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1. Introduction

The notion of a fuzzy set was introduced by Zadeh [14]. The theory of fuzzy
automata was introduced by Wee [13]. Algebraic techniques to study fuzzy automata
were introduced by Malik et al. in [7, 8, 9]. For a review of algebraic techniques used
in crisp automata see [2]. Fuzzy finite automata has many applications, for example
, they are useful for a knowledge based system designer since a knowledge based
system should solve a problem from fuzzy knowledge and should also provide the
user with reasons for arriving at certain conclusions. A design tool is more valuable
if there exist guidelines to assist the designer to come with the best possible design.
One of the major criteria for a best design is that it be minimal, for this see [1, 10, 12].

In [3], using the notion of soft sets, Hussain and Shabir introduced the concepts
of soft finite state machines(SFSM), soft successor, soft immediate successor, soft
subsystems, soft submachines, weakly soft connected SFSM, strongly soft connected
SFSM and studied related properties. They gave relations between strongly soft
connected and soft submachine and also provided a characterization of general direct
product of two soft finite state machines.

On the other hand cubic sets was introduced by Jun et al. in [5] and investigate
several properties. In this paper we defined finite state machine on the basis of cubic
set and investigate some of their algebraic properties.

Arrangement of this paper is as the following. In section 2, some basic notions
related to finite state machines, fuzzy set and cubic sets are given. Notion of cubic
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finite machine is introduced in section 3. In this section concept of cubic successor
and cubic immediate successor is introduced and some of its properties are discussed.
This Section is devoted for the study of cubic sub-systems, cubic sub-machines and
strongly connected submachines.

2. Preliminaries

In this section we review some basic definitions of finite state machine, fuzzy set
and cubic set.

Definition 2.1. A six tuple M = (Q,X, Y, f, g, s) is called a finite state machine if
Q,X, and Y are non-empty sets, f : Q×X → Q, g : Q×X −→ Y, and s ∈ Q.

The members ofQ are called states. The members ofX and Y are called input and
output symbols respectively. The functions f and g are called the state transition
and output functions, respectively. The state s is called the initial state.

A finite state automaton is a finite state machine such that the set of output
symbols Y is {0, 1} . Further algebraic properties can be found in [4].

The concept of fuzzy automata was given by Wee in 1967 [13]. Later different
approaches for the fuzzification of finite state machine presented in detail in [6, 11].

Now we recall the basic definitions of fuzzy set and cubic set.
Let X be a non empty fixed set. A fuzzy set in a set X is defined to be a function

f : X −→ [0, 1] . If f and g are fuzzy subsets of X, then
(i) f ⊆ g if and only if f (x) ≤ g (x) ∀ x ∈ X
(ii) f = g if and only if f ⊆ g and g ⊆ f
(iii) The complement of f, denoted by f c, is defined as f c (x) = 1−f (x) ∀x ∈ X.
More generally if {fi : i ∈ I} is a family of fuzzy subsets of X, then by the

union(join ∨) and intersection(meet ∧) of this family we mean a fuzzy subsets
(iv) (∨i∈Ifi) (x) = sup {fi (x) : i ∈ I}
(v) (∧i∈Ifi) (x) = inf {fi (x) : i ∈ I}
respectively for all x ∈ X.
By an interval number ã = [a−, a+] we mean a closed subinterval of [0, 1] where

0 ≤ a− ≤ a+ ≤ 1. let us denote D [0, 1] , the set of all closed sub intervals of [0, 1] ,
and define refined minimum(briefly rmin) of two elements in D [0, 1] . We also define
the symbols ⪯, ⪰ in case of two elements in D [0, 1] . Consider two interval number
ã1 =

[
a−1 , a

+
1

]
and ã2 =

[
a−2 , a

+
2

]
. Then

rmin {ã1, ã2} =
[
min

{
a−1 , a

−
2

}
,min

{
a+1 , a

+
2

}]
,

ã1 ⪯ ã2 if and only if a−1 ≤ a−2 and a+1 ≤ a+2 ,

and similarly we have ã1 ⪰ ã2 and ã1 = ã2. More generally, let ãi ∈ D [0, 1] where
i ∈ I. We define

r inf
i∈I

ãi =

[
inf
i∈I

a−i , inf
i∈I

a+i

]
and r sup

i∈I
ãi =

[
sup
i∈I

a−i , sup
i∈I

a+i

]
For any ã ∈ D [0, 1] , its complement denoted by ãc and defined as

ãc =
[
1− a+, 1− a−

]
2
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An interval valued fuzzy set(briefly, an IVF set) in a set X is defined to be a
function A : X −→ D [0, 1] , where D [0, 1] is the set of all closed sub intervals of
[0, 1] . For every IVF sets A and B in X, we define

A ⊆ B if and only if A (x) ⪯ B (x) for all x ∈ X and

A = B if and only if A (x) = B (x) for all x ∈ X

More generally if {Ai : i ∈ I} is a family of IVF fuzzy subsets of X, then by the
union G = ∪i∈IAi and intersection H = ∩i∈IAiof this family are defined as follows:

G (x) = (∪i∈IAi) (x) = r sup
i∈I

Ai (x)

and
F (x) = (∩i∈IAi) (x) = r inf Ai (x)

for all x ∈ X, respectively.

Definition 2.2 ([5]). Let X be a non empty set. By a cubic set in X we mean a
structure

A = {⟨x,A (x) , f (x)⟩ : x ∈ X}
in which A is IVF set in X and f is a fuzzy set in X.

A cubic set A = {⟨x,A (x) , f (x)⟩ : x ∈ X} is simply denoted by A = ⟨A, f⟩ .

Definition 2.3. Let A = ⟨A, f⟩ and B = ⟨B, g⟩ be cubic sets in X. Then we define
(i) A = B if and only if A = B and f = g.
(ii) A ⊆ B if and only if A ⊆ B and f ≥ g.
More generally Ai = {⟨x,Ai (x) , fi (x)⟩ : x ∈ X} where i ∈ I, we define
(iii) ∪i∈IAi = {⟨x, (∪i∈IAi) (x) , (∧i∈Ifi) (x)⟩ : x ∈ X} .
(iv) ∩i∈IAi = {⟨x, (∩i∈IAi) (x) , (∨i∈Ifi) (x)⟩ : x ∈ X} .

3. Cubic finite state machine

Definition 3.1. A cubic finite state machine(CFSM) is a triple M = (Q,X,A) ,
where Q and X are finite non-empty set of states and input respectively, and A =
⟨A, f⟩ is a cubic set in Q×X ×Q.

Let X∗ denote the set of all words of element of X of finite length, λ denote the
empty word in X∗ and |x| denote the length of x for every x ∈ X∗.

Definition 3.2. Let M = (Q,X,A) be a CFSM. Define cubic fuzzy set A∗ =
⟨A∗, f∗⟩ in Q×X∗ ×Q by

A∗ (q, λ, q1) =

{
[1, 1] if q = q1
[0, 0] otherwise.

and f∗ (q, λ, q1) =

{
0 if q = q1
1 otherwise.

A∗ (q, a, q1) = A (q, a, q1) and f∗ (q, a, q1) = f (q, a, q1)

and

A∗ (q, xa, q1) = r sup
s∈Q

{r inf {A∗ (q, x, s) , A (s, a, q1)}} and

f∗ (q, xa, q1) = ∧s∈Q {f∗ (q, x, s) ∨ f (s, a, q1)}
for all q1, q ∈ Q, x ∈ X∗ and a ∈ X.

3



A. Hussain et al. /Ann. Fuzzy Math. Inform. 11 (2016), No. 1, 1–10

Lemma 3.3. Let M = (Q,X,A) be a CFSM. Then

A∗ (q, xy, q1) = r sup
s∈Q

{r inf {A∗ (q, x, s) , A∗ (s, y, q1)}} and

f∗ (q, xy, q1) = ∧s∈Q {f∗ (q, x, s) ∨ f∗ (s, y, q1)}

for all q1, q ∈ Q and x, y ∈ X∗.

Proof. Let q1, q ∈ Q and x, y ∈ X∗. We prove the result by induction on |y| = n
if n = 0, then y = λ and so xy = xλ = x, hence

r sup
s∈Q

{r inf {A∗ (q, x, s) , A∗ (s, y, q1)}} = r sup
s∈Q

{r inf {A∗ (q, x, s) , A∗ (s, λ, q1)}}

= A∗ (q, x, q1)

and

∧s∈Q {f∗ (q, x, s) ∨ f∗ (s, y, q1)} = ∧s∈Q {f∗ (q, x, s) ∨ f∗ (s, λ, q1)}
= f∗ (q, x, q1) .

Thus the result is true for n = 0.
Suppose that the result is valid for all u ∈ X∗ such that |u| = n − 1, n > 0. Let

y = ua where u ∈ X∗, a ∈ X and |u| = n− 1. Then

f∗ (q, xy, q1) = f∗ (q, xua, q1) = r sup
s∈Q

{r inf {A∗ (q, xu, s) , A (s, a, q1)}}

= r sup
s∈Q

{
r inf

{
r supt∈Q {r inf {A∗ (q, x, t) , A∗ (t, u, s)}} ,

A (s, a, q1)

}}
= r sup

t,s∈Q
{r inf {A∗ (q, x, t) , A∗ (t, u, s) , A (s, a, q1)}}

= r sup
t∈Q

{
r inf

{
A∗ (q, x, t) ,

r sups∈Q {r inf {A∗ (t, u, s) , A (s, a, q1)}}

}}
= r sup

t∈Q
{r inf {A∗ (q, x, t) , A∗ (t, ua, q1)}}

= r sup
t∈Q

{r inf {A∗ (q, x, t) , A∗ (t, y, q1)}}

and

f∗ (q, xy, q1) = f∗ (q, xua, q1) = ∧s∈Q {f∗ (q, xu, s) ∨ f (s, a, q1)}
= ∧s∈Q {∧t∈Q {f∗ (q, x, t) ∨ f∗ (t, u, s)} ∨ f (s, a, q1)}
= ∧s,t∈Q {f∗ (q, x, t) ∨ f∗ (t, u, s) ∨ f (s, a, q1)}
= ∧t∈Q {f∗ (q, x, t) ∨ (∧s∈Q {f∗ (t, u, s) ∨ f (s, a, q1)})}
= ∧t∈Q {f∗ (q, x, t) ∨ f∗ (t, ua, q1)}
= ∧t∈Q {f∗ (q, x, t) ∨ f∗ (t, y, q1)} .

Hence the result is valid for |y| = n. This completes the proof. □

Definition 3.4. Let M = (Q,X,A) be a CFSM and let q1, q ∈ Q. Then q1 is called
a cubic immediate successor of q if there exists a ∈ X such that A (q, a, q1) ̸= [0 0]

4
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and f (q, a, q1) < 1. We denote by CIS (q) the set of all cubic immediate successor
of q.

We say that q1 is a cubic successor of q if there exists x ∈ X∗ such that
A∗ (q, a, q1) ̸= [0 0] and f∗ (q, a, q1) < 1. We denote by CS (q) the set of all cu-
bic successor of q. For any subset T of Q the set of all cubic successor of T denoted
by CS (T ) is defined to be the set

CS (T ) = ∪{CS (t) : t ∈ T} .

Proposition 3.5. Let M = (Q,X,A) be a CFSM. For any q1, q, s ∈ Q, the follow-
ing hold:

(i) q ∈ CS (q) .
(ii) If q1 ∈ CS (q) and s ∈ CS (q1), then s ∈ CS (q) .

Proof. (i) It is obvious. Since

A∗ (q, λ, q) = [1 1] ̸= [0 0] and f∗ (q, λ, q) = 0 < 1

so we have q ∈ CS (q) .
(ii) Let q1 ∈ CS (q) and s ∈ CS (q1) . Then there exist x, y ∈ X∗ such that

A∗ (q, x, q1) ̸= [0 0] and f∗ (q, x, q1) < 1

and

A∗ (q1, y, s) ̸= [0 0] and f∗ (q1, y, s) < 1

Using Lemma 3.3, we have

A∗ (q, xy, s) = r sup
t∈Q

{r inf {A∗ (q, x, t) , A∗ (t, y, s)}}

≥ r inf {A∗ (q, x, q1) , A
∗ (q1, y, s)}

̸= [0 0]

and

f∗ (q, xy, s) = ∧t∈Q {f∗ (q, x, t) ∨ f∗ (t, y, s)}
≤ f∗ (q, x, q1) ∨ f∗ (q1, y, s) < 1.

Hence s ∈ CS (q) . □

Proposition 3.6. Let M = (Q,X,A) be a CFSM. For any subset A and B of Q,
the following assertions hold.

(i) If A ⊆ B, then CS (A) ⊆ CS (B) .
(ii) A ⊆ CS (A) .
(iii) CS (CS (A)) = CS (A) .
(iv) CS (A ∪B) = CS (A) ∪ CS (B) .
(v) CS (A ∩B) ⊆ CS (A) ∩ CS (B) .

Proof. The proofs of (i) and (ii) are straightforward.
(iii) Obviously CS (A) ⊆ CS (CS (A)) . If q ∈ CS (CS (A)) , then q ∈ CS (q1) for

some q1 ∈ CS (A) . From q1 ∈ CS (A) , there exists s ∈ A such that q1 ∈ CS (s) .
It follows from Proposition 3.5 that q ∈ CS (s) ⊆ CS (A) so that CS (CS (A)) ⊆
CS (A) . Thus (iii) is valid.

5
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(iv) Since A ⊆ A ∪B and B ⊆ A ∪B,

CS (A) ⊆ CS (A ∪B) and CS (B) ⊆ CS (A ∪B) .

Thus

CS (A) ∪ CS (B) ⊆ CS (A ∪B) .

Conversely, let q ∈ CS (A ∪B) = ∪{CS (z) : z ∈ A ∪B}. Then q ∈ CS (z) for
some z ∈ A ∪ B. Thus there exist some x ∈ X∗ such that A∗ (z, x, q) ̸= [0 0] and
f∗ (z, x, q) < 1.
So q ∈ CS (A) or q ∈ CS (B) and thus q ∈ CS (A) ∪ CS (B). Hence CS(A ∪ B) ⊆
CS (A) ∪ CS (B) . There CS(A ∪B) = CS (A) ∪ CS (B) .

(v) Since A ∩B ⊆ A and A ∩B ⊆ B,

CS(A ∩B) ⊆ CS(A) and CS(A ∩B) ⊆ CS(B).

Thus CS(A ∩B) ⊆ CS(A) ∩ CS(B). □

Definition 3.7. Let M = (Q,X,A) be a CFSM. We say that M satisfies the cubic
exchange property if for all q1, q ∈ Q and T ⊆ Q, whenever

q1 ∈ CS (T ∪ {q}) and q1 /∈ CS (T ) then q ∈ CS (T ∪ {q1}) .

Theorem 3.8. Let M = (Q,X,A) be a CFSM. Then the following assertions are
equivalent.

(i) M satisfies the cubic exchange property.
(ii) (∀ q1, q ∈ Q) q1 ∈ CS (q) if and only if q ∈ CS (q1) .

Proof. Assume that M satisfies the cubic exchange property.
Let q1, q ∈ Q be such that q1 ∈ CS (q) = CS (∅ ∪ {q}) . Note that q1 /∈ CS (∅)

and so q ∈ CS (∅ ∪ {q1}) = CS (q1) .
Similarly if q ∈ CS (q1) then q1 ∈ CS (q) .
Conversely suppose that (ii) is valid.
Let q1, q ∈ Q and T ⊆ Q. If q1 ∈ CS (T ∪ {q}) and q1 /∈ CS (T ) , then q1 ∈ CS (q) .

It follows from (ii) that q ∈ CS (q1) ⊆ CS (T ∪ {q1}) . Hence M satisfies the cubic
exchange property. □

Definition 3.9. Let M = (Q,X,A) be a CFSM. Let Ã =
(
Ã, f̃

)
be a cubic subset

in Q . Then
(
Q,X,A,Ã

)
is called a cubic subsystem of M if ∀q1, q ∈ Q,∀x ∈ X∗,

Ã (q) ≥ r inf
{
Ã (q1) , A (q1, x, q)

}
and

f̃ (q) ≤ f̃ (q1) ∨ f (q1, x, q)

If
(
Q,X,A,Ã

)
is a cubic subsystem of M , then we write M̃ for

(
Q,X,A,Ã

)
.

Example 3.10. Let Q = {x, y} , X = {a} . Let A = ⟨A, f⟩ be a cubic subset in
Q×X ×Q defined as

A (t1, a, t2) = [0.4, 0.8] and f (t1, a, t2) =
1

2
for all t1, t2 ∈ Q.

6
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Then M = (Q,X,A) is CFSM. Let Ã =
(
Ã, f̃

)
be a cubic subset in Q defined as

Ã (x) = [0.5, 0.9] , Ã (y) = [0.4, 0.8] and

f̃ (x) =
1

8
, f̃ (y) =

1

3
.

It can easily be verified
(
Q,X,A,Ã

)
is a cubic subsystem of M.

Theorem 3.11. Let M = (Q,X,A) be a CFSM. Let Ã =
(
Ã, f̃

)
be a cubic subset

in Q . Then M̃ is a cubic subsystem of M if and only if

Ã (q) ≥ r inf
{
Ã (q1) , A

∗ (q1, x, q)
}

and

f̃ (q) ≤ f̃ (q1) ∨ f∗ (q1, x, q) ∀q1, q ∈ Q, and x ∈ X∗.

Proof. Suppose that M̃ is a cubic subsystem of M . Let q1, q ∈ Q and x ∈ X∗. The
proof is by induction on |x| = n.

If n = 0, then x = λ. Now if q1 = q, then

r inf
{
A∗ (q, λ, q) , Ã (q)

}
= Ã (q) and

f̃ (q) ∨ f∗ (q, λ, q) = f̃ (q) .

If q ̸= q1, then

r inf
{
A∗ (q1, λ, q) , Ã (q1)

}
= [0, 0] ⊆ Ã (q) and

f∗ (q1, λ, q) ∨ f̃ (q1) = 1 ≥ f̃ (q) .

Thus the result is true for n = 0.
Suppose that result is valid for all y ∈ X∗ with |y| = n− 1, n > 0.
Let x = ya where a ∈ X. Then

r inf
{
Ã (q1) , A

∗ (q1, x, q)
}

= r inf
{
Ã (q1) , A

∗ (q1, ya, q)
}

= r inf

{
Ã (q1) ,

[
r sup
s∈Q

{r inf {A∗ (q1, y, s) , A (s, a, q)}}
]}

= r sup
s∈Q

[
r inf

{
Ã (q1) , A

∗ (q1, y, s) , A (s, a, q)
}]

⊆ r sup
s∈Q

[
r inf

{
Ã (s) , A (s, a, q)

}]
⊆ Ã (q) .

Thus Ã (q1) ∩A∗ (q1, x, q) ⊆ Ã (q) and

f̃ (q1) ∨ f∗ (q1, x, q) = f̃ (q1) ∨ f∗ (q1, ya, q)

= f̃ (q1) ∨ {∧s∈Q {f∗ (q1, y, s) ∨ f∗ (s, a, q)}}

= ∧s∈Q

{
f̃ (q1) ∨ f∗ (q1, y, s) ∨ f∗ (s, a, q)

}
≥ ∧s∈Q

{
f̃ (s) ∨ f∗ (s, a, q)

}
≥ f̃ (q) .

7
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So f̃ (q1) ∨ f∗ (q1, x, q) ≥ f̃ (q) .
The converse is trivial. □

Definition 3.12. Let M = (Q,X,A) be a CFSM. Let T ⊆ Q. Let AT = (AT , fT )
be a cubic set in T ×X × T and let ℑ = (T,X,AT ) be a CFSM . Then ℑ is called
a cubic submachine of M if

(i) A |T×X×T= AT ,
(ii) CS (T ) ⊆ T.

We assume that ϕ = (∅, X,A) is a cubic submachine of M. Obviously, if ℑ′

is a cubic submachine of ℑ, and ℑ is cubic submachine of M , then ℑ′ is a cubic
submachine of M. A cubic submachine ℑ = (T,X,AT ) of a CFSM M = (Q,X,A)
is said to be proper if T ̸= ∅ and T ̸= Q.

Definition 3.13. A CFSM M = (Q,X,A) is said to be strongly cubic connected
if q1 ∈ CS (q) for every q1, q ∈ Q.

Theorem 3.14. Let M = (Q,X,A) be a CFSM and let ℑi = (Ti, X,ATi) i ∈ I be
a family of cubic submachines of M. Then we have

(i) ∩i∈Iℑi = (∩i∈ITi, X,∩i∈IATi) is a cubic submachine of M. Where ∩i∈IATi =
(r infi∈I ATi ,∨i∈IfTi).

(ii) ∪i∈Iℑi = (∪i∈ITi, X,A′) is a cubic submachine of M where A′ = (A′, f ′) is
given by

A′ = A |∪i∈IT×X×∪i∈IT and f ′ = f |∪i∈IT×X×∪i∈IT .

Proof. Let (q, x, q1) ∈ ∩i∈ITi ×X × ∩i∈ITi. Then(
r inf
i∈I

ATi

)
(q, x, q1) = r inf

i∈I
ATi (q, x, q1) = r inf

i∈I
A (q, x, q1)

= A (q, x, q1)

and

(∨i∈IfTi) (q, x, q1) = ∨i∈IfTi (q, x, q1) = ∨i∈If (q, x, q1)

= f (q, x, q1) .

Thus A |∩i∈ITi×X×∩i∈ITi= ∩i∈IATi .
On the one hand

CS (∩i∈ITi) ⊆ ∩i∈ICS (Ti) ⊆ ∩i∈ITi.

So ∩i∈Iℑi is a cubic submachine of M.
(ii) Since

CS (∪i∈ITi) = ∪i∈ICS (Ti)

⊆ ∪i∈ITi.

Hence ∪i∈Iℑi is a cubic submachine of M. □

Theorem 3.15. A CFSM M = (Q,X,A) is strongly cubic connected if and only
if M has no proper cubic submachine.

8
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Proof. Suppose thatM = (Q,X,A) is strongly cubic connected. Let ℑ = (T,X,AT )
be a cubic submachine of M such that T ̸= ∅. Then there exists q ∈ T, if q1 ∈ Q,
then q1 ∈ CS (q) , since M is strongly cubic connected. It follows that q1 ∈ CS (q) ⊆
CS (T ) so that T = Q. Hence M = ℑ. i.e M has no proper cubic submachine.

Conversely M has no proper cubic submachines. Let q1, q ∈ Q and let ℑ =
(CS (q) , X,A′) where A′ = A |CS(q)×X×CS(q) . Then ℑ is a cubic submachine of M
and CS (q) ̸= ∅ and so CS (q) = Q.

Thus q1 ∈ CS (q) , and therefore M is strongly Cubic connected. □

4. Conclusion

In this paper we have defined the notion of cubic finite state machine, cubic
subsystem and cubic submachine. A necessary and sufficient condition for a cubic
subsystem is also obtained and apply the concept of strong cubic connectedness of
the CFSM. We hope the research can be continued along this direction. In future,
cyclic cubic subsystem, simple strong cubic subsystem and the products of cubic
finite state machine can be studied.

Acknowledgements. The Authors are very thankful to the learned refer-
ees/editor in Chief Young Bae Jun for their suggestions to improve the present
paper.
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