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Abstract. In this paper, we firstly defined neutrosophic parameterized
neutrosophic soft sets(npn−soft sets) which is combination of a neutro-
sophic sets and a soft sets. Our npn−soft sets generalizes the concept of
the other soft sets such as; fuzzy soft sets, intuitionistic fuzzy soft sets,
neutrosophic soft sets, fuzzy parameterized soft sets, intuitionistic fuzzy
parameterized soft sets, neutrosophic parameterized soft sets and so on.
Then, we introduce some definitions and operations on npn−soft sets and
some properties of the sets which are connected to operations have been
established. Also, we have introduced the concept of npn−soft matrix and
their operators which are more functional to make theoretical studies in the
npn−soft set theory. Finally, we proposed the decision making method on
the npn−soft set theory which can be applied to problems of many fields
that contain uncertainty and provided an example that demonstrated that
this method can be successfully worked.
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1. Introduction

In literature, a number of theories have been proposed which can be applied in
many real applications to handle uncertainty, vagueness and indeterminacy. Theory
of fuzzy set theory[60], theory of intuitionistic fuzzy sets [6], theory of neutrosophic
theory [54, 55] are consistently being utilized as efficient tools for dealing with diverse
types of uncertainties and imprecision embedded in a system.

The concept of soft sets was introduced by Molodtsov [46] for the inadequacy of
the parameterization tool of the theories. Later on, many interesting results of soft
set theory have been obtained by embedding the idea of fuzzy set, intuituionstic
fuzzy set, neutrosophic set and so on. For example, on fuzzy soft set [38], on fuzzy
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parameterized soft set [17, 25], on fuzzy parameterized fuzzy soft set [21], on intu-
itionistic fuzzy soft set [18, 40], on intuitionistic fuzzy parameterized soft set [24],
on intuitionistic fuzzy parameterized fuzzy soft set [59], on neutrosophic soft set
[22, 23, 36], on neutrosophic parameterized soft set [12], on generalized neutrosophic
soft set [9], on intuitionstic neutrosophic soft set [10] and so on. The theories has
developed in many directions and applied to wide variety of fields such as; on soft
set [1, 2, 3, 13, 30, 31, 33, 34, 52], on fuzzy soft set [28, 29, 35, 42, 56, 57], on fuzzy
parameterized soft set [19, 20], on intuiotionstic fuzzy soft set [26, 32, 37, 49, 50],
on neutrosophic soft set [22, 39] and so on. Recently Cagman et al [14] proposed
soft matrices and applied it in decision making problem. Then, they defined fuzzy
soft matrices [16]. Mondal and Roy [43, 45] defined intuitionistic fuzzy soft matri-
ces. Deli and Broumi [22] proposed neutrosophic soft matrices with some desired
propositions. The matrices has differently developed in many directions and applied
to wide variety of fields in [8, 11, 41, 43, 43, 44, 45, 48, 51, 53].

In this paper, we introduced npn−soft sets which is a combination of a neutro-
sophic sets [54] and a soft sets [46] by using [7, 14, 16, 23, 36, 41, 43, 44, 45, 48, 51,
55, 53, 58]. The neutrosophic parameterized neutrosophic soft sets(npn-soft sets)
generalizes the following sets:

(1) Soft sets,
(2) fuzzy soft sets,
(3) intuitionistic fuzzy soft sets,
(4) neutrosophic soft sets,
(5) fuzzy parameterized soft sets,
(6) fuzzy parameterized fuzzy soft sets,
(7) fuzzy parameterized intuitionistic fuzzy soft sets,
(8) fuzzy parameterized neutrosophic soft sets,
(9) intuitionistic fuzzy parameterized soft sets,
(10) intuitionistic fuzzy parameterized fuzzy soft sets,
(11) intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets,
(12) intuitionistic fuzzy parameterized neutrosophic soft sets,
(13) neutrosophic parameterized soft sets,
(14) neutrosophic parameterized fuzzy soft sets,
(15) neutrosophic parameterized intuitionistic fuzzy soft sets,

The relationship among npn-soft sets and other soft sets is showed in Figure 1.
Our objective is to present the concept of neutrosophic parameterized neutro-

sophic soft sets(or npn-soft sets) and its applications in decision making problem.
The remaining part of this paper is organized as follows. In section 2, we give ba-
sic definitions and notations that are used in the remaining parts of the paper. In
section 3, we defined neutrosophic parameterized neutrosophic soft sets(npn−soft
sets) which is a combination of a neutrosophic sets [54] and a soft sets [46]. Then
we introduce some definitions and operations on npn−soft sets and some properties
of the sets which are connected to operations have been established. In section 4,
we have introduced the concept of npn−soft matrix and their operators which are
more functional to make theoretical studies in the npn−soft set theory. In section
5, we proposed the decision making method on the npn−soft set theory which can
be applied to problems of many fields that contain uncertainty and we provided an
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Figure 1. Relationship among npn-soft set and other soft sets

example that demonstrated that this method can be successfully worked. In section
7, conclusion is made.

2. Preliminary

In this section, we give the basic definitions and results of neutrosophic set theory
[54] and soft set theory [46] that are useful for subsequent discussions.

For more details, the reader could refer to [4, 5, 13, 15, 47, 55, 58].

Definition 2.1. [54] Let U be a space of points (objects), with a generic element
in U denoted by u. A neutrosophic sets(N-sets) A in U is characterized by a truth-
membership function TA, a indeterminacy-membership function IA and a falsity-
membership function FA. TA(u); IA(u) and FA(u) are real standard or nonstandard
subsets of [0, 1]. It can be written as

A = {< u, (TA(u), IA(u), FA(u)) >: u ∈ U, TA(u), IA(u), FA(u) ∈ [0, 1]}.

There is no restriction on the sum of TA(u); IA(u) and FA(u), so 0 ≤ TA(u) +
IA(u) + FA(u) ≤ 3.

Definition 2.2. [46] Let U be an initial universe, P (U) be the power set of U , E
be a set of all parameters and X ⊆ E. Then a soft set FX over U is a set defined
by a function representing a mapping

fX : E → P (U) such that fX(x) = ∅ if x /∈ X
849
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Here, fX is called approximate function of the soft set FX , and the value fX(x) is
a set called x-element of the soft set for all x ∈ E. It is worth noting that the sets
is worth noting that the sets fX(x) may be arbitrary. Some of them may be empty,
some may have nonempty intersection. Thus, a soft set over U can be represented
by the set of ordered pairs

FX = {(x, fX(x)) : x ∈ E, fX(x) ∈ P (U)}

Definition 2.3. [27] t-norms are associative, monotonic and commutative two val-
ued functions t that map from [0, 1]×[0, 1] into [0, 1]. These properties are formulated
with the following conditions: ∀a, b, c, d ∈ [0, 1],

(1) t(0, 0) = 0 and t(a, 1) = t(1, a) = a,
(2) If a ≤ c and b ≤ d, then t(a, b) ≤ t(c, d)
(3) t(a, b) = t(b, a)
(4) t(a, t(b, c)) = t(t(a, b), c)

Definition 2.4. [27] t-conorms (s-norm) are associative, monotonic and commuta-
tive two placed functions s which map from [0, 1]× [0, 1] into [0, 1]. These properties
are formulated with the following conditions: ∀a, b, c, d ∈ [0, 1],

(1) s(1, 1) = 1 and s(a, 0) = s(0, a) = a,
(2) if a ≤ c and b ≤ d, then s(a, b) ≤ s(c, d)
(3) s(a, b) = s(b, a)
(4) s(a, s(b, c)) = s(s(a, b), c)

t-norm and t-conorm are related in a sense of lojical duality. Typical dual pairs
of non parametrized t-norm and t-conorm are complied below:

(1) Drastic product:

tw(a, b) =

{
min{a, b}, max{ab} = 1
0, otherwise

(2) Drastic sum:

sw(a, b) =

{
max{a, b}, min{ab} = 0
1, otherwise

(3) Bounded product:

t1(a, b) = max{0, a+ b− 1}
(4) Bounded sum:

s1(a, b) = min{1, a+ b}
(5) Einstein product:

t1.5(a, b) =
a.b

2− [a+ b− a.b]

(6) Einstein sum:

s1.5(a, b) =
a+ b

1 + a.b
(7) Algebraic product:

t2(a, b) = a.b
850
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(8) Algebraic sum:

s2(a, b) = a+ b− a.b

(9) Hamacher product:

t2.5(a, b) =
a.b

a+ b− a.b

(10) Hamacher sum:

s2.5(a, b) =
a+ b− 2.a.b

1− a.b
(11) Minumum:

t3(a, b) = min{a, b}
(12) Maximum:

s3(a, b) = max{a, b}

3. npn−soft sets

In this section, we present neutrosophic parameterized neutrosophic soft sets
which is generalized the concept of the sets by given Figure 1. Then, we intro-
duce some definitions and operations on neutrosophic parameterized neutrosophic
soft sets and some properties of the sets which are connected to operations have
been established. The method and application on neutrosophic soft set defined in
[23] are extended to the case of neutrosophic parameterized neutrosophic soft sets.

Definition 3.1. Let U be a universe, N(U) be the set of all neutrosophic sets on U,
E be a set of parameters that are describe the elements of U andK be a neutrosophic
set over E. Then, a neutrosophic parameterized neutrosophic soft set(npn−soft set)
N over U is a set defined by a set valued function fN representing a mapping

fN : K → N(U)

where fN is called approximate function of the npn−soft set N . For x ∈ E, the
set fN (x) is called x-approximation of the npn−soft set N which may be arbitrary,
some of them may be empty and some may have a nonempty intersection. It can be
written a set of ordered pairs,

N =

{
(< x, TN (x), IN (x), FN (x) >,

{< u, TfN (x)(u), IfN (x)(u), FfN (x)(u) >: x ∈ U}) : x ∈ E

}
where

FN (x), IN (x), TN (x), TfN (x)(u), IfN (x)(u), FfN (x)(u) ∈ [0, 1]

Definition 3.2. Let N be an npn−soft sets. Then, the complement of an npn−soft
set N denoted by N c and is defined by

N c =

{
(< x,FN (x), 1− IN (x), TN (x) >,

{< u,FfN (x)(u), 1− IfN (x)(u), TfN (x)(u) >: x ∈ U}) : x ∈ E

}
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Definition 3.3. Let N1 and N2 be two npn−soft sets. Then, the union of N1 and
N2 is denoted by N3 = N1∪̃N2 and is defined by

N3 =

{
(< x, TN3(x), IN3(x), FN3(x) >,

{< u, TfN3(x)
(u), IfN3(x)

(u), FfN3(x)
(u) >: x ∈ U}) : x ∈ E}

where

TN3(x) = s(TN1(x), TN2(x)), TfN3(x)
(u) = s(TfN1(x)

(u), TfN2(x)
(u)),

IN3(x) = t(IN1(x), IN2(x)), IfN3(x)
(u) = t(IfN1(x)

(u), IfN2(x)
(u)),

FN3(x) = t(FN1(x), FN2(x)), FfN3(x)
(u) = t(FfN1(x)

(u), FfN2(x)
(u))

Definition 3.4. Let N1 and N2 be two npn−soft sets. Then, the intersection of N1

and N2 is denoted by N4 = N1∩̃N2 and is defined by

N4 =

{
(< x, TN4(x), IN4(x), FN4(x) >,

{< u, TfN4(x)
(u), IfN4(x)

(u), FfN4(x)
(u) >: x ∈ U}) : x ∈ E}

where

TN4(x) = t(TN1(x), TN2(x)), TfN4(x)
(u) = t(TfN1(x)

(u), TfN2(x)
(u)),

IN4(x) = s(IN1(x), IN2(x)), IfN4(x)
(u) = s(IfN1(x)

(u), IfN2(x)
(u)),

FN4(x) = s(FN1(x), FN2(x)), FfN4(x)
(u) = s(FfN1(x)

(u), FfN2(x)
(u))

Example 3.5. Let U = {u1, u2, u3}, E = {x1, x2, x3}. N1 and N2 be two npn−soft
sets as

N1 =

{
(< x1, (0.6, 0.7, 0.8) >, {< u1, (0.4, 0.5, 0.6) >,< u2, (0.6, 0.1, 0.1) >,

< u3, (0.3, 0.4, 0.4) >}), (< x2, (0.4, 0.1, 0.2) >,< u1, (0.5, 0.8, 0.5) >,
< u2, (0.5, 0.6, 0.8) >,< u3, (0.6, 0.6, 0.9) >}), (< x3, (0.4, 0.1, 0.5) >,

{< u1, (0.5, 0.4, 0.6) >,< u2, (0.6, 0.6, 0.7) >,< u3, (0.2, 0.1, 0.8) >})
}

and

N2 =

{
(< x1, (0.9, 0.7, 0.8) >, {< u1, (0.3, 0.6, 0.8) >,< u2, (0.2, 0.3, 0.1) >,

< u3, (0.9, 0.7, 0.4) >}), (< x2, (0.4, 0.5, 0.8) >,< u1, (0.5, 0.7, 0.1) >,
< u2, (0.1, 0.6, 0.3) >,< u3, (0.1, 0.7, 0.5) >}), (< x3, (0.2, 0.8, 0.9) >,

{< u1, (0.7, 0.9, 0.6) >,< u2, (0.5, 0.6, 0.3) >,< u3, (0.7, 0.5, 0.8) >})
}

here;

N c
1 =

{
(< x1, (0.8, 0.3, 0.6) >, {< u1, (0.6, 0.5, 0.4) >,< u2, (0.1, 0.9, 0.6) >,

< u3, (0.4, 0.6, 0.3) >}), (< x2, (0.2, 0.9, 0.4) >,< u1, (0.5, 0.2, 0.5) >,
< u2, (0.8, 0.4, 0.5) >,< u3, (0.9, 0.4, 0.6) >}), (< x3, (0.5, 0.9, 0.4) >,

{< u1, (0.6, 0.6, 0.5) >,< u2, (0.7, 0.4, 0.6) >,< u3, (0.8, 0.9, 0.2) >})
}
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Let us consider the t-norm min{a, b} and s-norm max{a, b}. Then,

N1∪̃N2 =

{
(< x1, (0.9, 0.7, 0.8) >, {< u1, (0.4, 0.5, 0.6) >,< u2, (0.6, 0.1, 0.1) >,

< u3, (0.9, 0.4, 0.4) >}), (< x2, (0.4, 0.1, 0.2) >,< u1, (0.5, 0.7, 0.1) >,
< u2, (0.5, 0.6, 0.3) >,< u3, (0.6, 0.6, 0.5) >}), (< x3, (0.4, 0.1, 0.5) >,

{< u1, (0.7, 0.4, 0.6) >,< u2, (0.6, 0.6, 0.3) >,< u3, (0.7, 0.1, 0.8) >})
}

and

N1∩̃N2 =

{
(< x1, (0.6, 0.7, 0.8) >, {< u1, (0.3, 0.6, 0.8) >,< u2, (0.2, 0.3, 0.1) >,

< u3, (0.4, 0.7, 0.4) >}), (< x2, (0.4, 0.5, 0.8) >,< u1, (0.5, 0.8, 0.5) >,
< u2, (0.1, 0.6, 0.8) >,< u3, (0.1, 0.7, 0.9) >}), (< x3, (0.2, 0.8, 0.9) >,

{< u1, (0.5, 0.9, 0.6) >,< u2, (0.5, 0.6, 0.7) >,< u3, (0.2, 0.5, 0.8) >})
}

Proposition 3.6. Let N1, N2 and N3 be any three npn−soft sets. Then,

(1) N1∪̃N2 = N2∪̃N1

(2) N1∩̃N2 = N2∩̃N1

(3) N1∪̃(N2∪̃N3) = (N1∪̃N2)∪̃N3

(4) N1∩̃(N2∩̃N3) = (N1∩̃N2)∩̃N3

Proof: The proofs can be easily obtained since the t-norm function and s-norm
functions are commutative and associative.

4. More on npn−Soft sets with npn−Soft Matrices

In this section, we presented npn−soft matrices which are representative of the
npn−soft sets. Some of it is quoted from [7, 14, 16, 23, 36, 41, 43, 44, 45, 48, 51, 55,
53, 58]

Definition 4.1. Let U = {u1, u2, . . . , um}, E = {x1, x2, . . . , xn} and N be an
npn−soft set over N(U) as;

N =

{
(< xi, TN (xi), IN (xi), FN (xi) >,

{< uj , TfN (xi)(uj), IfN (xi)(uj), FfN (xi)(uj) >: uj ∈ U}) : xi ∈ E

}
If ki =< xi, TN (xi), IN (xi), FN (xi) > and

aij =< uj , TfN (xi)(uj), IfN (xi)(uj), FfN (xi)(uj) >, then we can define a matrix

[ki|aij ] =


k1 a11 a12 · · · a1m
k2 a21 a22 · · · a2m
...

...
...

. . .
...

kn an1 an2 · · · anm


such that ki = (TN (xi), IN (xi), FN (xi)) = (T a

i , I
a
i , F

a
i ) and aij = (TfN (xj)(ui),

IfN (xj)(ui), FfN (xj)(ui)) = (T a
ij , I

a
ij , F

a
ij), which is called an n ×m npn−soft matrix

(or namely NPNS-matrix) of the npn−soft set N over U .
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According to this definition, an an npn−soft set N is uniquely characterized by
matrix [ki|aij ]n×m. Therefore, we shall identify any npn−soft set with its NPNS-
matrix and use these two concepts as interchangeable. The set of all n×m NPNS-

matrix over U will be denoted by Ñn×m. From now on we shall delete th subscripts

n × m of [ki|aij ]n×m, we use [ki|aij ] instead of [ki|aij ]n×m, since [ki|aij ] ∈ Ñn×m

means that [ki|aij ] is an n×m NPNS-matrix for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Example 4.2. Let U = {u1, u2, u3}, E = {x1, x2, x3}. N be an npn−soft sets over
U as

N =

{
(< x1, (0.5, 0.3, 0.8) >, {< u1, (0.2, 0.5, 0.1) >,< u2, (0.7, 0.1, 0.6) >,

< u3, (0.8, 0.4, 0.1) >}), (< x2, (0.1, 0.6, 0.2) >,< u1, (0.5, 0.8, 0.5) >,
< u2, (0.7, 0.2, 0.8) >,< u3, (0.7, 0.6, 0.9) >}), (< x3, (0.5, 0.1, 0.3) >,

{< u1, (0.6, 0.4, 0.2) >,< u2, (0.9, 0.6, 0.4) >,< u3, (0.7, 0.1, 0.6) >})
}

Then, the NPNS-matrix [ki|aij ] is written by

[ki|aij ] =

 (0.5, 0.3, 0.8) (0.2, 0.5, 0.1) (0.7, 0.1, 0.6) (0.8, 0.4, 0.1)
(0.1, 0.6, 0.2) (0.5, 0.8, 0.5) (0.7, 0.2, 0.8) (0.7, 0.6, 0.9)
(0.5, 0.1, 0.3) (0.6, 0.4, 0.2) (0.9, 0.6, 0.4) (0.7, 0.1, 0.6)


Definition 4.3. An npn−soft matrix of order m×n is said to be a square npn−soft
matrix if m = n i.e., the number of rows and the number of columns are equal. That
means a square-npn−soft matrix is formally equal to an npn−soft set having the
same number of objects and parameters.

Example 4.4. Consider the Example 4.2. Here since the npn−soft matrix contains
three rows and three columns, so it is a square-npn−soft matrix.

Definition 4.5. The transpose of a square npn−soft matrix [ki|aij ] of order m× n
is another square npn−soft matrix of order n × m obtained from [ki|aij ] by inter-
changing its rows and columns. It is denoted by [ki|aTij ]. Therefore the npn−soft

set associated with [ki|aTij ] becomes a new npn−soft set over the same universe and
over the same set of parameters.

Example 4.6. Consider the Example 4.2. If the NPNS-matrix [ki|aij ] is written by

[ki|aij ] =

 (0.5, 0.3, 0.8) (0.2, 0.5, 0.1) (0.7, 0.1, 0.6) (0.8, 0.4, 0.1)
(0.1, 0.6, 0.2) (0.5, 0.8, 0.5) (0.7, 0.2, 0.8) (0.7, 0.6, 0.9)
(0.5, 0.1, 0.3) (0.6, 0.4, 0.2) (0.9, 0.6, 0.4) (0.7, 0.1, 0.6)


then, its transpose npn−soft matrix as;

[ki|aTij ] =

 (0.5, 0.3, 0.8) (0.2, 0.5, 0.1) (0.5, 0.8, 0.5) (0.6, 0.4, 0.2)
(0.1, 0.6, 0.2) (0.7, 0.1, 0.6) (0.7, 0.2, 0.8) (0.9, 0.6, 0.4)
(0.5, 0.1, 0.3) (0.8, 0.4, 0.1) (0.7, 0.6, 0.9) (0.7, 0.1, 0.6)


Definition 4.7. A square npn−soft matrix [ki|aij ] of order n × n is said to be a
symmetric npn−soft matrix, if its transpose be equal to it, i.e., if [ki|aTij ] = [ki|aij ].
Hence the npn−soft matrix [ki|aij ]) is symmetric, if [ki|aij ]= [ki|aji] ∀i, j.
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Example 4.8. Let U = {u1, u2, u3}, E = {x1, x2, x3}. N be an npn−soft sets as

N =

{
(< x1, (0.5, 0.3, 0.8) >, {< u1, (0.2, 0.5, 0.1) >,< u2, (0.5, 0.8, 0.5) >,

< u3, (0.6, 0.4, 0.2) >}), (< x2, (0.1, 0.6, 0.2) >,< u1, (0.5, 0.8, 0.5) >,
< u2, (0.7, 0.2, 0.8) >,< u3, (0.9, 0.6, 0.4) >}), (< x3, (0.5, 0.1, 0.3) >,

{< u1, (0.6, 0.4, 0.2) >,< u2, (0.9, 0.6, 0.4) >,< u3, (0.7, 0.1, 0.6) >})
}

Then, the symmetric neutrosophic matrix [ki|aij ] is written by

[ki|aij ] =

 (0.5, 0.3, 0.8) (0.2, 0.5, 0.1) (0.5, 0.8, 0.5) (0.6, 0.4, 0.2)
(0.1, 0.6, 0.2) (0.5, 0.8, 0.5) (0.7, 0.2, 0.8) (0.9, 0.6, 0.4)
(0.5, 0.1, 0.3) (0.6, 0.4, 0.2) (0.9, 0.6, 0.4) (0.7, 0.1, 0.6)


Definition 4.9. Let [ki|aij ] ∈ Ñn×m. Then [ki|aij ] is called

(1) A zero npn−soft matrix, denoted by [0̃], if ki = (0, 1, 1) and aij = (0, 1, 1)
for all i and j.

(2) A universal npn−soft matrix, denoted by [1̃], if ki = (1, 0, 0) and aij =
(1, 0, 0) for all i and j.

Example 4.10. Let U = {u1, u2, u3}, E = {x1, x2, x3}. Then, a zero npn−soft
matrix [ki|aij ] is written by

[0̃] =

 (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)


and a universal npn−soft matrix [ki|aij ] is written by

[1̃] =

 (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)


Definition 4.11. Let [ki|aij ], [ḱi|bij ] ∈ Ñn×m. Then

(1) [ki|aij ] is an NS-submatrix of [ḱi|bij ], denoted, [ki|aij ]⊆̃[ḱi|bij ], if T b
i ≥ T a

i ,
Iai ≥ Ibi , F

a
i ≥ F b

i , T
b
ij ≥ T a

ij , I
a
ij ≥ Ibij and F a

ij ≥ F b
ij , for all i and j.

(2) [ki|aij ] is a proper NS-submatrix of [ḱi|bij ], denoted, [ki|aij ]⊂̃[ḱi|bij ], if T a
i ≥

T b
i , I

a
i ≤ Ibi , F

a
i ≤ F b

i , T
a
ij ≥ T b

ij , I
a
ij ≤ Ibij and F a

ij ≤ F b
ij for at least T

a
i > T b

i

and Iai < Ibi , F
a
i < F b

i , T
a
ij > T b

ij and Iaij < Ibij and F a
ij < F b

ij for all i and j.

(3) [ki|aij ] and [ḱi|bij ] are IFS equal matrices, denoted by [ki|aij ] = [ḱi|bij ], if
ki = ḱi and aij = bij for all i and j.

Definition 4.12. Let [ki|aij ], [ḱi|bij ] ∈ Ñn×m. Then

(1) Union of [ki|aij ] and [ḱi|bij ], denoted, [´́ki|cij ] = [ki|aij ]∪̃[ḱi|bij ], such that
([(T c

i , I
c
i , F

c
i )] ∧ [(T c

ij , I
c
ij , F

c
ij)]) where T c

i = s{T a
i , T

b
i }, Ici = t{Iai , Ibi }, F c

i =

min{F a
i , F

b
i }, T c

ij = s{T a
ij , T

b
ij}, Icij = t{Iaij , Ibij} and F c

ij = t{F a
ij , F

b
ij} for all

i and j.
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(2) Intersection of [ki|aij ] and [ḱi|bij ], denoted, [
´́
ḱi|dij ] = [ki|aij ]∪̃[ḱi|bij ], such

that ([(T d
i , I

d
i , F

d
i )] ∧ [(T d

ij , I
d
ij , F

d
ij)]) where T d

i = t{T a
i , T

b
i }, Idi = s{Iai , Ibi },

F d
i = s{F a

i , F
b
i }, T d

ij = t{T a
ij , T

b
ij}, Idij = s{Iaij , Ibij} and F d

ij = s{F a
ij , F

b
ij} for

all i and j.

(3) Complement of [ki|aij ], denoted [
´́
ḱi|eij ] = [ki|aij ]c, such that [(T e

i , I
e
i , F

e
i )]∧

[(T e
ij , I

e
ij , F

e
ij)] where T

e
i = F a

i , I
e
i = 1− Iai , F

e
i = T a

i , T
e
ij = F a

ij , I
e
ij = 1− Iaij

and F e
ij = T a

ij for all i and j.

Example 4.13. Consider the Example 3.5 and the t-norm min{a, b} and s-norm
max{a, b}. Then,

[ki|aij ]∪̃[ki|bij ] =

 (0.9, 0.7, 0.8) (0.4, 0.5, 0.6) (0.6, 0.1, 0.1) (0.9, 0.4, 0.4)
(0.4, 0.1, 0.2) (0.5, 0.7, 0.1) (0.5, 0.6, 0.3) (0.6, 0.6, 0.5)
(0.4, 0.1, 0.5) (0.7, 0.4, 0.6) (0.6, 0.6, 0.3) (0.7, 0.1, 0.8)



[ki|aij ]∩̃[ki|bij ] =

 (0.6, 0.7, 0.8) (0.3, 0.6, 0.8) (0.2, 0.3, 0.1) (0.4, 0.7, 0.4)
(0.4, 0.5, 0.8) (0.5, 0.8, 0.5) (0.1, 0.6, 0.8) (0.1, 0.7, 0.9)
(0.2, 0.8, 0.9) (0.5, 0.9, 0.6) (0.5, 0.6, 0.7) (0.2, 0.5, 0.8)


and

[ki|aij ]c =

 (0.8, 0.3, 0.6) (0.6, 0.5, 0.4) (0.1, 0.9, 0.6) (0.4, 0.6, 0.3)
(0.2, 0.9, 0.4 (0.5, 0.2, 0.5) (0.8, 0.4, 0.5) (0.9, 0.4, 0.6)
(0.5, 0.9, 0.4) (0.6, 0.6, 0.5) (0.7, 0.4, 0.6) (0.8, 0.9, 0.2)

 .

Definition 4.14. Let [ki|aij ], [ḱi|bij ] ∈ Ñn×m. Then [ki|aij ] and [ḱi|bij ] are disjoint,
if [ki|aij ]∩̃[ḱi|bij ] = [0̃] for all i and j.

Proposition 4.15. Let [ki|aij ] ∈ Ñn×m. Then

(1)
(
[ki|aij ]c

)c
= [ki|aij ]

(2) [0̃]c = [1̃].

Proposition 4.16. Let [ki|aij ], [ḱi|bij ] ∈ Ñn×m. Then

(1) [ki|aij ] ⊆ [1̃]

(2) [0̃]⊆̃[ki|aij ]
(3) [ki|aij ]⊆̃[ki|aij ]
(4) [ki|aij ]⊆̃[ḱi|bij ] ∧ [ḱi|bij ]⊆̃[

´́
ki|cij ] ⇒ [ki|aij ]⊆̃[

´́
ki|cij ]

Proposition 4.17. Let [ki|aij ], [ḱi|bij ], [´́ki|cij ] ∈ Ñn×m. Then

(1) [ki|aij ] = [ḱi|bij ] and [ḱi|bij ] = [
´́
ki|cij ] ⇔ [ki|aij ] = [

´́
ki|cij ]

(2) [ki|aij ]⊆̃[ḱi|bij ] and [ḱi|bij ]⊆̃[ki|aij ] ⇔ [ki|aij ] = [ḱi|bij ]

Proposition 4.18. Let [ki|aij ], [ḱi|bij ], [ḱi|cij ] ∈ Ñn×m. Then

(1) [ki|aij ]∪̃[ki|aij ] = [ki|aij ]
(2) [ki|aij ]∪̃[0̃] = [ki|aij ]
(3) [ki|aij ]∪̃[1̃] = [1̃]

(4) [ki|aij ]∪̃[ḱi|bij ] = [ḱi|bij ]∪̃[ki|aij ]
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(5) ([ki|aij ]∪̃[ḱi|bij ])∪̃[ḱi|cij ] = [ki|aij ]∪̃([ḱi|bij ]∪̃[ḱi|cij ])

Proposition 4.19. Let [ki|aij ], [ḱi|bij ], [ḱi|cij ] ∈ Ñn×m. Then

(1) [ki|aij ]∩̃[ki|aij ] = [ki|aij ]
(2) [ki|aij ]∩̃[0̃] = [0̃]

(3) [ki|aij ]∩̃[1̃] = [ki|aij ]
(4) [ki|aij ]∩̃[ḱi|bij ] = [ḱi|bij ]∩̃[ki|aij ]
(5) ([ki|aij ]∩̃[ḱi|bij ])∩̃[ḱi|cij ] = [ki|aij ]∩̃([ḱi|bij ]∩̃[ḱi|cij ])

Proposition 4.20. Let [ki|aij ], [ḱi|bij ] ∈ Ñn×m. Then De Morgan’s laws are valid

(1) ([ki|aij ]∪̃[ḱi|bij ])c = [ki|aij ]c∩̃[ḱi|bij ]c
(2) ([ki|aij ]∩̃[ḱi|bij ])c = [ki|aij ]c∪̃[ḱi|bij ]c

Proof: i.

([ki|aij ]∪̃[ḱi|bij ])c = ([(T d
i , I

d
i , F

d
i )]

c ∧ [(T c
ij , I

c
ij , F

c
ij)])

c

= [(s{T a
i , T

b
i }, t{Iai , Ibi }, t{F a

ij , F
b
ij})]c

∧[(s{T a
ij , T

b
ij}, t{Iaij , Ibij}, t{F a

ij , F
b
ij})]c

= [(s{F a
i , F

b
i }, 1− t{Iai , Ibi }, t{T a

ij , T
b
ij})]

∧[(s{F a
ij , F

b
ij}, 1− t{Iaij , Ibij}, t{T a

ij , T
b
ij})]

= [(t{F a
i , F

b
i }, s{1− Iai , 1− Ibi }, s{T a

i , T
b
i }))]

∧[(t{F a
ij , F

b
ij}, s{1− Iaij , 1− Ibij}, s{T a

ij , T
b
ij}))]

= ([(T c
i , I

c
i , F

c
i )]

c ∧ [(T c
ij , I

c
ij , F

c
ij)])

c

= [ki|aij ]c∩̃[ḱi|bij ]c

i.

([ki|aij ]∩̃[ḱi|bij ])c = ([(T d
i , I

d
i , F

d
i )]

c ∧ [(T d
ij , I

d
ij , F

d
ij)])

c

= [(t{T a
i , T

b
i }, s{Iai , Ibi }, s{F a

ij , F
b
ij})]c

∧[(t{T a
ij , T

b
ij}, s{Iaij , Ibij}, s{F a

ij , F
b
ij})]c

= [(t{F a
i , F

b
i }, 1− s{Iai , Ibi }, s{T a

ij , T
b
ij})]

∧[(t{F a
ij , F

b
ij}, 1− s{Iaij , Ibij}, s{T a

ij , T
b
ij})]

= [(s{F a
i , F

b
i }, t{1− Iai , 1− Ibi }, t{T a

i , T
b
i }))]

∧[(s{F a
ij , F

b
ij}, t{1− Iaij , 1− Ibij}, t{T a

ij , T
b
ij}))]

= ([(T d
i , I

d
i , F

d
i )]

c ∧ [(T d
ij , I

d
ij , F

d
ij)])

c

= [ki|aij ]c∪̃[ḱi|bij ]c

Proposition 4.21. Let [ki|aij ], [ḱi|bij ], [ḱi|cij ] ∈ Ñn×m. Then

(1) [ki|aij ]∩̃([ḱi|bij ]∪̃[ḱi|cij ]) = ([ki|aij ]∩̃([ḱi|bij ])∪̃([ki|aij ]∩̃[ḱi|cij ])
(2) [ki|aij ]∪̃([ḱi|bij ]∩̃[ḱi|cij ]) = ([ki|aij ]∪̃([ḱi|bij ])∩̃([ki|aij ]∪̃[ḱi|cij ])
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Definition 4.22. Let [ki|aij ], [ḱi|bik] ∈ Ñm×n. Then And -product of [ki|aij ] and
[ḱi|bij ], denoted by [ki|aij ] ∧ [ḱi|bik], is defined by

∧ : Ñm×n × Ñm×n → Ñm×n2

[ki|aij ] ∧ [ḱi|bik] = [
´́
ki|cip] = [< T c

i , I
c
i , F

c
i > | < T c

ip, I
c
ip, F

c
ip >]

where
T c
i = t(T a

i , T
b
i ), I

c
i = s(Iai , I

b
i ) and F c

i = s(F a
i , F

b
i )

and where
T c
ip = t(T a

ij , T
b
jk), I

c
ip = s(Iaij , I

b
jk) and F c

ip = s(F a
ij , F

b
jk) such that p = n(j−1)+k

Definition 4.23. Let [ki|aij ], [ḱi|bik] ∈ Ñm×n. Then Or -product of [ki|aij ] and
[ḱi|bij ], denoted by [ki|aij ] ∨ [ḱi|bik], is defined by

∨ : Ñm×n × Ñm×n → Ñm×n2

[ki|aij ] ∨ [ḱi|bik] = [
´́
ki|cip] = [< T c

i , I
c
i , F

c
i > | < T c

ip, I
c
ip, F

c
ip >]

where
T c
i = s(T a

i , T
b
i ), I

c
i = t(Iai , I

b
i ) and F c

i = t(F a
i , F

b
i )

and where
T c
ip = s(T a

ij , T
b
jk), I

c
ip = t(Iaij , I

b
jk) and F c

ip = t(F a
ij , F

b
jk) such that p = n(j− 1)+ k

Proposition 4.24. Let [aij ], [bij ], [cij ] ∈ Ñm×n. Then the De morgan’s types of
results are true.

(1) ([aij ] ∨ [bij ])
c = [aij ]

c ∧ [bij ]
c

(2) ([aij ] ∧ [bij ])
c = [aij ]

c ∨ [bij ]
c

5. NPNSS-aggregation operator

In this section, we propose an aggregate fuzzy set of an npn−soft set. We also
define NPNSS-aggregation operator that produce an aggregate fuzzy set from an
npn−soft set and its neutrosophic parameter set. Some of it is quoted from [14, 16,
23, 36]

Definition 5.1. Let N1 be any an npn−soft sets. Then NPNSS-aggregation oper-
ator, denoted by NPNSSagg , is defined by

NPNSSagg : N(E)×NPNS(U) → F (U)

NPNSSagg(X,N1) = N∗
1

where

N∗
1 = {µN∗

1
(u)/u : u ∈ U}

which is a fuzzy set over U . The value N∗
1 is called aggregate fuzzy set of the N1.

Here, the membership degree µN∗
1
(u) of u is defined as follows

µN∗
1
(u) =

1

|E|
∑
x∈E

(|TN1(x) + IN1(x)− FN1(x)|)(|TfN (x)(u) + IfN (x)(u)− FfN (x)(u)|)

where |E| is the cardinality of E .
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Algorithm
The algorithm for the solution is given below
Step 1: Choose feasible an npn−soft set N1 over U ,
Step 2: Find the aggregate fuzzy set N∗

1 of N1,
Step 3: Find the largest membership grade max{µN∗

1
(u)}.

Case study: In this study, we have proposed a numerical application for the
method. Let U = {u1, u2, u3}, E = {x1, x2, x3}. Then,

Step 1: We choosen feasible an npn−soft set N1 over U as,

N1 =

{
(< x1, (0.6, 0.7, 0.8) >, {< u1, (0.4, 0.5, 0.6) >,< u2, (0.6, 0.1, 0.1) >,

< u3, (0.3, 0.4, 0.4) >}), (< x2, (0.4, 0.1, 0.2) >,< u1, (0.5, 0.8, 0.5) >,
< u2, (0.5, 0.6, 0.8) >,< u3, (0.6, 0.6, 0.9) >}), (< x3, (0.4, 0.7, 0.5) >,

{< u1, (0.5, 0.4, 0.6) >,< u2, (0.6, 0.6, 0.7) >,< u3, (0.2, 0.1, 0.8) >})
}

Step 2:We found the aggregate fuzzy set N∗
1 of N1 as,

N∗
1 = {u1/0.13, u2/0.13, u3/0.16}

Step 3: Finally, the largest membership grade can be chosen by max{µN∗
1
(u)}

which means that the u3 has the largest membership grade, hence it is selected for
decision making.

6. Conclusion

In this paper we define the notion of soft sets, is called npn−soft sets, in a new
way by using neutrosophic sets. The npn−soft sets generalizes the concept of the
other soft sets such as; fuzzy soft sets, intuitionistic fuzzy soft sets, neutrosophic
soft sets, fuzzy parameterized soft sets, intuitionistic fuzzy parameterized soft sets,
neutrosophic parameterized soft sets,.... Then, we introduce some definitions and
operations on npn−soft sets and propose the concept of npn−soft matrix and their
operators which are more functional to make theoretical studies in the npn−soft
set theory. Finally, we proposed the decision making method on the npn−soft set
theory and provided an example that demonstrated that this method can be suc-
cessfully worked. The approach should be more comprehensive in the future to
solve the problems that contain uncertainty. Researchers, can be just study on
npn−soft sets instead of similar work on separately other soft sets that is in Figure
1. npn−soft set can be expanding with new research subjects as; neutrosophic met-
ric spaces and smooth topological spaces, neutrosophic numbers and arithmetical
operations, relational structures, relational equations, similarity relations, order-
ings, probability, logical operations, implicators, multi-valued mappings, algebraic
structures and models, cognitive maps, matrix, graph, fusion rules, relational maps,
relational databases, image processing, linguistic variables, decision making and pref-
erence structures, expert systems, reliability theory, soft computing techniques and
so on.
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