ , that is G ≤ G← GT .
2⇒ 1 is true from Lemma 2.5 □

Lemma 3.2. If A = (
⟨
aij , a

′
ij

⟩
) ∈ Fmn, then (A← AT )A = A.

Proof. Let B = (
⟨
bij , b

′
ij

⟩
) = (A← AT )A.

That is
⟨
bij , b

′
ij

⟩
=

∑m
k=1

∧n
l=1(⟨ail, a′il⟩ ← ⟨akl, a′kl⟩)⟨akj , a′kj⟩

Since A← AT is reflexive , A ≤ B. Next we prove that A ≥ B
Suppose that ⟨bij , b′ij⟩ > ⟨aij , a′ij⟩, then∧n

l=1(⟨ail, a′il⟩ ← ⟨ahl, a′hl⟩) >
⟨
aij , a

′
ij

⟩
, ⟨ahj , a′hj⟩ >

⟨
aij , a

′
ij

⟩
for some h. For l = j

we have
⟨
aij , a

′
ij

⟩
← ⟨ahj , a′hj⟩ >

⟨
aij , a

′
ij

⟩
, so that ⟨aij , a′ij⟩ > ⟨a′hja′hj⟩, which is a

contradiction. Hence ⟨bij , b′ij⟩ ≤ ⟨aij , a′ij⟩ for all i, j. Thus A ≥ B. □

Remark 3.3. From Proposition 3.1 and Lemma 3.2 it is evident that (AT ← A)T

is also reflexive and transitive and A(AT ← A)T = A.

Lemma 3.4. Let A = (
⟨
aij , a

′
ij

⟩
) ∈ Fmn, and T = (

⟨
tij , t

′
ij

⟩
) ∈ Fm, is transitive,

then TA = T (A ↽ NA), where N = (
⟨
nij , n

′
ij

⟩
) ∈ Fm is nilpotent such that N ≤ T.

Proof. Let B = (⟨bij , b′ij⟩) = TA and C = (⟨cij , c′ij⟩) = T (A ↽ NA).

This shows ⟨bij , b′ij⟩ =
∑n

k=1⟨tik, t′ik⟩⟨akj , a′kj⟩ and
⟨cij , c′ij⟩ =

∑m
k=1⟨tik, t′ik⟩(⟨akj , a′kj⟩↽

∑n
l=1⟨nkl, n

′
kl⟩⟨alj , a′lj⟩).

Clearly C ≤ B, we claim that C ≥ B.
Suppose not, let ⟨bij , b′ij⟩ = ⟨b, b′⟩ > ⟨0, 1⟩ and ⟨cij , c′ij⟩ < ⟨b, b′⟩.
This gives ⟨til(0), t′il(0)⟩ ≥ ⟨b, b

′⟩, ⟨al(0)j , a′l(0)j⟩ ≥ ⟨b, b
′⟩ for some k = l(0).

Since ⟨bij , b′ij⟩ > ⟨c′ij , c′ij⟩, we have∑m
l=1⟨nl(0)l, n

′
l(0)l⟩⟨alj , a

′
lj⟩ ≥ ⟨al(0)j , a′l(0)j⟩ ≥ ⟨b, b

′⟩. Thus
⟨nl(0)l(1), n

′
l(0)l(1)⟩ ≥ ⟨b, b

′⟩, ⟨al(1)j , a′l(1)j⟩ ≥ ⟨b, b
′⟩, ⟨tl(0)l(1), t′l(0)l(1)⟩ ≥ ⟨b, b

′⟩ for some

l(1).

Therefore, ⟨til(1), t′il(1)⟩ ≥ ⟨b, b
′⟩, ⟨ai(1)j , a′i(1)j⟩ ≥ ⟨b, b

′⟩, ⟨n(1)
l(0)l(1), n

′(1)
l(0)l(1)⟩ ≥ ⟨b, b

′⟩.
Again since ⟨bij , b′ij⟩ > ⟨c′ij , c′ij⟩, we have∑m

l=1⟨nl(0)l, n
′
l(1)l⟩⟨alj , a

′
lj⟩ ≥ ⟨al(1)j , al(1)j⟩ ≥ ⟨b, b′⟩.

Thus ⟨nl(1)l(2), n
′
l(1)l(2)⟩ ≥ ⟨b, b

′⟩, ⟨al(2)j , a′l(2)j⟩ ≥ ⟨b, b
′⟩, ⟨tl(1)l(2), t′l(1)l(2)⟩ ≥ ⟨b, b

′⟩ for
some l(2). Therefore,

⟨til(2), t′il(2)⟩ ≥ ⟨b, b
′⟩, ⟨ai(2)j , a′i(2)j⟩ ≥ ⟨b, b

′⟩, ⟨n(2)
l(0)l(2), n

′(2)
l(0)l(2)⟩ ≥ ⟨b, b

′⟩.
If we repeat the same procedure we get

⟨til(m), t
′
il(m)⟩ ≥ ⟨b, b

′⟩, ⟨ai(m)j , a
′
i(m)j⟩ ≥ ⟨b, b

′⟩, ⟨n(m)
l(0)l(m), n

′(m)
l(0)l(m)⟩ ≥ ⟨b, b

′⟩.
This contradicts the fact that N is nilpotent. Hence B ≤ C.
Thus the Lemma holds.
In the dual fashion, we can prove the following Lemma. □

14
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Lemma 3.5. Let A = (
⟨
aij , a

′
ij

⟩
) ∈ Fmn, and R = (

⟨
rij , r

′
ij

⟩
) ∈ Fn, is transitive,

then AR = (A ↽ AP )R, where P = (
⟨
nij , n

′
ij

⟩
) ∈ Fn, is nilpotent such that P ≤ R.

Proof. AR = (⟨
∑n

k=1 aikrkj ,
∏n

k=1(a
′
ik + r′kj)⟩),

A ↽ AP = (⟨aij , a′ij⟩↽ ⟨
∑n

k=1 aikpkj ,
∏n

k=1(a
′
ik + p′kj)⟩)

Let AR = (⟨bij , b′ij⟩), A ↽ AP = (⟨tij , t′ij⟩),
(A ↽ AP )R = (⟨

∑n
k=1 tikrkj ,

∏n
k=1(t

′
ik + r′kj)⟩) = (⟨cij , c′ij⟩).

Clearly, (⟨cij , c′ij⟩) ≤ (⟨bij , b′ij⟩).
Let us claim that (⟨cij , c′ij⟩) ≥ (⟨bij , b′ij⟩). Suppose (⟨bij , b′ij⟩) ̸= (⟨0, 1⟩) > (⟨cij , c′ij⟩).
Then ⟨ail, a′lj⟩⟨rlj , r′lj⟩ > ⟨til, t′il⟩⟨rlj , r′lj⟩ for some l.

⇒ ⟨ail, a′il⟩ > ⟨til, t′il⟩
⇒ ⟨ail, a′il⟩ > [⟨ail, a′il⟩↽ ⟨⟨

∑n
k=1 aikpkl,

∏n
k=1(a

′
ik + p′kl)⟩]

⇒ ⟨ail, a′il⟩ > [⟨ail, a′il⟩↽ ⟨ainpnl, a′in + p′nl⟩] for some n.
⇒ ⟨ail, a′il⟩ ≤ ⟨ainpnl, a′in + p′nl⟩ = ⟨ain, a′in⟩⟨pnl, p′nl⟩
⇒ ⟨ain, a′in⟩ ≥ ⟨ail, a′il⟩ and ⟨pnl, p′nl⟩ ≥ ⟨ail, a′il⟩
⇒ ⟨pnl, p′nl⟩⟨pnl, p′nl⟩ = ⟨pnl, p′nl⟩(2) ≥ ⟨ail, a′il⟩.
Proceeding like this we get ⟨pnl, p′nl⟩(m) ≥ ⟨ail, a′il⟩ that is ⟨0, 1⟩ ≥ ⟨ail, a′il⟩ and hence
⟨ail, a′lj⟩⟨rlj , r′lj⟩ ≤ ⟨0, 1⟩ which shows ⟨bil, b′il⟩ ≤ ⟨0, 1⟩, which is a contradiction to

our assumption. Therefore (⟨cij , c′ij⟩) ≥ (⟨bij , b′ij⟩). □

Theorem 3.6. If A = (
⟨
aij , a

′
ij

⟩
) ∈ Fmn, then A = (A ← AT )(A ↽ NA), where

N = (
⟨
nij , n

′
ij

⟩
) ∈ Fm is nilpotent such that N ≤ (A← AT ).

Proof. By Lemma 2.5 (A← AT ) is transitive, therefore by Lemma 3.4
(A← AT )A = (A← AT )(A ↽ NA). Using Lemma 3.2
A = (A← AT )(A ↽ NA).
Similarly we can obtain the following theorem. □

Theorem 3.7. If A = (
⟨
aij , a

′
ij

⟩
) ∈ Fmn, then

A = (A ↽ AN)(AT ← A)T , where N ∈ Fn is nilpotent matrix such that N ≤
(AT ← A)T .

Remark 3.8. Since an irreflexive and transitive matrix is nilpotent, in the Theorem
3.6 and Theorem 3.7 we can consider N as even irreflexive and transitive matrix.

Lemma 3.9. Let T = (⟨tij , t′ij⟩), U = (⟨uij , u
′
ij⟩) ∈ Fm be transitive matrices. If

T ≤ U, then T ↽ UT is irreflexive and transitive.

Proof. Let V = (⟨vij , v′ij⟩) = T ↽ UT .
That is ⟨vij , v′ij⟩ = ⟨tij , t′ij⟩ ↽ ⟨uji, u

′
ji⟩, then ⟨vii, v′ii⟩ = ⟨tii, t′ii⟩ ↽ ⟨uii, u

′
ii⟩ =

⟨0, 1⟩, so that V is irreflexive. Suppose ⟨vik, v′ik⟩⟨vkj , v′kj⟩ = ⟨c, c′⟩ > ⟨0, 1⟩. We have
two cases

Case 1. ⟨tik, t′ik⟩ = ⟨c, c′⟩, ⟨tik, t′ik⟩ > ⟨uki, u
′
ki⟩, ⟨tkj , t′kj⟩ ≥ ⟨c, c′⟩.

Case 2.⟨tik, t′ik⟩ ≥ ⟨c, c′⟩, ⟨tkj , t′kj⟩ = ⟨c, c′⟩, ⟨tkj , t′kj⟩ > ⟨ujk, u
′
jk⟩.

In case1,⟨tik, t′ik⟩ = ⟨c, c′⟩, ⟨tkj , t′kj⟩ ≥ ⟨c, c′⟩ ⇒ ⟨tik, t′ik⟩⟨tkj , t′kj⟩ = ⟨tij , t′ij⟩ ≥ ⟨c, c′⟩.
Suppose that ⟨uji, u

′
ji⟩ ≥ ⟨c, c′⟩.

⟨uki, u
′
ki⟩ ≥ ⟨ukj , u

′
kj⟩⟨uji, u

′
ji⟩ ≥ ⟨c, c′⟩, which is a contradiction to the fact that

⟨tik, t′ik⟩ = ⟨c, c′⟩, ⟨tik, t′ik⟩ > ⟨uki, u
′
ki⟩. In Case 2 also we have ⟨tij , t′ij⟩ ≥ ⟨c, c′⟩,

15
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⟨ujk, u
′
jk⟩ ≥ ⟨uji, u

′
ji⟩⟨uik, u

′
ik⟩ ≥ ⟨c, c′⟩ which is a contradiction.

Therefore ⟨uji, u
′
ji⟩ < ⟨c, c′⟩, so that ⟨vij , v′ij⟩ ≥ ⟨c, c′⟩. Thus V is transitive.

□

Using Theorem 3.6,Theorem 3.7 and Lemma 3.9, we obtain the following corol-
laries.

Corollary 3.10. If A ∈ Fmn,thenA = (A← AT )(A ↽ ∆TA),where T = A← AT .

Corollary 3.11. If A ∈ Fmn, then A = (A ↽ A∆R)(AT ← A)T , where R =
(AT ← A)T .

Proposition 3.12. If A ∈ Fmn, and F ∈ Fnl, then AF = (A ↽ AN)F, where N
is nilpotent and N ≤ F ← FT .

Proof. By Lemma 3.5, (A ↽ AN)(F ← FT ) = A(F ← FT ).
By Lemma 3.2, (F ← FT )F = F , thus (A ↽ AN)(F ← FT )F = A(F ← FT )F. So
that (A ↽ AN)F = AF. □

Proposition 3.13. If T ∈ Fmn, and F ∈ Fnl,then TF = T (F ↽ NF ), where N
is nilpotent and N ≤ (TT ← T )T

Proof. Using Lemma 3.4, we have for any transitive matrix T and a nilpotent matrix
N ,
TF = T (F ↽ NF ), N ≤ T, since (TT ← T )T is transitive
(TT ← T )TF = (TT ← T )T (F ↽ NF )
T (TT ← T )TF = T (TT ← T )T (F ↽ NF ).
But from Remark 3.1, T (TT ← T )T = T, thus
TF = T (F ↽ NF ) with N ≤ (TT ← T )T . □

Since irreflexive and transitive means nilpotent, in Proposition 3.12 and Proposi-
tion 3.13 we can replace N by ∆R. In the following Example we decompose an IFM
into an idempotent IFM and a rectangular IFM.

Example 3.14. Let A =

⟨0.1, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.5.0.5⟩ ⟨0.1.0.2⟩
⟨0.1, 0.2⟩ ⟨0.2, 0.4⟩ ⟨0.2, 0.6⟩ ⟨0.1, 0.2⟩
⟨0.2, 0.1⟩ ⟨0.4, 0.2⟩ ⟨0.6, 0.4⟩ ⟨0.3, 0.1⟩

. Then
R = A← AT =

 ⟨1, 0⟩ ⟨1, 0⟩ ⟨0.1, 0.2⟩
⟨0.2, 0.4⟩ ⟨1, 0⟩ ⟨0.1, 0.2⟩
⟨0.4, 0.2⟩ ⟨1, 0⟩ ⟨1, 0⟩,


∆R = R ↽ RT =

 ⟨0, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩
⟨0.4, 0.2⟩ ⟨1, 0⟩ ⟨0, 1⟩,


∆RA =

⟨0.1, 0.2⟩ ⟨0.2, 0.4⟩ ⟨0.2, 0.6⟩ ⟨0.1, 0.2⟩
⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩
⟨0.1, 0.2⟩ ⟨0.4, 0.2⟩ ⟨0.4, 0.2⟩ ⟨0.1, 0.2⟩,


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A ↽ ∆RA =

 ⟨0, 1⟩ ⟨0.6, 0.3⟩ ⟨0.5, 0.5⟩ ⟨0, 1⟩
⟨0.1, 0.2⟩ ⟨0.2, 0.4⟩ ⟨0.2, 0.6⟩ ⟨0.1, 0.2⟩
⟨0.2, 0.1⟩ ⟨0, 1⟩ ⟨0.6, 0.4⟩ ⟨0.3, 0.1⟩,


R(A ↽ ∆RA) =

⟨0.1, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.5.0.5⟩ ⟨0.1.0.2⟩
⟨0.1, 0.2⟩ ⟨0.2, 0.4⟩ ⟨0.2, 0.6⟩ ⟨0.1, 0.2⟩
⟨0.2, 0.1⟩ ⟨0.4, 0.2⟩ ⟨0.6, 0.4⟩ ⟨0.3, 0.1⟩.

 = A

4. Conclusions

Decomposition of rectangular IFM may be useful for decomposition of intuition-
istic fuzzy databases. Decomposition of IFM is closely related to reduction of intu-
itionistic fuzzy retrieval models. Can we decompose any IFM into a product of an
idempotent IFM and a nilpotent IFM?. The question can be extended by replacing
nilpotency by symmetry, transitive, compact etc.
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