Annals of Fuzzy Mathematics and Informatics Volume 10, No. 6, (December 2015), pp. 921–928 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On intuitionistic fuzzy contra λ -closed mappings

P. RAJARAJESWARI, G. BAGYALAKSHMI

Received 22 November 2014; Revised 23 January 2015; Accepted 2 June 2015

ABSTRACT. The aim of this paper is to introduce and study the concepts of intuitionistic fuzzy contra λ -closed mappings in intuitionistic fuzzy topological space and obtain some of their basic properties.

2010 AMS Classification: 54A40, 03F55

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy λ -closed set, Intuitionistic fuzzy λ -open set, Intuitionistic fuzzy contra λ -closed maps, Intuitionistic fuzzy contra λ -open maps.

Corresponding Author: G. Bagyalakshmi (g_bagyalakshmi@yahoo.com)

1. INTRODUCTION

The concept of intuitionistic fuzzy set was introduced by Atanassov [1] in 1983 as a generalised of fuzzy sets. This approach provided a wide field to the generalization of various concepts of fuzzy mathematics. In 1997 coker [2] defined intuitionistic fuzzy topological spaces. Recently many concepts of fuzzy topological space have been extended in intuitionistic fuzzy (IF) topological space. We provide some characterizations of intuitionistic fuzzy contra λ -closed mappings and intuitionistic fuzzy contra λ -open mappings and establish the relationships with other classes of early defined forms of intuitionistic mappings.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, where the function $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denotes the degree of membership $\mu_A(x)$ and the degree of non membership $\nu_A(x)$ of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Definition 2.2 ([1]). Let A and B be intuitionistic fuzzy sets of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, and form $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$. Then (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$

- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle | x \in X \}$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle | x \in X \}$
- (e) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle | x \in X \}.$

The intuitionistic fuzzy sets $0 = \{\langle x, 0, 1 \rangle / x \in X\}$ and $1 = \{\langle x, 1, 0 \rangle / x \in X\}$ are respectively the empty set and whole set of X.

Definition 2.3 ([2]).) An intuitionistic fuzzy topology (IFT) on X is a family of IFS which satisfying the following axioms.

- (i) $0, 1 \in \tau$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- (iii) $\cup G_i \in \tau$ for any family $\{Gi/i \in I\} \subseteq \tau$

In this paper the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS) and each intuitionistic fuzzy set in τ is known as an intuitionistic fuzzy open set (IFOS) in X.

Definition 2.4 ([2]). The complement A^c of an intuitionistic fuzzy open set A in an intuitionistic fuzzy topological space (X, τ) is called intuitionistic fuzzy closed set in X.

Definition 2.5 ([2]). Let (X, τ) be an intuitionistic fuzzy topological space and $A = \{\langle x, \mu_A(x), \nu_B(x) \rangle : x \in X\}$, be an intuitionistic fuzzy set in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by $int(A) = \cup \{G/G \text{ is an intuitionistic fuzzy open set in X and } G \subseteq A\}$ $cl(A) = \cap \{K/K \text{ in an intuitionistic fuzzy closed set in X and } A \subseteq K\}$

Remark 2.6 ([4]). For any intuitionistic fuzzy set A in (X, τ) , we have

- (i) $cl(A^c) = [int(A)]^c$,
- (ii) $int(A^c) = [cl(A)]^c$,
- (iii) A is an intuitionistic fuzzy closed set in $X \Leftrightarrow cl(A) = A$
- (iv) A is an intuitionistic fuzzy open in $X \Leftrightarrow int(A) = A$

Definition 2.7. Let (X, τ) be an IFTS and IFS $A = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$ is said to be an

- (a) intuitionistic fuzzy semi closed set [3] (IFSCS in short) if $int(cl(A)) \subseteq A$,
- (b) intuitionistic fuzzy α -closed set [3] (IF α -CS in short) if $cl(int(cl(A))) \subseteq A$,
- (c) intuitionistic fuzzy pre-closed set [3] (IFPCS in short) if $cl(int(A)) \subseteq A$,
- (d) intuitionistic fuzzy regular closed set [3] (IFRCS in short) if cl(int(A)) = A,
- (e) intuitionistic fuzzy generalized closed set [9] (IFGCS in short) if $cl(A) \subseteq U$, whenever $A \subseteq U$, and U in an IFOS,
- (f) intuitionistic fuzzy generalized semi closed set [8] (IFGSCS in short) if $cl(A) \subseteq U$, whenever $A \subseteq U$, and U is an IFOS,
- (g) intuitionistic fuzzy α -generalized closed set [7] (IF α -GCS in short) if α - $cl(A) \subseteq U$, whenever $A \subseteq U$, and U is an IFOS.

An IFS A is called intuitionistic fuzzy semi open set, intuitionistic fuzzy α -open set, intuitionistic fuzzy pre open set, intuitionistic fuzzy regular open set, intuitionistic fuzzy generalized open set, intuitionistic fuzzy generalized semi open set, and

intuitionistic fuzzy α -generalized open set and (IFSOS, IF α -OS, IFPOS, IFROS, IFGOS, IFGSOS, IF α -GOS and) if the complement A^c is an IFSCS, IF α -CS, IFPCS, IFRCS, IFGCS, IFGSCS, and IF α -GCS, respectively.

Definition 2.8 ([2]). Let X and Y are nonempty sets and $f: X \to Y$ is a function.

- (a) If $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle : y \in Y\}$ is an intuitionistic fuzzy set in Y, then the pre image of B under f denoted by $f^{-1}(B)$ is defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B(x)), f^{-1}(\nu_B(x)) \rangle : x \in X\}$
- (b) If $A = \{\langle x, \mu_A(x), \nu_B(x) \rangle : x \in X\}$ is an intuitionistic fuzzy set in X, the image of A under f denoted by f(A) is the intuitionistic fuzzy set in Y defined by $f(A) = \{\langle y, f(\mu_A(y)), f(\nu_A(y)) \rangle : y \in Y\}$ where $f(\nu_A) = 1 f(1 \nu_A)$.

Definition 2.9 ([5]). An intutionistic fuzzy set A of an intuitionistic topology space (X, τ) is called an

- (i) intuitionistic fuzzy λ -closed set (IF λ -CS) if $A \supseteq cl(U)$ whenever $A \supseteq U$ and U is intuitionistic fuzzy open set in X.
- (ii) intuitionistic fuzzy λ -open set (IF λ -OS) if the complement A^c of an intuitionistic fuzzy λ -closed set in A.

Definition 2.10 ([6]). Let A be an IFS in an IFTS (X, τ) . Then the intuitionistic fuzzy λ -interior and intuitionistic fuzzy λ -closure of A are defined as follows $\lambda - int(A) = \cup \{G/G \text{ is an IF } \lambda - \text{OS in } X \text{ and } G \subseteq A \}$ $\lambda - cl(A) = \cap \{K/K \text{ is an IF } \lambda - \text{CS in } X \text{ and } A \subseteq K\}$

Definition 2.11. [6] A mapping $f : (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy λ -continuous if $f^{-1}(V)$ is an intuitionistic fuzzy λ -closed sets in (X, τ) for every IFCS V of (Y, σ) .

The family of all intuitionistic fuzzy λ -closed set (intuitionistic fuzzy λ -open set) of an IFTS (X, τ) is denoted by IF λ -CS(X) (IF λ -OS(X)).

Throughout this paper $f: (X, \tau) \to (Y, \sigma)$ denotes a mapping from an intuitionistic fuzzy topological space (X, τ) to another intuitionistic topological space (Y, σ) .

Definition 2.12. A mapping $f : (X, \tau) \to (Y, \sigma)$ from an IFTS (X, τ) into an IFTS (Y, σ) is said to be an

- (a) [7] intuitionistic fuzzy closed mapping (IFCM for short) if f(A) is an IFCS in Y for every IFCS A in X.
- (b) [3] intuitionistic fuzzy semi closed mapping (IFSCM for short) if f(A) is an IFSCS in Y for every IFCS in X.
- (c) [3] intuitionistic fuzzy pre-closed mapping (IFPCM for short) if f(A) is an IFPCS in Y for every IFCS A in X.
- (d) [3] intuitionistic fuzzy α -closed mapping (IF α CM for short) if f(A) is an IF α CS in Y for every IFCS A in X.
- (e) [3] intuitionistic fuzzy α -generalized closed mapping (IF α GCM for short) if f(A) is an IF α GCS in Y for every IFCS A in X.

Definition 2.13. A mapping $f : (X, \tau) \to (Y, \sigma)$ from an IFTS (X, τ) into an IFTS (Y, σ) is said to be an

- (a) [3] intuitionistic fuzzy contra closed map (IF contra closed map in short) if f(A) is an IFOS in Y for every IFCS A in X.
- (b) [3] intuitionistic fuzzy contra α -closed map (IFc α closed map in short) if f(A) is an IF α OS in Y for every IFCS A in X.
- (c) [9] intuitionistic fuzzy contra generalized closed map (IFcG closed map in short) if f(A) is an IFGOS in Y for every IFCS A in X.
- (d) [9] intuitionistic fuzzy contra generalized semi closed map (IFcGS closed map in short) if f(A) is an IFGSOS in Y for every IFCS A in X.

3. Intuitionistic fuzzy contra λ -closed mappings

In this section, we introduce intuitionistic fuzzy contra λ -closed mappings and study some of their properties.

Definition 3.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be intuitionistic fuzzy contra λ -closed mapping if f(A) is an IF λ -CS in (Y, σ) for every IFOS A in (X, τ) .

Example 3.2. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and $U = \{\langle x, 0.5, 0.5 \rangle, \langle y, 0.3, 0.6 \rangle\}$, $V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.8, 0.2 \rangle\}$. Then, $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies of X and Y, respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra λ -closed mapping.

Theorem 3.3. Every intuitionistic fuzzy contra closed mapping is an intuitionistic fuzzy contra λ -closed mapping but not conversely.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy contra mappings. Let A be an IFOS in X. By hypothesis, f(A) is an IFCS in Y. Since every IFCS is an IF λ -CS in Y [5]. Therefore, f(A) is IFCS in an IF λ -CS in Y. Hence, f is an intuitionistic fuzzy contra λ -mappings is closed mappings.

Converse of the above theorem is not true as seen from the following example:

Example 3.4. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and $U = \{\langle x, 0.5, 0.5 \rangle, \langle y, 0.3, 0.6 \rangle\}$, $V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.8, 0.2 \rangle\}$. Then, $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies of X and Y, respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Hence, f is an intuitionistic fuzzy contra λ -closed mapping but not an intuitionistic fuzzy contra closed mapping, since U is an IFOS in X but $f(U) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.3, 0.6 \rangle\}$ is not an IF λ -CS in Y.

Theorem 3.5. Let $f : (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy contra λ -mappings and Y is an IF λ -T_{1/2} space. Then f is an intuitionistic fuzzy contra mapping.

Proof. Let A be an IFOS in X. By hyothesis, f(A) is an IF λ -CS in X. Since Y is an IF λ - $T_{1/2}$ space, f(A) is an IFCS in X. Hence f is an an intuitionistic fuzzy contra mapping.

Theorem 3.6. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y and Y is IF λ - $T_{1/2}$ space. Then the following statements are equivalent.

- (a) f is an intuitionistic fuzzy contra λ -closed mapping,
- (b) f is an intuitionistic fuzzy contra mapping.

Proof. Obvious.

Theorem 3.7. Every intuitionistic fuzzy contra pre-closed mapping is an intuitionistic fuzzy contra λ mapping but not conversely.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy contra pre-closed mapping. Let A be an IFOS in X. By hyothesis, f(A) is an IFPCS in Y. Since every IFPCS is an IF λ CS, (A) is an IF λ CS in X [6]. Hence f is an an intuitionistic fuzzy contra λ -closed mappings.

Remark 3.8. Converse of the above theorem is not true as seen from the following example.

Example 3.9. Let $X = \{a, b\}, Y = \{u, v\}$ and $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.3, 0.6 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.8, 0.2 \rangle\}$. Then $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies of X and Y respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra λ closed mappings but not an intuitionistic fuzzy ccontra pre closed mappings. Since U is an IFOS in X. But $f(U) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.3, 0.6 \rangle\}$ is not intuitionistic fuzzy preclosed set in Y. Hence, f is not intuitionistic fuzzy contra pre closed mapping.

Theorem 3.10. Every intuitionistic fuzzy contra α -closed mapping is an intuitionistic fuzzy contra λ -mappings but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an intuitionistic fuzzy contra α-closed mapping. Let A be an IFOS in X. By hypothesis, f(A) is an IF α-CS in Y. Since every IF α-CS is an IF λ-CS, f(A) is an IF λ-CS in X. Hence, f is an intuitionistic fuzzy contra λ-closed mapping.

Example 3.11. Let $X = \{a, b\}, Y = \{u, v\}$ and $U = \{\langle a, 0.4, 0.6 \rangle, \langle b, 0.2, 0.8 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.3, 0.7 \rangle\}$. Then $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies of X and Y, respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra λ -closed mappings but not an intuitionistic fuzzy contra α -closed mappings. Since U is an IFOS in Y. But $f(U) = \{\langle u, 0.4, 0.6 \rangle, \langle v, 0.3, 0.7 \rangle\}$ is not intuitionistic fuzzy α -closed set in X. Hence, f is not intuitionistic fuzzy contra α -closed mapping.

Remark 3.12. Intuitionistic fuzzy contra semi closed mappings and intuitionistic fuzzy contra λ -closed mappings are independent to each other for example.

Example 3.13. Let $X = \{a, b\}, Y = \{u, v\}$ and $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.2, 0.5 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.4, 0.5 \rangle\}$. Then $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be the intuitionistic fuzzy topologies of X and Y respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra λ -closed mapping but not an intuitionistic fuzzy contra semi closed mapping. Since U is an IFOS in X. Since $f(U) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.2, 0.5 \rangle\}$ is intuitionistic fuzzy λ -closed in Y, but not intuitionistic fuzzy semi closed set in Y. Hence, f is an intuitionistic fuzzy contra λ -closed mapping.

Example 3.14. Let $X = \{a, b\}, Y = \{u, v\}$ and $U = \{\langle a, 0.5, 0.6 \rangle, \langle b, 0.4, 0.6 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.1, 0.9 \rangle\}$. Then $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies of X and Y, respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra λ -closed mapping

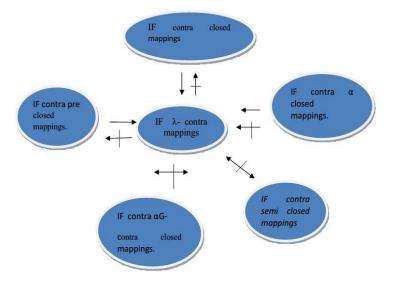
but not an intuitionistic fuzzy contra semi closed mapping. Since U is an IFOS in X. Since $f(U) = \{\langle u, 0.3, 0.6 \rangle, \langle v, 0.5, 0.5 \rangle\}$ is intuitionistic fuzzy λ -closed in Y, but not intuitionistic fuzzy semi closed set in Y. Hence, f is intuitionistic fuzzy contra λ -closed mappings but not intuitionistic fuzzy contra semi closed mappings.

Remark 3.15. Intuitionistic fuzzy contra αG closed mappings and intuitionistic fuzzy contra λ -closed mappings are independent to each other for example.

Example 3.16. Let $X = \{a, b\}, Y = \{u, v\}$ and $U = \{\langle a, 0.2, 0.6 \rangle, \langle b, 0.2, 0.7 \rangle\}, V = \{\langle u, 0.2, 0.4 \rangle, \langle v, 0.3, 0.5 \rangle\}$. Then $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies of X and Y respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra λ -closed mapping but not an intuitionistic fuzzy contra αG -closed mapping. Since U is an IFOS in X. Since $f(U) = \{\langle u, 0.3, 0.6 \rangle, \langle v, 0.5, 0.5 \rangle\}$ is intuitionistic fuzzy λ -closed in Y, but not intuitionistic fuzzy αG closed set in Y. Hence, f is intuitionistic fuzzy contra λ -closed mappings.

Example 3.17. Let $X = \{a, b\}, Y = \{u, v\}$ and $U = \{\langle a, 0.4, 0.6 \rangle, \langle b, 0.2, 0.7 \rangle\}$, $V = \{\langle u, 0.2, 0.6 \rangle, \langle v, 0.2, 0.7 \rangle\}$. Then $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies of X and Y, respectively. Consider a mapping $f : (X, \tau) \to (Y, \sigma)$ as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra αG -closed mappings but not λ -intuitionistic fuzzy contra-closed mappings. Since U is an IFOS in X, $f(U) = \{\langle u, 0.4, 0.6 \rangle, \langle v, 0.2, 0.7 \rangle\}$ is intuitionistic fuzzy contra αG -closed set in Y, but not intuitionistic fuzzy λ -closed. Hence, f is intuitionistic fuzzy contra αG -closed mappings but not intuitionistic fuzzy contra λ -closed mappings.

Remark 3.18. From the above examples and remarks we get the following relations



In this diagram $A \leftarrow B$ means that A implies B.

 $A \not\leftarrow B$ means that B does not imply A. $A \not\leftrightarrow B$ means that A and B are independent to each other.

Theorem 3.19. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following statements are equivalent.

- (a) f is an intuitionistic fuzzy contra λ -closed mapping,
- (b) f(B) is an IF λ -OS in Y for every IFCS B in X.

Proof. $(a) \Rightarrow (b)$. Let A be an IFCS in X. Then A^C is an IFOS in X. By hypothesis, $f(A^C) = (f(A))^C$ is an IF λ -CS in Y. Hence f(A) is an IF λ -OS in Y. $(b) \Rightarrow (a)$. Let B be an IFOS in X. Then B^C is an IFCS in Y. By (b), $f(B^C) = (f(B))^C$ is an IF λ -OS in Y. Hence, f(B) is an IF λ -CS in Y. Therefore f is an intuitionistic fuzzy contra λ -closed mapping.

Theorem 3.20. If $f: X \to Y$ is an IF contra closed map and $g: Y \to Z$ is an IF λ -closed map, then $g \circ f$ is an IF contra λ -closed map.

Proof. Let A be an IFOS in X, then f(A) is an IFCS in Y, since f is an IF contractored map. Since g is an IF λ -closed map, g(f(A)) is an if λ -CS in Z. Therefore $g \circ f$ is an IF λ -closed map.

Definition 3.21. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be intuitionistic fuzzy contra λ -open mapping if f(V) is λ -open set in (Y, σ) for every closed set V in (X, τ) .

Definition 3.22. An IFTS (X, τ) is said to be an intuitionistic fuzzy $\lambda_a T_{1/2}$ (in short IF $\lambda_a T_{1/2}$) space if every IF λ CS in X is an IFPCS in X.

Definition 3.23. An IFTS (X, τ) is said to be an intuitionistic fuzzy $\lambda_b T_{1/2}$ (in short IF $\lambda_b T_{1/2}$) space if every IF λ CS in X is an IFGCS in X.

Definition 3.24. An IFTS (X, τ) is said to be an intuitionistic fuzzy $\lambda_c T_{1/2}$ (in short IF $\lambda_c T_{1/2}$) space if every IF λ CS in X is an IF α CS in X.

4. Conclusion

In this paper we have introduced intuitionistic fuzzy contra λ -closed mappings and studied some of its basic properties. Also we have studied the relationship between fuzzy contra λ -closed mappings and some of the intuitionistic fuzzy contra mappings already exist.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] D. Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems 88 (1997) 81–89.
- [3] J. K. Jeon, Y. B. Jun, and J. H. Park, Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences 19 (2005) 3091–3101.
- [4] H. Gurcay, Es. A. Haydar and D. Coker, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997) 365–378.
- [5] P. Rajarajeswari and G. Bagyalakshmi, λ-closed sets in intuitionistic fuzzy topological space, International Journal of Computer Applications 34 (2011) 25–27.

- [6] P. Rajarajeswari and G. Bagyalakshmi, λ-continuous mappings in intuitionistic fuzzy topological space, International Journal of Applied Information Systems 1 (2012) 6–9.
- [7] R. Santhi and K. Sakthivel, Intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic alpha generalized irresolute mappings, Applied MAthematical sciences, 4 (2010) 1831–1842.
- [8] R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics 5 (2010) 11–20.
- [9] S. S. Thakur and R. Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau Studii Si Cetari Stiintifice 6 (2006) 257–272.

P. RAJARAJESWARI (p.rajarajeswari290gmail.com)

Department of Mathematics, Chikkanna Government Arts College, Tiruppur - 641 602, Tamil Nadu, India

<u>G. BAGYALAKSHMI</u> (g_bagyalakshmi@yahoo.com)

Department of Mathematics, AJK College of Arts and Science, Coimbatore - 641 105, Tamil Nadu, India