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1. Introduction

Šostak [21], introduced the fundamental concept of a ‘fuzzy topological struc-
ture’, as an extension of both crisp topology and Chang’s fuzzy topology [3], indicat-
ing that not only the object were fuzzified, but also the axiomatics. Subsequently,
Badard [2], introduced the concept of ‘smooth topological space’. Chattopadhyay et
al. [4] and Chattopadhyay and Samanta [5] re-introduced the same concept, calling
it ‘gradation of openess’. Ramadan [19] and his colleagues introduced a similar def-
inition, namely, smooth topological space for lattice L = [0, 1]. Following Ramadan,
several authors have re-introduced and further studied smooth topological space (cf.
[4, 5, 6, 22]). Thus, the terms ‘fuzzy topology’, in Šostak’s sense, ‘gradation of open-
ness’ and ‘smooth topology’ are essentially referring to the same concept. In our
paper, we adopt the term smooth topology.

The concept of proximity space was first described by Frigyes Riesz (1909) but
ignored at the time. It was rediscovered and axiomatized by Efremovič under the
name of infinitesimal space [7]. In addition to, Leader [14, 15] and Lodato [16,
17] have introduced a weaker axioms than those of Efremovič space. Kim et al.
[12] introduced the concept of K-proximity as a generalization of the concept of
proximity. Katsaras [10, 11] introduced and studied fuzzy proximity spaces. Park
[18] introduced the concept of fuzzy K-proximity. Samanta [20] introduced the
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concept of gradations of fuzzy proximity. It was shown that this fuzzy proximity is
more general than that of Artico and Moresco [1]. On the other hand, Ghanim et al.
[9] introduced fuzzy proximity spaces with somewhat different definition of Samanta
[20]. Fuzzy proximity theory was studied in many directions (cf. [8, 13, 23, 24,
25]). In this paper we introduce some generalization of the concept of the smooth
proximity, precisely a ‘smooth K-proximity’, a ‘Leader smooth proximity’ and a
‘Lodeto smooth proximity’. We also try to study some of its properties. In addition
we introduced the fuzzy K-proximally continuous based on the smooth K-proximity.
Furthermore, we construct Leader and Lodato smooth proximity structure using a
given smooth K-proximity.

2. Preliminaries

Throughout this paper, let X be a non-empty set, I = [0, 1], I0 = (0, 1], I1 = [0, 1)
and IX be the family of all fuzzy sets on X. For any µ1, µ2 ∈ IX , (µ1 ∧ µ2)(x) =
min{µ1(x), µ2(x) : x ∈ X} and (µ1 ∨ µ2)(x) = max{µ1(x), µ2(x) : x ∈ X}. For
λ ∈ IX , 1̄ − λ denotes the complement of λ. For α ∈ I, ᾱ(x) = α ∀x ∈ X. By 0̄
and 1̄, we denote constant maps on X with value 0 and 1, respectively. For x ∈ X
and t ∈ I0, a fuzzy point xt which takes t if x = y and 0 otherwise, for all y ∈ X.
Let Pt(X) be a family of all fuzzy points in X. The fuzzy point xt is said to be
contained in a fuzzy set λ iff λ(x) ≥ t. A fuzzy point xt is said to be quasi-coincident
with a fuzzy set λ, denoted by xt q λ if and only if λ(x) + t > 1. For µ, λ ∈ IX , µ is
called quasi-coincident with λ, denoted by µ q λ, if µ(x) + λ(x)> 1 for some x ∈ X,
otherwise we write µ q̄ λ. For λ1, λ2 ∈ IX , λ1 ≤ λ2 if and only if λ1 q̄ 1̄− λ2. Also,
λ1 ≤ λ2 if and only if (∀xt ∈ Pt(X)) (xt q λ1 =⇒ xt q λ2 ).

Definition 2.1 ([2, 4, 19, 21]). A smooth topology on X is a mapping τ : IX → I
which satisfies the following properties:

(1) τ(0̄) = τ(1̄) = 1,
(2) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), ∀ µ1, µ2 ∈ IX ,
(3) τ(

∨
i∈J µi) ≥

∧
i∈J τ(µi), for any {µi : i ∈ J} ⊆ IX .

The pair (X, τ) is called a smooth topological space. For r ∈ I0, µ is an r-open
fuzzy set of X if τ(µ) ≥ r, and µ is an r-closed fuzzy set of X if τ(1̄ − µ) ≥ r.
Note, Šostak [21] used the term ‘fuzzy topology’ and Chattopadhyay [4], the term
‘gradation of openness’ for a smooth topology τ .

Subsequently, the fuzzy closure (resp. interior) for any fuzzy set in smooth topo-
logical space is given as follows:

Definition 2.2 ([5]). Let (X, τ) be a smooth topological space. For λ ∈ IX and
r ∈ I0, a fuzzy closure of λ is a mapping Cτ : IX × I0 → IX defined as

(2.1) Cτ (λ, r) =
∧

{µ ∈ IX | µ ≥ λ, τ(1̄− µ) ≥ r}.

And, a fuzzy interior of λ is a mapping Iτ : IX × I0 → IX define as

(2.2) Iτ (λ, r) =
∨

{µ ∈ IX | µ ≤ λ, τ(µ) ≥ r}.

Definition 2.3 ([5]). A mapping C : IX×I0 → IX is called a fuzzy closure operator
if, for λ, µ ∈ IX and r, s ∈ I0, the mapping C satisfies the following conditions:
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(C1) C(0̄, r) = 0̄,
(C2) λ ≤ C(λ, r),
(C3) C(λ, r) ∨ C(µ, r) = C(λ ∨ µ, r),
(C4) C(λ, r) ≤ C(λ, s) if r ≤ s,
(C5) C(C(λ, r), r) = C(λ, r).
The fuzzy closure operator C generates a smooth topology τC : IX −→ I given

by

(2.3) τC(λ) =
∨

{r ∈ I| C(1̄− λ, r) = 1̄− λ}.

Definition 2.4 ([9]). A mapping δ : IX × IX −→ I is said to be a gradation of
proximity on X if it satisfies the following axioms:

(FP1) δ(µ, ρ) = δ(ρ, µ).
(FP2) δ(µ ∨ ρ, λ) = δ(µ, λ) ∨ δ(ρ, λ).
(FP3) δ(1̄, 0̄) = 0.
(FP4) δ(µ, ρ) < r =⇒ ∃λ ∈ IX such that δ(µ, λ) < r, δ(1̄− λ, ρ) < r.
(FP5) δ(µ, ρ) ̸= 1 =⇒ µ q̄ ρ.
The pair (X, δ) is called a fuzzy proximity space.

Remark 2.5. In this paper the gradation of proximity δ on X referee to smooth
proximity on X and the fuzzy proximity space (X, δ) referee to smooth proximity
space.

Lemma 2.6 ([9]). Let (X, δ) be a smooth proximity space. If δ(µ, λ) ≥ r, µ ≤ µ1

and λ ≤ λ1, then δ(µ1, λ1) ≥ r.

Definition 2.7 ([19]). Let (X, τ) and (Y, τ∗) be smooth topological spaces. A
mapping f : (X, τ) −→ (Y, τ∗) is called fuzzy continuous if τ(f−1(µ)) ≥ τ∗(µ) for
all µ ∈ IY .

Theorem 2.8 ([4]). Let (X, τ) and (Y, τ∗) be smooth topological spaces. Then, a
mapping f : (X, τ) −→ (Y, τ∗) is fuzzy continuous map iff f(Cτ (µ, r)) ≤ Cτ∗(f(µ), r),
for all µ ∈ IX , for all r ∈ I0.

3. Smooth K-proximity

Definition 3.1. Amapping δ : Pt(X)×IX −→ I is said to be a smooth K-proximity
on X if it satisfies the following axioms:

(FK1) δ(xt, µ ∨ ρ) = δ(xt, µ) ∨ δ(xtρ).
(FK2) δ(xt, 0̄) = 0 ∀ xt ∈ Pt(X).
(FK3) xt q µ implies δ(xt, µ) = 1.
(FK4) δ(xt, ρ) < r implies there exists η ∈ IX such that δ(xt, η) < r and δ(ys, ρ) <

r for all ys ∈ 1̄− η.

The pair (X, δ) is called smooth K-proximity space.

One can easily show that the smooth proximity on X implies the smooth K-
proximity on X.

Proposition 3.2. Every smooth proximity on X is a smooth K-proximity on X.
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Proof. (FP1) and (FP2) implies (FK1), (FP3) implies (FK2), and (FP5) implies
(FK3). If µ = {xt} and δ(µ, ρ) < r, then from (FP4) there exists a η ∈ IX with
δ(xt, η) < r and δ(1̄− η, ρ) < r. By Lemma 2.6, we get for each ys ∈ 1̄− η, we have
δ(ys, ρ) < r. This means (FK4) holds, and thus δ a smooth K-proximity on X. □

Lemma 3.3. Let (X, δ) be a smooth K-proximity, if δ(xt, µ) ≥ r and µ ≤ ρ, then
δ(xt, ρ) ≥ r.

Proof. The result follows immediately from (FK1) axiom. □

Theorem 3.4. Let (X, δ) be a smooth K-proximity. Then, a mapping Cδ : IX ×
I1 −→ IX given by

(3.1) xt q Cδ(λ, r) if and only if δ(xt, λ) ≥ 1− r

is a fuzzy closure operator and induced a smooth topology on X called τδ : IX −→ I
defined as

(3.2) τδ(λ) =
∨

{r ∈ I| Cδ(1̄− λ, r) = 1̄− λ}.

Proof. (C1) Since δ(xt, 0̄) = 0 for all xt ∈ Pt(X), it follows that xt q̄ Cδ(0̄, r) for
all xt ∈ Pt(X) and for all r ∈ I1, thus Cδ(0̄, r) = 0̄.

(C2) Let xt q λ, then by (FK3) axiom we get δ(xt, λ) = 1 ≥ 1 − r for all r ∈ I1
this implies xt q Cδ(λ, r). Hence λ ≤ Cδ(λ, r).

(C3)

xt q Cδ(λ ∨ µ, r) ⇐⇒ δ(xt, λ ∨ µ) ≥ 1− r

⇐⇒ δ(xt, λ) ≥ 1− r ∨ δ(xt, µ) ≥ 1− r

⇐⇒ xt q Cδ(λ, r) ∨ xt q Cδ(µ, r)

⇐⇒ xt q [Cδ(λ, r) ∨ Cδ(µ, r)].

Hence, Cδ(λ ∨ µ, r) = Cδ(λ, r) ∨ Cδ(µ, r).
(C4) Let r, s ∈ I1 such that r ≤ s and xt q Cδ(λ, r). Then, δ(xt, λ) ≥ 1−r ≥ 1−s

and this means xt q Cδ(λ, s). Hence, if r ≤ s, we have Cδ(λ, r) ≤ Cδ(λ, s).
(C5) Let xt q Cδ(Cδ(λ, r), r) and xt q̄ Cδ(λ, r). Then, δ(xt, λ) < 1− r. By (FK4)

axiom there exists η ∈ IX such that δ(xt, η) < 1−r and δ(ys, λ) < 1−r for all
ys ∈ 1̄−η. Therefore ys q̄ Cδ(λ, r) for all ys ∈ 1̄−η, and gives 1̄−η q̄ Cδ(λ, r).
So Cδ(λ, r) ≤ η. Again, by Lemma 3.3 we have δ(xt, Cδ(λ, r)) < 1 − r
which means that xt q̄ Cδ(Cδ(λ, r), r). So, we have a contradiction. The
other inclusion follows from (C2) it follows Cδ(λ, r) ≤ Cδ(Cδ(λ, r), r). Hence
Cδ(Cδ(λ, r), r) = Cδ(λ, r). Therefore, Cδ is a fuzzy closure operator. From
Definition 2.3, we get τδ is a smooth topology on X.

□

Definition 3.5. If on a set X there is a smooth topology τ and a smooth K-
proximity δ such that τ = τδ, then τ and δ are said to compatible, denoted τ ∼ δ,
or we say that the smooth topological space (X, τ) is a smooth K-proximal space.

In the following theorem we show that every smooth topological space induced a
compatible smooth K-proximity space.
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Theorem 3.6. Let (X, τ) be a smooth topological space. Let δ : Pt(X)× IX −→ I
defined by

(3.3) δ(xt, µ) =
∨

{1− r| xt q Cτ (µ, r), r ∈ I0}.

Then δ is a compatible smooth K-proximity on X.

Proof. First, we prove that δ satisfies (FK1)− (FK4).

(FK1)

δ(xt, µ ∨ ρ) = 1− r ⇐⇒ xt q Cτ (µ ∨ ρ, r)

⇐⇒ xt q Cτ (µ, r) ∨ xt q Cτ (ρ, r)

⇐⇒ δ(xt, µ) = 1− r ∨ δ(xt, ρ) = 1− r

⇐⇒ [δ(xt, µ) ∨ δ(xt, ρ)] = 1− r.

Hence, δ(xt, µ ∨ ρ) = δ(xt, µ) ∨ δ(xt, ρ).
(FK2) Since xt q̄ 0̄ = Cτ (0̄, r) for all r ∈ I0. Then, δ(xt, 0̄) = 0 for all xt ∈ Pt(X).
(FK3) Let xt q µ, then xt q Cτ (µ, r) for all r ∈ I0. This implies δ(xt, µ) = 1.
(FK4)

δ(xt, µ) < 1− r ⇐⇒ xt q̄ Cτ (µ, r)

⇐⇒ xt q̄ Cτ (Cτ (µ, r), r)

⇐⇒ δ(xt, Cτ (µ, r)) < 1− r

⇐⇒ if η = Cτ (µ, r), then δ(xt, η) < 1− r

and δ(ys, µ) < 1− r for all ys ∈ 1̄− Cτ (µ, r).

Hence, (X, δ) is a smooth K-proximity space.
To show τδ = τ , xt q Cδ(µ, r) ⇐⇒ δ(xt, µ) ≥ 1 − r ⇐⇒ xt q Cτ (µ, r).

Thus, τδ = τ .

□

Definition 3.7. Let (X, δ) be a smooth K-proximity space. For µ ∈ IX , we say that
µ is a δ-neighborhood of a fuzzy point xt ∈ Pt(X), denote xt ≪ µ if δ(xt, 1̄−µ) = 0.

Some basic properties of δ-neighborhood.

Proposition 3.8. Let (X, δ) be a smooth K-proximity space. Then:
(1) xt ≪ 1̄, for all xt ∈ Pt(X).
(2) xt ≪ µ =⇒ xt ∈ µ.
(3) xt ≪ µ and µ ≤ ρ =⇒ xt ≪ ρ.
(4) xt ≪ µi, for i = 1, ..., n =⇒ xt ≪

∧
i=1,...,n

µi, xt ≪
∨

i=1,...,n

µi.

(5) xt ≪ µ ⇐⇒ xt ≪ Iδ(µ, r) =⇒ xt ∈ Iδ(µ, r), for all r ∈ I0.

Proof. The results of parts (1)− (4) follows immediately from Definition 3.7, (FK2),
(FK3), Lemma 3.3 and (FK1).
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(5)

xt ≪ µ ⇐⇒ δ(xt, 1̄− µ) = 0

⇐⇒ xt q̄ Cδ(1̄− µ, r), ∀ r ∈ I1

⇐⇒ xt q̄ Cδ(Cδ(1̄− µ, r), r)

⇐⇒ δ(xt, Cδ(1̄− µ, r)) = 0

⇐⇒ δ(xt, 1̄− Iδ(µ, r)) = 0

⇐⇒ xt ≪ Iδ(µ, r).

□

Now we introduce the concept of fuzzy K-proximity (or fuzzy K-proximally con-
tinuous) mapping.

Definition 3.9. Let (X, δ1) and (Y, δ2) be two smooth K-proximity spaces. A
mapping f : X −→ Y is said to be a fuzzy K-proximity mapping if δ1(xt, µ) ≤
δ2(f(xt), f(µ)) for each xt ∈ Pt(X) and µ ∈ IX . Equivalently, f is a fuzzy K-
proximity mapping if δ2(xt, µ) < r implies δ(f−1(xt), f

−1(µ)) < r or xt ≪2 µ
implies f−1(xt) ≪1 f−1(µ) for each xt ∈ Pt(Y ) and µ ∈ IY .

Theorem 3.10. If f : X −→ Y is an injective mapping. Then, a fuzzy K-proximity
mapping f : (X, δ1) −→ (Y, δ2) is fuzzy continuous with respect to τδ1 and τδ2 .

Proof. Let xt q f(Cδ1(µ, r)). Then, f−1(xt) q f−1(f(Cδ1(µ, r))) implies f−1(xt) q
Cδ1(µ, r). It follows δ1(f

−1(xt), µ) ≥ 1 − r. Since f is a fuzzy K-proximity, then
δ2(f(f

−1(xt)), f(µ)) ≥ 1 − r implies δ2(xt, f(µ)) ≥ 1 − r. Thus xt q Cδ2(f(µ), r).
Hence, f is fuzzy continuous. □

Theorem 3.11. Let f : (X, δ1) −→ (Y, δ2) and g : (Y, δ2) −→ (Z, δ3) be two fuzzy
K-proximity mapping. Then g ◦ f is fuzzy K-proximity mapping.

Proof. The result follows directly from Definition 3.9. □

4. Some generalized smooth proximities induced by smooth
K-proximity

In this section we define a Leader and a Lodato smooth proximity and construct
Leader and Lodato smooth proximity structure using a given smooth K-proximity.

Definition 4.1. Let δ : IX × IX −→ I be a mapping. For any µ, ρ and λ ∈ IX ,
consider the following axioms:

(FL1) δ(µ, ρ) = δ(ρ, µ).
(FL2) δ(µ, ρ ∨ λ) = δ(µ, ρ) ∨ δ(µ, λ) and

δ(µ ∨ ρ, λ) = δ(µ, λ) ∨ δ(ρ, λ).
(FL3) δ(1̄, 0̄) = 0.
(FL4) δ(µ, ρ) ≥ r, δ(xt, λ) ≥ r for every xt q ρ implies δ(µ, λ) ≥ r.
(FL5) µ q ρ implies δ(µ, ρ) = 1.

Then, δ is said to be:
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(1) A Leader smooth proximity on X, if its satisfies (FL2), (FL3), (FL4) and
(FL5) axioms.

(2) A Lodato smooth proximity on X, if its satisfies (FL1)− (FL5) axioms.

If δ is a Leader (resp. Lodato) smooth proximity on X, then (X, δ) is called a Leader
(resp. Lodato) smooth proximity space.

Lemma 4.2. Let (X, δ) be a Leader (resp. Lodato) smooth proximity space, δ(µ, ρ) ≥
r and ρ ≤ λ, then δ(µ, λ) ≥ r.

Proof. The result follows immediately from (FL2) axiom. □
Theorem 4.3. Let (X, δ) be a Leader (resp. Lodato) smooth proximity space. Then,
the mapping Cδ : IX × I1 −→ IX defined by

(4.1) xt q Cδ(λ, r) if and only if δ(xt, λ) ≥ 1− r

is a fuzzy closure operator and induced a smooth topology on X called τδ : IX −→ I
defined as

(4.2) τδ(λ) =
∨

{r ∈ I| Cδ(1̄− λ, r) = 1̄− λ}.

Proof. Similar to the proof of Theorem 3.4. □
Theorem 4.4. Let (X, δ) be a Leader (resp. Lodato) smooth proximity space. Then,

(4.3) δ(µ, ρ) = δ(µ,Cδ(ρ, r)), ∀ r ∈ I1.

Proof. Let δ(µ,Cδ(ρ, r)) ≥ 1 − r and for all xt q Cδ(ρ, r), we have δ(xt, ρ) ≥ 1 − r.
Thus from (FL4) implies δ(µ, ρ) ≥ 1− r. The other inclusion follows from Theorem
4.3 and Lemma 4.2. □
Theorem 4.5. Let (X, δ) be a smooth K-proximity space. Then, π : IX × IX −→ I
given by

(4.4) π(µ, ρ) = r ⇐⇒ ∃xt ∈ µ such that δ(xt, ρ) = r

is a Leader smooth proximity.

Proof. (FL2)

π(µ, ρ ∨ λ) = r ⇐⇒ ∃xt ∈ µ; δ(xt, ρ ∨ λ) = r

⇐⇒ ∃xt ∈ µ; δ(xt, ρ) = r ∨ ∃xt ∈ µ; δ(xt, λ) = r

⇐⇒ π(µ, ρ) = r ∨ π(µ, λ) = r

⇐⇒ [π(µ, ρ) ∨ π(µ, λ)] = r

Hence, π(µ, ρ ∨ λ) = π(µ, ρ) ∨ π(µ, λ).
Similarly one can prove that π(µ ∨ ρ, λ) = π(µ, λ) ∨ π(ρ, λ).

(FL3) Since δ(xt, 0̄) = 0, for all xt ∈ Pt(X), then π(1̄, 0̄) = 0.
(FL4) Let π(µ, ρ) ≥ 1− r and π(ys, λ) ≥ 1− r for all ys q ρ. So there exists xt ∈ µ

such that δ(xt, ρ) ≥ 1 − r and δ(ys, λ) ≥ 1 − r for all ys q ρ which implies
that there exists xt ∈ µ such that xt q Cδ(ρ, r) and ys q Cδ(λ, r) for all
ys q ρ. So, xt ∈ µ such that xt q Cδ(ρ, r) and ρ q Cδ(λ, r), then xt ∈ µ such
that xt q Cδ(ρ, r) and Cδ(ρ, r) q Cδ(Cδ(λ, r), r) = Cδ(λ, r). Therefore xt ∈ µ
such that xt q Cδ(λ, r), then xt ∈ µ such that δ(xt, λ) ≥ 1 − r. Therefore,
π(µ, λ) ≥ 1− r.

901



O. A. Tantawy et al. /Ann. Fuzzy Math. Inform. 10 (2015), No. 6, 895–904

(FL5) Let µ q ρ. Then, ∃ xt ∈ µ, xt q ρ. Then, from (FK3), δ(xt, ρ) = 1 implies
π(µ, ρ) = 1.

□

Theorem 4.6. Let (X, δ) be a smooth K-proximity space and π be a Leader smooth
proximity on X as defined in (4.4). Then β : IX × IX −→ I given by

(4.5) β(µ, ρ) = r ⇐⇒ π(µ, ρ) ∧ π(ρ, µ) = r

is a Lodato smooth proximity.

Proof. (FL1)

β(µ, ρ) = r ⇐⇒ π(µ, ρ) ∧ π(ρ, µ) = r

⇐⇒ π(ρ, µ) ∧ π(µ, ρ) = r

⇐⇒ β(ρ, µ) = r.

(FL2)

β(µ, ρ ∨ λ) ≥ r ⇐⇒ [π(µ, ρ ∨ λ) ∧ π(ρ ∨ λ, µ)] ≥ r

⇐⇒ π(µ, ρ ∨ λ) ≥ r ∧ π(ρ ∨ λ, µ) ≥ r

⇐⇒ [π(µ, ρ) ∨ π(µ, λ)] ≥ r ∧
[π(ρ, µ) ∨ π(λ, µ)] ≥ r

⇐⇒ [π(µ, ρ) ≥ r ∧ π(ρ, µ) ≥ r] ∨
[π(µ, ρ) ≥ r ∧ π(λ, µ) ≥ r] ∨
[π(µ, λ) ≥ r ∧ π(ρ, µ) ≥ r] ∨
[π(µ, λ) ≥ r ∧ π(λ, µ)] ≥ r]

⇐⇒ β(µ, ρ) ≥ r ∨
[π(µ, ρ) ≥ r ∧ π(λ, µ) ≥ r] ∨
[π(µ, λ) ≥ r ∧ π(ρ, µ) ≥ r] ∨
β(µ, λ) ≥ r

⇐⇒ [β(µ, ρ) ∨ β(µ, λ)] ≥ r.

(FL3) Since π(1̄, 0̄) = 0, then π(1̄, 0̄) ∧ π(0̄, 1̄) = 0. Therefore β(1̄, 0̄) = 0.
(FL4) Let β(µ, ρ) ≥ 1 − r and β(ys, λ) ≥ 1 − r for all ys q ρ, then from (4.5),

π(µ, ρ) ≥ 1 − r, π(ρ, µ) ≥ 1 − r, π(ys, λ) ≥ 1 − r and π(λ, ys) ≥ 1 − r for
each ys q ρ.

Since π(µ, ρ) ≥ 1− r and π(ys, λ) ≥ 1− r for each ys q ρ. Then π(µ, λ) ≥
1− r.

Since π(λ, ys) ≥ 1− r for each ys q ρ and π(ρ, µ) ≥ 1− r. Then π(λ, µ) ≥
1− r. Hence β(µ, λ) ≥ 1− r.

(FL5) Let β(µ, ρ) ̸= 1, then π(µ, ρ) ̸= 1 or π(ρ, µ) ̸= 1, from definition of π we
have µ q̄ ρ.

□
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[21] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser.II

11 (1985) 89–103.
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