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Abstract. In this paper, we attempt to derive a metric ( or s-metric)
form a fuzzy metric in a sense of A. George and P. Veeramani [4], where
the infimum of a D- induced interval is used to evaluate distance between
two points. It is proved that every fuzzy-metric space (X,D, ∗) with its
continuous t-norm ∗ between τe(= Einstein product) and τm(= minimum)
induces at least an s-metric space (X, d). The topological properties such
as the compactness and metrizabilty (fuzzy metrizabilty) of a fuzzy met-
ric induced topological space (X, τD) are investigated using its D-induced
metric (or s-metric ) induced topological space (X, τd). Similarly, we inves-
tigated the completeness and completion of a fuzzy metric space (X,D, ∗)
using the completion and completeness of its corresponding D-induced(or
D-induced s-) metric space (X, d).
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1. Introduction

Since the theory of fuzzy sets, introduced by L.A. Zadeh [35] appeared in 1965
it has been used in a range of areas of mathematics and many authors developed the
theory of fuzzy sets and their application in different ways(see, [1,18,21,27,29,30,36]).
Fuzzy topology is one example of use of Zadeh’s theory. Authors of this field have
pursued the definition of a fuzzy metric space from different points of view (see for
instance [2, 7, 10, 11, 20, 26] ) so that the distance between different elements can be
established according to degrees of closeness and remoteness. Authors continued to
characterise the theory of fuzzy metric space and apply it in fixed point theory in
fuzzy settings(see, [3, 5, 8–10,12–17,23,24,28,31–34]).

Completeness and completion are very useful properties in the context of fuzzy
and metric spaces. Sherwood proved in [25] in the framework of probabilistic metric
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spaces that every fuzzy metric space in a sense of Kramisol and Michelak [11] has
a completion which is unique up to isometry, with the help of the completeness
properties of Lȩvy’s metric. Unfortunately, there is a fuzzy metric space in a sense
George and Veeramani (see [4]) with no completion (see [8]). We will take advantage
of this desirable characteristic in order to investigate the completeness of a fuzzy
metric space in a sense of George and Veeramani using the completeness of its
corresponding induced metric or s -metric space.

The objectives of this paper are:

• to extract a metric or s-metric from a fuzzy metric introduced by George
and Veeramani ( [4]);

• to investigate the completeness and completion of a fuzzy metric spaces in
relation to its induced metric or s- space and ;

• to study the (fuzzy) metrizabilty of a pre-determined topological space with
respect to a fuzzy metric space, (X,D, ∗) using its notion of induced metric
space or s -metrics space.

2. Preliminaries

In this section, we briefly summarize important points in fuzzy metric spaces.
Notation. Throughout this paper the following notations are used.
τs = Topology derived by s -mapping; τ = topology;
R+ = the set of non negative real numbers; a ∧ b = min(a, b) ;
τD = Topology derived by fuzzy -metric, D; a ∨ b = max(a, b);
τd = Topology derived by induced-metric (or induced s-metric), d;
Tm = minimum t-norm; Te = Einstein product t-norm;
ϕα = ϕ( , α) and ϕt = ϕ(t, ) ; where ϕ : [0,∞)× (0, 1) −→ (0, 1].

Definition 2.1 (See [19]). Let X be a non-empty set. A function
d : X2 → [0,∞] is said to be metric on X if it satisfies:
(1) d(x, y) = 0 iff x = y
(2) d(x, y) = d(y, x) for all x, y ∈ X
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Definition 2.2 (B. Schweizer and A. Sklar [22]). A binary operation
∗ : [0, 1]× [0, 1] → [0, 1] is a continuous t-norm if ∗ satisfies the following conditions:

(1) ∗ is associative;
(2) ∗ is commutative;
(3) a ∗ 1 = a for all a ∈ [0, 1];
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

A t-norm ∗ is continuous if it is continuous with both variables.

Lemma 2.3. Let ⋄ be a t-norm. If Te ≤ ⋄ ≤ Tm, then there exists constant, c ∈ [1, 2]

such that a ⋄ b ≥ (a∧b)2

c , ∀a, b ∈ [0, 1].

Proof. Let a, b ∈ [0, 1] be arbitrary. Clearly,Tm(a, b) = (a∧b) ≥ (a ∧ b)2. For Eintein
product (that is, Hamacher t- norm for λ = 2), we have

Te(a, b) = ab
2+ab−(a+b) ≥ (a∧b)2

2+(a∧b)−(a+b) ≥ (a∧b)2

2 . Thus, for Te ≤ ⋄, it follows that
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⋄(a, b) ≥ Te ≥ (a∧b)2

2 . Therefore, for each t-norm with Te ≤ ⋄ ≤ Tm, a ⋄ b ≥ (a∧b)2

c
∀a, b ∈ [0, 1] and for some c ∈ [1, 2]. □

Definition 2.4 ( [11]). A 3-tuple (X,D, ∗) is said to be a fuzzy metric space if X
is an arbitrary non-empty set, ∗ is a continuous t− norm and D is a fuzzy set on
X ×X × [0,∞) satisfying the following conditions:

(D1) D(x, y, 0) = 0 for all x, y ∈ X;
(D2) D(x, y, t) = 1 if and only if x = y;
(D3) D(x, y, t) =M(y, x, t) for all x, y ∈ X and t > 0;
(D4) D(x, y, t) ∗M(y, z, s) ≤ D(x, z, t+ s) for all x, y, z ∈ X and for all s, t ≥ 0;
(D5) D(x, y, ) : (0,∞) −→ [0, 1] is left continuous, x, y ∈ X and t, s > 0.

In 1994 , George and Veeramni [4], slightly modified the notion of fuzzy metric
introduced by Kramosil and Michalek by replacing (D1) and (D5) of Definition 2.4
respectively by

(D′
1) D(x, y, t) > 0 for every fixed x, y ∈ X and for all t > 0;

(D′
5) D(x, y, ) : (0,∞) −→ (0, 1] is continuous for all x, y ∈ X.

Lemma 2.5. If (X,D, ⋄) is a fuzzy metric space and ∗ is a continuous t-norm such
that ∗ ≤ ⋄, then (X,D, ∗) is a fuzzy metric space.

Proof. We need to verify only Definition 2.4(D4). Since (X,D, ⋄) is a fuzzy metric
space, for all x, y, z ∈ X and t, s ∈ (0,∞), D(x, y, s + t) ≥ D(x, z, s) ⋄ D(y, z, t).
Since ∗ ≤ ⋄, D(x, z, s) ⋄D(y, z, t) ≥ D(x, z, s) ∗D(y, z, t). Thus,
D(x, y, s+ t) ≥ D(x, z, s) ∗D(y, z, t). Hence the result holds. □

Remark 2.6 (M. Grabiec, [5]). If (X,D, ⋄) is a fuzzy metric space, then D(x, y, ) is
a non-decreasing for all x, y ∈ X.

Definition 2.7 (V. George and P. Veeramani [4]). Let (X,D, ∗) be a fuzzy metric
space.
(i) A sequence {xn} ⊂ X is said to be D-Cauchy sequence, if for each r ∈ (0, 1)

and t > 0,there exists n(r) ∈ N such that D(xn, xm, t) > 1−r for all m,n ≥ n(r).
(ii) A sequence {xn} is said to be D-convergent to x ∈ X, if for each r ∈ (0, 1)

and t > 0,there exists n(r) ∈ N such that D(xn, x, t) > 1− r for all n ≥ n(r).
(iii) (X,D, ∗) is said be complete, if every D-Cauchy sequence is D-convergent.

3. Metric space induced by fuzzy metric space

In this section, we attempted to derive a metric from a given fuzzy metric in a
sense of A. George and P. Veeramani [4]. We study the completeness and completion
of some class of fuzzy metric spaces with respect to completeness and completion of
their respective induced metric spaces.

Lemma 3.1. If (X,D, ∗) is a fuzzy metric space, then D is continuous.

Proof. Let limn xn = xo and limn yn = yo in (X,D, ∗). We need to show that
limnD(xn, yn, t) = D(xo, yo, t). Since limn xn = xo, limn yn = yo, by Definition
2.7, it follows that limnD(xn, xo, t) = 1, limnD(yn, yo, t) = 1. From Definition 2.4,
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for s > t, we have

(∀n ∈ N) D(x0, yo, s+ t) ≥ D(xo, xn, t) ∗D(xn, yo, s)(3.1)

≥ D(xo, xn, t) ∗D(xn, yn, s− t) ∗D(yn, yo, t)

By letting n −→ ∞ in (3.1), for all s > t, we get
D(x0, yo, s+ t) ≥ limn{(D(xo, xn, t) ∗D(yo, yn, s)) ∗D(xn, yn, s− t)}

= (1 ∗ 1) ∗ limnD(xn, yn, t) = limnD(xn, yn, s− t).
Since D(x, y, ) is continuous,
D(x0, yo, s) = limt→0+ D(x0, yo, s+ t)

≥ limt→0+ limnD(xn, yn, s− t) = limnD(xn, yn, s).

Thus, D(x0, yo, s) ≥ limnD(xn, yn, s). Similarly, limnD(xn, yn, s) ≥ D(xo, yo, s).
From the above discussions, we conclude that D(x0, yo, s) = limnD(xn, yn, s). □
Definition 3.2. Let X be a non-empty set and let γ : X ×X × [0,∞) → [0,∞) be
a mapping such that

(i) γ is continuous; γ(x, y, t) = γ(y, x, t) for all x, y ∈ X and t ≥ 0;
(ii) γx,y := γ(x, y, ) is a non-decreasing function;
(iii) 0 < γ(x, y, t) for all x, y ∈ X and for all t > 0.

We denote Γ = {γ : X ×X × [0,∞) → [0,∞) : γ satisfies (i) to (iii)} .

Lemma 3.3. Let γ ∈ Γ. If γx,y is onto mapping, then γx,y(0) = 0 for all x, y ∈ X.

Proof. Let γx,y be onto. If γx,y(0) ̸= 0 for some x, y ∈ X, then there exists r > 0 such
that 0 < r < γx,y(0). Since γx,y is onto, there exists t0 > 0 such that γx,y(t0) = r.
Hence, γx,y(t0) < γx,y(0). This contradicts to Definition 3.2 (ii). Therefore,
γx,y(0) = 0. □
Definition 3.4. Let ϕ : [0,∞)× (0, 1) → (0, 1] be such that

(i) ϕ is continuous;
(ii) ϕ(t, β) ≤ ϕ(s, α), ∀ β ≤ α and ∀ s ≤ t.
(iii) for each t ∈ (0,∞) and α ∈ (0, 1), 0 < ϕ(t, α) < 1. We denote Φ = {ϕ :

[0,∞)× (0, 1) → (0, 1] : ϕ satisfies (i) to (iii)} .

Lemma 3.5. Let (ϕ, γ, α, t0) ∈ (Φ× Γ× (0, 1)× (0,∞) be fixed and let γ ∈ Γ. Let
α ∈ (0, 1), t0 ∈ (0,∞) and x, y ∈ X be arbitrary.

(i) ϕα := ϕ( , α) is non-increasing; ϕt0 := ϕ(t0, ) is a non-decreasing.
(ii) If ϕα is an onto mapping, then ϕα(0) = 1.
(iii) If ϕα and γx,y are onto mappings, then ϕα(γx,y(0)) = 1.

Proof. Using Definition 3.4 (ii) and Definition 3.2, it is easy to verify the validity
of the statements in Lemma 3.5(i). If ϕα(0) ̸= 1, then there exists r ∈ (0, 1) with
0 < ϕα(0) < r < 1. Since ϕα is onto, there exists k ∈ (0,∞) such that ϕα(k) = r.
By (i) of Lemma 3.5, ϕα is non -increasing. Hence r = ϕα(k) ≤ ϕα(0) < r. This is a
contradiction. Therefore, ϕα(0) = 1. Hence (ii) is proved. The proof of (iii) follows
from Lemma 3.3 and (ii) of this lemma. □
Lemma 3.6. Let (X,D, ∗) be a fuzzy metric space, (ϕ, γ) ∈ Φ × Γ. Assume that
a, x, y, u, v ∈ X and that α, β ∈ (0, 1) with α ≤ β are fixed.

(i) If D(x, y, t) ≥ D(u, v, t), γx,y(t) ≥ γu,v(t) for all t > 0 and
A = {t > 0 : D(x, y, t) > ϕα(γx,y(t))};
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B = {t > 0 : D(u, v, t) > ϕα(γu,v(t))}, then A ⊇ B.
(ii) If A = {t > 0 : D(x, y, t) > ϕβ(γx,y(t))};
B = {t > 0 : D(x, y, t) > ϕα(γx,y(t))}, then A ⊆ B.

(iii) If A = {z ∈ X : inf{t > 0 : D(a, z, t) > ϕα(γa,z(t))} < t0} and
B = {z ∈ X : D(a, z, to) > ϕα(γa,z(t0))}, then B = A.

(iv) If ϕα and γx,y are onto, A = {t > 0 : D(x, y, t) > ϕα(γx,y(t))} and
B = {t > 0 : D(u, v, t) > ϕα(γu,v(t))}, then A ∩B ̸= ∅.

(v) If ϕα and γx,y are onto and D(x, y, t) > ϕα(γx,y(t)) for all t > 0, then x = y.

Proof. It is easy to show the validity of (i) and (ii). So we verify only the validity
of (iii) to (v). If y /∈ A, then inf{t > 0 : D(a, y, t) > ϕα(γa,y(t))} ≥ t0. That is,
D(a, y, to) ≤ ϕα(γy0,y(t0)) =⇒ y /∈ B. Thus, B ⊆ A. Conversely, if y /∈ B, then
D(a, y, to) ≤ ϕα(γa,y(t0)) =⇒ inf{t > 0 : D(a, y, t) > ϕα(γa,y(t))} ≥ to. Hence
y /∈ A =⇒ A ⊆ B. Therefore, A = B. Hence (iii) is proved.

Since D(x, y, ) is non-decreasing and ϕα is non-increasing, if t0 ∈ A for some
t0 ∈ (0,∞), then t ∈ A for all t ≥ t0. Since ϕα is onto mapping, there exists s > 0
such that ϕα(γx,y(s)) =

α
α+t0

. Now, Assume A ∩B = ∅. Then for t0 ∈ A, we have

D(u, v, t0) ≤ ϕα(γx,y(t)) ≤ ϕα(s) =
α

α+ t0
for all t ≥ max(t0, s).(3.2)

Form (3.2), it follows D(u, v, t0) ̸= 1 for all t0 ∈ A and

(3.3)
t0

1−D(u, v, t0)
D(u, v, t0) ≤ α, for all t0 ∈ A.

Since we can take t0 ∈ A as large as we wish, Inequality (3.3) is valid only if
D(u, v, k) = 0 for some k ∈ A. But, this contradicts to (D′

1). Thus, our assumption
was wrong. Therefore, A ∩B ̸= ∅. Thus, (iv) is proved.

Since ϕα and γx,y are onto, by Lemma 3.5 and Continuity of ϕα, it follows that
ϕα(0) = 1 = limt−→0+ ϕα(γx,y(t)) ≤ limt−→0+ D(x, y, t) ≤ 1. That is,

(3.4) lim
t−→0+

D(x, y, t) = 1.

Since D(x, y, ) is non-decreasing and (3.4) is valid, we get D(x, y, t) = 1 for all
t > 0. Thus x = y. Thus, Lemma 3.5 is proved. Hence the result. □

Remark 3.7. Let (X,D, ∗) be a fuzzy metric space. If (ψ, γ, α) ∈ Ψ× Γ× (0, 1) and
x, y ∈ X are fixed, then A = {t > 0 : D(x, y, t) > ψα(γx,y(t))} is interval.

Definition 3.8. Let (X,D, ∗) be a fuzzy metric space, (ψ, γ, α) ∈ Ψ × Γ × (0, 1)
and x, y ∈ X be fixed. A set A = {t > 0 : D(x, y, t) > ψα(γx,y(t))} is said to be a
D-induced interval.

Lemma 3.9. If B,A ⊂ R+ and A ∩B ̸= ∅, then
(i) inf(A ∩B) ≤ inf(A) + inf(B), whenever A and B are intervals;
(ii) inf{A+B} = inf(A) + inf(B).

Definition 3.10. Let (X,D, ∗) be a fuzzy metric space. We say that a fuzzy metric
D induces a metric on X if there exist an α ∈ (0, 1), ϕ ∈ Φ and γ ∈ Γ such that a
function, d : X2 → [0,∞) defined by
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d(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))} is a metric on X. We call the
corresponding metric space, (X, d), D-induced metric space of (ϕ, γ, α).

Notation: Hereafter, we refer (X, d) as D-induced metric space of (ϕ, t, α), if
γx,y(t) = t for all x, y ∈ X and for all t > 0.

Theorem 3.11. Let (X,D, ∗) be a fuzzy metric space, (ϕ, γ, α) ∈ Φ × Γ × (0, 1).
Assume that both ϕα and γx,y are onto mappings for every fixed x, y,∈ X. Let
A = {t > 0 : D(x, y, t+ s) > ϕα(γx,y(t))} and
B = {t > 0 : D(x, z, t) > ϕα(γx,z(t))}, C = {t > 0 : D(z, y, t) > ϕα(γz,y(t))},
E = B ∩ C. If E ⊆ A,∀ x, y, z ∈ X, then D induces a metric on X.

Proof. Let (X,D, ∗), (ϕ, γ), A, B, C and E be as stated in Theorem 3.11 . Define
d : X2 → [0,∞) by d(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))}. Then
0 = d(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))} =⇒ D(x, y, t) > ϕα(γx,y(t)) for
all t > 0. Therefore, by Lemma 3.6, we have x = y. The converse is clear. Thus,
dα(x, y) = 0 iff x = y. Since D(x, y, t) = D(y, x, t) for all t > 0, it follows that
d(x, y) = d(x, y) for all x, y ∈ X. Let A and E be as stated in Theorem 3.11. By
Lemma 3.6, it follows that E ̸= ∅. If E ⊂ A, then inf(A) ≤ inf E and by Lemma
3.9, we get min(A) ≤ inf(E) ≤ inf(B) + inf(C). That is,
d(x, y) = inf(A) ≤ inf(E) ≤ inf(B) + inf(C) = d(x, z) + d(z, y). □
Theorem 3.12. Let (X,D, ∗) be a fuzzy metric space, (ϕ, γ, α) ∈ Φ × Γ × (0, 1).
Assume that both ϕα and γx,y are onto mappings for every fixed x, y ∈ X. Let
A = {t > 0 : D(x, y, t) > ϕα(γx,y(t))} and
B = {t > 0 : D(x, z, t) > ϕα(γx,y(t))}, C = {s > 0 : D(z, y, s) > ϕα(γz,y(s))},
E = B + C. E ⊆ A,∀ x, y, z ∈ X if and only if D induces a metric on X.

Proof. Let (X,D, ∗), (ϕ, γ, α), A, B, C and E be as stated in Theorem 3.12. Define
d : X2 → [0,∞) by d(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))}. If 0 = d(x, y) =
inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))}, then D(x, y, t) > ϕα(γx,y(t)) for all t > 0.
Therefore, by Lemma 3.6, we have x = y. The converse is clear. Thus, d(x, y) =
0 iff x = y. Since D(x, y, t) = D(y, x, t) for all t > 0, it follows that d(x, y) = d(x, y)
for all x, y ∈ X. Let A and E be as stated in the Theorem. By Lemma 3.6, it follows
that E ̸= ∅. If E ⊂ A, then inf(A) ≤ inf(E) and by Lemma 3.9, it follows that
min(A) ≤ inf(E) = inf(B) + inf(C). That is,
d(x, y) = inf(A) ≤ inf(B) + inf(C) = d(x, z) + d(z, y). Conversely, let d be a
D-induced metric of (ϕ, γ, α) and both ϕα and γx,y be onto mappings for every
fixed x, y ∈ X. Since ϕα(γx,y) is onto for every fixed x, y ∈ X and non-increasing;
D(x, y, ) is a continuous for for every fixed x, y ∈ X and non-decreasing, there
exists txy ∈ (0,∞) such that D(x, y, txy) = ϕα(γ(txy)) for each x ̸= y. Thus, if d is
a D-induced metric on X, then d(x, y) = txy and
{t > 0 : D(x, y, t) > ϕα(γx,y(t))} = (txy,∞). If x, y, z ∈ X is arbitrarily fixed, then
B = {t > 0 : D(x, z, t) > ϕα(γx,y(t))} = (txz,∞),
C = {t > 0 : D(x, y, t) > ϕα(γx,y(t))} = (tzy,∞),
A = {t > 0 : D(x, y, t) > ϕα(γx,y(t))} = (txy,∞) and E = B + C = (txz + tzy,∞).
Now if E ̸⊆ A, then A ⊂ E. Consequently, inf E < inf A. That is,
d(x, z) + d(z, y) = inf E < inf A = d(x, y). This is a contradiction to assumption d
is a D-induced metric on X. Therefore, E ⊆ A. □
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Corollary 3.13. If (X,D,∧) be a fuzzy metric space, then D induces a metric on
X, where a ∧ b = min(a, b) for all x, y ∈ [0, 1].

Proof. Let α ∈ (0, 1) be arbitrarily fixed. Consider
ϕ : [0,∞)× (0, 1) −→ (0, 1] and and γ : X ×X × [0,∞) defined by

ϕ(t, β) = β
β+t and γ(x, y, t) = t respectively. Clearly, (ϕ, t) ∈ Φ×Γ and both ϕα and

γx,y are onto mappings for every fixed α ∈ (0, 1) and x, y ∈ X respectively.
Let A = {t+ s > 0 : D(x, z, t+ s) > ϕα(t+ s), s, t > 0}
B = {t > 0 : D(x, z, t) > ϕα(t)}+ {s > 0 : D(z, y, s) > ϕα(s)}
C = {t+ s > 0 : min{D(x, z, t), D(z, y, s)} > ϕα(t+ s) s, t > 0}

Now we need to show that A ⊇ B. Since A ⊇ C, it suffice to show C ⊇ B.
Indeed, if k0 = to + s0 /∈ C, then min{D(x, z, to), D(z, y, s0)} ≤ ϕα(t0 + s0). That
is, either D(x, z, t0) ≤ ϕα(to + s0) ≤ ϕα(t0) or D(z, y, s0) ≤ ϕα(t0 + s0) ≤ ϕα(s0).
Hence ko = to + s0 /∈ B. Thus, B ⊆ C. So, B ⊆ A. Therefore, all assumptions
and conditions of Theorem 3.12 are satisfied and hence the conclusion of Corollary
follows by Theorem 3.12. □

Theorem 3.14. Let (X,D, ∗) be a fuzzy metric space such that
Ω = {α ∈ (0, 1) : dαis a metric on X induced by D} ≠ ∅. If
α0 = inf(Ω) and β0 = sup(Ω),and β0 ̸= α0, then {dα, α ∈ (α0, β0)} is an increas-

ing collection of metrics on X with respect to α ∈ (0, 1).

Proof. Since Ω ̸= ∅, there exists (ϕ, γ, α) ∈ Φ× Γ× (0, 1) such that
dα(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))} defines a metric on X. Let α0 and
β0 be as stated in the theorem and let α, β ∈ (α0, β0) such that α ≤ β. Define
A = {t > 0 : D(x.y, t) > ϕα(γx,y(t))} and B = {t > 0 : D(x, y, t) > ϕβ(γx,y(t))}.
By Lemma 3.6, B ⊆ A. Hence inf(A) ≤ inf(B). That is dα(x, y) ≤ dβ(x, y) for all
x, y ∈ X. □

Theorem 3.15. Let (X,D, ∗) be a fuzzy metric space. If (X, d) is a D-induced
metric space of (ϕ, t, α), then every D-Cauchy sequence is a d-Cauchy sequence.

Proof. If {xn} is a D-Cauchy sequence, then for 1 > r > 0 and t > 0, there exists a
k ∈ N such that D(xn, xm, t) > 1−r for all m > n ≥ k. Now let 0 < t0 be arbitrarily
fixed. For r0 = 1− ϕα(

t0
2 ), there exists n0 ∈ N such that

D(xn, xm,
t0
2 ) > (1−r0) = ϕα(

t0
2 ) for allm > n ≥ n0 ≥ k. By definition of D-induced

metric of (ϕ, t, α), we have dα(xn, xm) = inf{t > 0 : D(xn, xm, t) > ϕα(t)} ≤ t0
2 < t0

for all m > n ≥ n0. Since 0 < t0, was arbitrary, we conclude that {xn} is a d-Cauchy
sequence. □

Theorem 3.16. Let (X,D, ∗) be a fuzzy metric space. If (X, dα) be a D-induced
metric space of (ϕ, t, α). Then every D-convergent sequence is d-convergent sequence.

Proof. The proof is similar to that of Theorem 3.15. □

Corollary 3.17. Let (X,D, ∗) be a fuzzy metric space and (X, d) be a D-induced
metric space of (ϕ, t, α). If (X, d) is a complete metric space, then (X,D, ∗) is a
complete fuzzy metric space.

Proof. Proof of corollary follows from Theorem 3.15 and Theorem 3.16. □
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Corollary 3.18. Let (X,D, ∗) be a fuzzy metric space. If (X, d) is a D-induced
metric space of (ϕ, t, α), then (X,D, ∗) has a completion.

Proof. Since (X, d) is a metric space, it has a completion (see, [19]), (X⋆, d). There-
fore, the result follows by Corollary 3.17. □

Theorem 3.19. Let (X,D, ∗) be a fuzzy metric space, (X, d) be a D-induced metric
space of (ϕ, t, α) and ϕα is an onto mapping. A sequence {xn} ⊂ X is a d-Cauchy
sequence if and only it is a D-Cauchy sequence.

Proof. Let (X,D, ∗), (X, d) and ϕα be as stated in the Theorem. If {xn} is a d-
Cauchy sequence, then limn,m dα(xn, xm) = 0. That is,

0 = lim
n,m

{inf{t > 0 : D(xn, xm, t) > ϕα(t)}}(3.5)

= inf{t > 0 : lim
n,m

D(xn, xm, t) > ϕα(t)}

From (3.5), it follows that

lim
n,m

D(xn, xm, t) > ϕα(t) for all t > 0.(3.6)

By continuity of ϕα and Lemma 3.5, we have

lim
t−→0+

ϕα(t) = 1.(3.7)

From (3.6) and (3.7), it follows limm,nD(xn, xm, t) = 1 for all t > 0.
The Converse follows from Theorem 3.15. □

Theorem 3.20. Let (X,D, ∗) be a fuzzy metric space, (X, d) be a D induced-metric
space of onto pair (ϕ, t, α) and ϕα is an onto mapping. A sequence {xn} ⊆ X is a
D- convergent if and only if it is a d-convergent .

Proof. The proof of the theorem is similar to that of Theorem 3.19. □

Corollary 3.21. Let (X,D, ∗) be a fuzzy metric space, (X, d) be a D-induced metric
space of onto pair (ϕ, t, α). (X,D, ∗) is a complete fuzzy metric space if and only if
(X, d) is a complete metric space.

Proof. Proof of corollary follows from Theorem 3.19 and Theorem 3.20. □

Theorem 3.22. Let (X,D, ∗) and (X,D, ⋄) be fuzzy metric spaces. Then (X,D, ⋄)
induces a metric space iff (X,D, ∗) induces metric space.

Proof. If (X,D, ⋄) induces a fuzzy metric space, then there exists
(ϕ, γ, α) ∈ Φ× Γ× (0, 1) such that dα : X2 → [0,∞) defined by
dα(x, y) = {t > 0 : D(x, y, t) > ϕα(γx,y(t))} defines a metric on X. Consequently,
we have D(x, y, t) > ϕα(γx,y(t)) ∀ t > 0 =⇒ x = y and dα(x, y) = dα(y, x) for all
x, y ∈ X. If A = {t : D(x, y, s + t) > ϕα(t)}, B = {t : D(x, z, t) > ϕα(γx,y(t))},
C = {t : D(z, y, t) > ϕα(γx,y(t))} and E = B + C, then by Theorem 3.12, E ⊆ A
for all x, y, z ∈ X, t, s > 0 irrespective of t-norm involved. Thus, (X,D, ∗) induces
a metric space if and only if (X,D, ⋄) induces a metric space. □
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4. s-metric and induced s-metric spaces

In this section, we introduce the concept of an s-metric and derive it from a fuzzy
metric in a sense of A.George and P. Veeramani. We study the completeness and
completion of some class of fuzzy metric spaces with respect to completeness and
completion of their respective s-metric spaces.

Definition 4.1. Let X be nonempty set. A mapping d : X2 −→ [0,∞) is said to
be s- metric on X if there exists a continuous mapping (s-mapping)
s : X2 −→ [0,∞) with s(x, y) = s(y, x), ∀y, x ∈ X such that

(1) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y;
(2) d(x, y) = d(y, x) ∀x, y ∈ X;
(3) d(x, y) ≤ s(x, z) + s(z, y) ∀x, y, z ∈ X;
A pair (X, d) is said to be an s-metric space. If s is metric, we call d almost

metric and (X, d) almost metric space

Example 4.2. Every metric is a s - metric.

Example 4.3. Let X = [1,∞) and let D be a fuzzy set in X2 × (0,∞) defined by
D(x, y, t) = x∧y

x∨y . A mapping, dαs, on X
2 defined by

dα(x, y) = inf{t > 0 : D(x, y, t) > α
α+t} is a s - metric on X, where α ∈ (0, 1) is

fixed.

Proof. Let dα and D be as stated in the Example. Then

dα(x, y) = inf{t > 0 : D(x, y, t) > α
α+t} = α((x∨y)−(x∧y))

x∧y

⇒ dα(x, y) = 0 iff x = y, dα(x, y) = dα(y, x) and dα(x, y) ≤ α|x − y|. Define
s : X2 → [0,∞) by s(x, y) = α|x − y|. Thus, dα(x, y) ≤ s(x, y) ≤ s(x, z) + s(z, y).
Hence d is a s-metric on X. Moreover, d is almost metric on X. □

We define, a convergent sequence and a Cauchy sequence in an s-metric space as
usual.

Definition 4.4. Let (X, d) be a s- metric space.
(1) A sequence {xn} ⊂ X is said to be d-convergent if for every given ϵ > 0,
there exists n0 ∈ N such that d(xn, y) < ϵ for some y ∈ X and ∀ n ≥ n0.
(2) A sequence {xn} ⊂ X is said to be d-Cauchy if for given ϵ > 0,
there exists n0 ∈ N such that d(xn, xm) < ϵ, ∀m > n ≥ n0.

Proposition 4.5. Let (X, d) be an s-metric space. (i) A sequence {xn} in X is
convergent to x ∈ X iff limn d(xn, x) = 0.

(ii) A sequence {xn} in X is d-Cauchy iff limn,m d(xn, xm) = 0.

Proof. (i) If limn xn = x, then by definition given r ∈ (0, 1), the exists n0 ∈ N such
that d(x, xn) < r for all n ≥ n0. Since r ∈ (0, 1) was arbitrary, we conclude that
limn d(x, xn) = 0. The converse is clear. Similarly, (ii) holds. □
Definition 4.6. Let (X, d) be an s- metric space. We define

(1) s-open ball with center x0 and radius r0 by
Bs(x0, r0) = {y ∈ X : S(x0, y) < r0} if s(x, x) = 0 for all x ∈ X

(2) d-open ball with center xo and radius r0 by
Bd(x0, r0) = {y ∈ X : d(x0, y) < r0}.
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Proposition 4.7. If (X, d) is an s-metric space with s(x, x) = 0 for all x ∈ X,
then for each x ∈ X and each r > 0 (i) Bs(x, r) ⊆ Bd(x, r); (ii) ∃ t > 0 such that
Bd(x, r) ⊆ Bs(x, t).

Proof. Let (X, d) be an s-metric space and let x ∈ X, r > 0 be arbitrary.
(i) Since (X, d) a s- metric space, for every x, y ∈ X, we have d(x, y) ≤ s(x, y).

So, if z /∈ Bd(x, r), then s(x, z) ≥ d(x, z) ≥ r. That is,
z /∈ Bs(x, r) =⇒ Bs(x, r) ⊆ Bd(x, r).

(ii) Suppose to the contrary Bd(x, r) ̸⊆ Bs(x, t) for each t > 0. Assume r ≤ t.
So, if Bd(x, r) ̸⊆ Bs(x, t), then there exists z ∈ Bd(x, r) such that
z /∈ Bs(x, t) =⇒ r > s(x, z) ≥ t (by (i)) =⇒ r > t. This is the contradiction to
r ≤ t. Thus, there exists t > 0 such that Bd(x, r) ⊆ Bs(x, t). □

Definition 4.8. Let (X, d) be an s-metric space such that s(x, x) = 0 for all x ∈ X.
(1) A non-empty set A ⊂ X is said to be s-open if for each z ∈ A, there exists
ro > 0 such that Bs(z, ro) ⊂ A.

(2) A non-empty set A ⊂ X is said be d-open if for each z ∈ A, there exists
ro > 0 such that Bd(z, ro) ⊂ A.

Proposition 4.9. Let (X, d) be an s-metric space such that s(x, x) = 0 for all
x ∈ X. If τs = {A ⊂ X : A is s-open set } and τd = {A ⊂ X : A is d open set },
then τs = τd.

Proof. If A ∈ τs, then for every x ∈ A, there exists r > 0 such that
Bs(x, r) ⊂ A. By Proposition 4.7, there exists r0 > 0 such that
Bd(x, r0) ⊂ Bs(x, r) ⊂ A. Therefore, A is a d-open set in X. Thus, A ∈ τd. That
is τs ⊂ τd. Conversely, if A ∈ τd, then for every x ∈ A, there exists r > 0 such
that Bd(x, r) ⊂ A. By Proposition 4.7, Bs(x, r) ⊂ Bd(x, r) ⊂ A. Therefore, A is a
s-open set in X. Thus, A ∈ τs. That is, τd ⊂ τs. □

It is not difficult to show τd (also τs if s(x, x) = 0 for all x ∈ X) is a topology on
X. We call, this topology d-derived topology on X.

Definition 4.10. Let (X,D, ∗) be a fuzzy metric space. We say that a fuzzy metric
D induces an s-metric on X if there exists (ϕ, γ, α) ∈ Φ × Γ × (0, 1) such that a
function, d : X2 −→ [0,∞) defined by
d(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))} is an s-metric on X. We call the
corresponding induced s-metric space (X, d) a D-induced s-metric space of(ϕ, γ, α).

Theorem 4.11. Every D-induced s-metric of (ϕ, γ, α) is continuous.

Proof. Let (X, d) be a D-induced s-metric space of (ϕ, γ, α). If limn xn = x, limn yn =
y, then by Lemma 3.1, Definition 3.2, Definition 3.4 and Definition 4.10, it follows
that
limn d(xn, yn) = inf{t > 0 : limnD(xn, yn, t) > limnϕα(γxn,yn(t))}

= inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))}
= d(x, y).

Therefore, d-is continuous. □

Corollary 4.12. If (X, d) is a D-induced s-metric space of (ϕ, γ, α), then a limit of
d-convergent sequence is unique.
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Proof. Let (X, d) be D-induced s-metric space. Let {xn} be d-convergent sequence.
If limn xn = x and limn xn = y, then by Theorem 4.11, we get
d(x, y) = limn d(x, xn) = d(x, x) = 0. Therefore, by Definition 4.1 it follows that
x = y. □
Theorem 4.13. Let (X,D, ∗) be a fuzzy metric space. If Te ≤ ∗ ≤ Tm, then D
induces an s-metric.

Proof. Suppose(X,D, ∗) is a fuzzy metric space such that Te ≤ ∗ ≤ Tm. Let
(ϕ, t, α) ∈ Φ× Γ× (0, 1) and ϕα be an onto mapping. Define
d : X2 → [0,∞) by dαs(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))}. By lemma 3.6,
inf{t > 0 : D(x, y, t) > ϕα(t)} = 0 if and only if x = y. That is, d(x, y) = 0 if and
only if x = y. Since D(x, y, t) = D(y, x, t) for all x, y ∈ X, t > 0, it follows that
d(x, y) = d(y, x) for all x, y ∈ X. Let x, y, z ∈ X and s, t ∈ (0,∞) be arbitrary. By
Lemma 2.3 and Definition 2.4, we have

D(x, y, k) ≥ D(x, z, t) ∗D(z, y, s) ≥ (D(x,z,t)∧D(z,y,s))2

c for some
c ∈ [1, 2], where k = s+ t. Define
A = {k > 0 : D(x, y, k) > ϕα(k)},
B = {k > 0 : D(x, z, s) ∗D(z, y, t) > ϕα(k)},
C = {k > 0 : (D(x, z, t) ∧D(z, y, s))2 > cϕα(k)}.
Lemma 3.6, it follows that A ⊇ B ⊇ C. So, inf(A) ≤ inf(B) ≤ inf(C). That is,
d(x, y) = inf(A) ≤ inf(C). But
inf(C) ≤ inf{t > 0 : (D(x, z, t)2 > cϕα(γx,y(t))}+ {s > 0D(z, y, s)2 > cϕα(s)}

= s(x, z) + s(z, y),where

s is a mapping s : X2 → [0,∞) defined by

s(x, y) = inf{t > 0 : D(x, y, t) >
√
cϕα(γx,y(t))}. Clearly, s(x, y) = s(y, x) for all

x, y ∈ X. Also, d(x, y) ≤ s(x, z) + s(z, y) for all x, y ∈ X. □
Theorem 4.14. Let (X,D, ∗) be a fuzzy metric space such that Te ≤ ∗ ≤ Tm. If
(X, d) is a D-induced s metric space of (ϕ, t, α) and ϕα is an onto maping, then a
sequence {xn} ⊂ X is D-Cauchy iff d-Cauchy.

Proof. The proof the theorem is similar to proof Theorem 3.19. □
Theorem 4.15. Let (X,D, ∗) be a fuzzy metric space such that Te ≤ ∗ ≤ Tm. If
(X, d) is a D-induced s metric space of (ϕ, t, α) and ϕα is onto mapping, then a
sequence {xn} ⊂ X is D-convergent if and only if d-convergent.

Proof. The proof is similar to that of Theorem 4.14. □
Corollary 4.16. Let (X,D, ∗) be a fuzzy metric space such that Te ≤ ∗ ≤ Tm. If
(X, d) is a D-induced s metric space of onto pair (ϕ, t, α) and ϕα is onto mapping,
then (X,D, ∗) is a complete fuzzy metric space if and only if (X, d) is a complete
s-metric space.

Proof. Proof of corollary follows from Theorem 4.14 and Theorem 4.15. □

5. On topological spaces (X, τD) and (X, τd)

In this section, we investigate the relationship between fuzzy metric D-induced
topology TD and that of D-induced metric (or s-metric) induced topology τd.
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Definition 5.1. Let (X,D, ∗) be a fuzzy metric space and let (X, τD) be a corre-
sponding topological space induced by a fuzzy metric D. A set A ⊆ X is said to
be a τD-open if and only if given t0 > 0, there exists 0 < r < 1 such that for each
a ∈ A, B(a, r, t0) ⊂ A.

Theorem 5.2. Let (X,D, ∗) be a fuzzy metric space. If (X, d) is a D-induced metric
space of (ϕ, γ, α), then τd ⊆ τD.

Proof. Let (X, d) be a D-induced metric space of (ϕ, γ, α). If A ∈ τd, then for each
a ∈ A, there exists to ∈ (0, 1) such that Bd(a, to) ⊆ A. That is,
B = {b ∈ X : d(a, b) < t0} ⊆ A or equivalently,
B = {b ∈ X : inf{t > 0 : D(a, b, t) > ϕα(γa,b(t))} < t0} ⊆ A. By Lemma 3.6(iii), it
follows that B = {b ∈ X : D(a, b, to) > ϕα(γa,b(t0))} ⊆ A.

Since B = {b ∈ X : d(a, b) ≤ t0} is closed and bounded subset of a metric
space, it is compact set in (X, τd) and by continuity of ϕα(γa,.(t0)), there exists

b′ ∈ B such that t′0 = ϕα(γa,b′(t0)) = maxb∈B ϕα(γa,b(t0)). By Definition 3.2 and
Definition 3.4, 0 < t′0 < 1. Put t′0 = 1 − r for some r ∈ (0, 1), and consider
C = {b ∈ B : D(a, b, to) > 1− r}. We claim C ⊆ B. For if C ̸⊆ B, then there exists
z ∈ C with z /∈ B. But z /∈ B =⇒ D(a, z, t0) ≤ ϕα(γa,z(t0)) ≤ t′0 = 1 − r (since

z ∈ B) i.e z /∈ C. This contradicts to assumption z ∈ C. Thus, C ⊆ B ⊆ A i.e
A ∈ τD. □
Corollary 5.3. Let (X,D, ∗) be a fuzzy metric space, (X, d) be a D-induced metric
space of (ϕ, γ, α). If A ⊂ X is compact in (X, τd), then it is compact in (X, τD).

Proof. Proof of the corollary follows by Theorem 5.2. □
Corollary 5.4. Let (X,D, ∗) be a fuzzy metric space and let (X, d) be a D-induced
metric space of (ϕ, γ, α). If a mapping G : (X, τD) −→ (X, τD) is continuous, then
G : (X, τD) −→ (X, τd) is continuous.

Proof. Let G : (X, τD) −→ (X, τD) be continuous mapping and let V be open in
(X, τd), then by Theorem 5.2, V is open in (X, τD). Since
G : (X, τD) −→ (X, τD) is continuous mapping, G−1(V ) is open in (X, τD). Thus,
G : (X, τD) −→ (X, τd) is continuous. □
Theorem 5.5. Let (X,D, ∗) be a fuzzy metric space. If (X, d) is a D-induced
metric space of (ϕ, γ, α) and both ϕα and γx,y are onto mappings for each fixed
(α, (x, y)) ∈ (0, 1)×X2 , then τD = τd.

Proof. Let (X,D, ∗) and (X, d) be as stated in the theorem. If ∅ ̸= A ∈ τD, then
for each x0 ∈ A and t0 > 0 , there exists r0 ∈ (0, 1) such that B(x0, r0, t0) ⊂ A,
i.e B = {b ∈ X : D(x0, b,

t0
2 ) > 1 − r0} ⊂ A. Now fix such r0 ∈ (0, 1). Since

both ϕα and γx,y are onto mappings for each fixed (α, (x, y) ∈ (0, 1) ×X2 ), there
exists tb ∈ (0,∞) such that ϕα(γx0,b(tb)) = 1 − r0 for each b ∈ B. If we put
t′0 = inf{tb : ϕα(γx0,b(tb)) = 1−r0} and s0 = min{t′0, t02 }, then ψα(γxo,b(t

′
0)) ≥ 1−r0

for all b ∈ B and B = {b ∈ X : D(x0, b,
t0
2 ) > ψα(γxo,b(t

′
0))} ⊆ B, i.e B ⊂ A.

Observe that t′0 > 0. For if t′0 = 0, then there exist a subset
C = {bλ : λ ∈ I = some index set} of B and sequence
{tbλ : λ ∈ I = some index set} ⊆ {tb : ϕα(γx0,b(tb)) = 1−r0} such that limλ tbλ = 0.
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By continuity of ϕα(γx,y) and Lemma 3.5, we have
1 = limλ ϕα(γx0,bλ(tbλ)) > 1 − r0 =⇒ ϕα(γx0,bλ(tbλ)) > 1 − r0 for some bλ and its
corresponding tbλ . But, this contradicts to assumption
ϕα(γx0,bλ(tbλ)) = 1− r0. Therefore, t

′
0 ̸= 0.

Using Remark 2.6, Definition 3.2, and Lemma 3.5, we have the following:

(5.1)

{
D(x0, b, s0) ≤ min{D(x0, b,

t0
2 ), D(x0, b, t

′
0)},

max{ϕα(γx0,b(
t0
2 )), ϕα(γx0,b(t

′
0))} ≤ ϕα(γx0,b(s0)), ∀α ∈ (0, 1)

∀ b ∈ X.

Define E = {b ∈ X : D(x0, b, s0) > ϕα(γx0,b(s0))} We claim that E ⊆ B. Indeed,
if y /∈ B, then by (5.1 ), it follows that
D(x0, y, s0) ≤ D(x0, y,

t0
2 ) ≤ ϕα(γx0,b(t

′
0)) ≤ ϕα(γx0,b(s0)). Hence y /∈ E. Thus,

E ⊆ B. By definition of induced d, for each b ∈ E, it follows that
d(x0, b) = inf{t > 0 : D(x0, b, t) > ϕα(γx0,b(t))} ≤ s0. Therefore,
{b ∈ X : inf{t > 0 : D(x0, b, t) > ϕα(γx0,b(t))} ≤ s0 < t0} ⊆ E ⊆ B ⊆ A or
equivalently, {b ∈ X : d(x0, b) ≤ s0 < t0} ⊆ E ⊆ A. Since x0 ∈ A was arbitrary,
for each x ∈ A, there exists a t0 > 0 such that {b ∈ X : d(x0, b) < t0} ⊆ A. Thus,
A ∈ τd. The converse follows by Theorem 5.2. □

Corollary 5.6. Let (X,D, ∗) be a fuzzy metric space . If (X, d) is a D-induced
metric space of (ϕ, γ, α) and both ϕα and γx,y are onto mappings for every fixed
(α, (x, y)) ∈ (0, 1)×X2, then X is τD compact if and only if X is τd compact.

Proof. Since both ϕα and γx,y are onto for every fixed x, y ∈ X, by Theorem 5.5,
τD = τd. Therefore, X is τD compact iff X is τd compact. □

Corollary 5.7. Let (X,D, ∗) be a fuzzy metric space. If (X, d) is a D- induced
metric space of (ϕ, γ, α), both ϕα and γx,y are onto mappings for every fixed
(α, (x, y)) ∈ (0, 1)×X2 and (X, τ) is a fuzzy metrizable with respect to fuzzy metric
D, then (X, τ) is metrizable topological space.

Proof. Since both ϕα and γx,y are onto mappings, by Theorem 5.5 τD = τd. Thus,
(X, τ) is fuzzy metrizable with respect to D implies that τ = τD = τd. □

Corollary 5.8. Let (X,D,∧) is a fuzzy metric space, Where a ∧ b = min(a, b) for
all a, b ∈ [0, 1]. If (X, τ) is a fuzzy metrizable topological space with respect to fuzzy
metric D, then (X, τ) is a metrizable topological space.

Proof. The proof Corollary follows by Corollary 3.13 and Corollary 5.7. □

Theorem 5.9. Let (X,D, ∗) be a fuzzy metric space. If (X, d) is a D-induced
s-metric space of (ϕ, t, α), then τd ⊆ τD.

Proof. Let (X,D, ∗) and (X, d) be as stated in the theorem. If ∅ ̸= A ∈ τd, then for
each a ∈ A, there exists t0 ∈ (0, 1) such that Bds(a, t0) ⊆ A. That is,
{b ∈ X : d(a, b) < t0} ⊆ A or equivalently,
{b ∈ X : inf{t > 0 : D(a, b, t) > ϕα(t)} < t0} ⊆ A. By Lemma 3.6, it follows that
{b ∈ X : D(a, b, to) > ϕα(t0)} ⊆ A. By putting ϕα(t0) = 1 − r for some 0 < r < 1,
we get {b ∈ X : D(a, b, to) > 1− r} ⊆ A. Hence A ∈ τD. □
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Theorem 5.10. Let (X,D, ∗) be a fuzzy metric space such that Te ≤ ∗ ≤ Tm. If
(X, d) is a D-induced s-metric space of (ϕ, t, α) and ϕα is an onto mapping, then
τd = τD.

Proof. The proof is similar to that of Theorem 5.5. Hence omitted. □

6. Application of induced metric and s- metric

In this section, the idea of induced metric and induced s- metric are applied to
investigate the completeness, completion and (or metrizability) of some well know
fuzzy metric spaces (or topological space).

Theorem 6.1. Let X = (0,∞),a ∗ b = ab for all a, b ∈ [a, b] and D be fuzzy set on

X2 × (0,∞) defined by D(x, y, t) = t+(x∧y)
t+(x∨y) . Then

(i) (X,D, ∗) is not complete fuzzy metric space;
(ii) (X,D, ∗) has a completion ;
(iii) (X, τD) is metrizable topological space.

Proof. (X,D, ∗) is fuzzy metric space ( V. Gregori et al. [6]). Define
γ : X ×X × [0,∞) −→ [0,∞) and ϕ : [0,∞) × (0, 1) −→ (0, 1] by γ(x, y, t) = t for

all x, y ∈ X, t ≥ 0 and ϕ(t, β) = β
β+t for all β ∈ (0, 1), t ≥ 0 respectively. Clearly,

(ϕ, γ) ∈ Φ× Γ and ϕα(γx,y) is an onto mapping for every fixed α ∈ (0, 1) and every
x, y ∈ X with ϕα(γx,y(t)) =

α
α+t for all x, y ∈ X. Since Te ≤ ∗ ≤ Tm, by Theorem

4.13, a mapping d : X2 → [0,∞) defined by

d(x, y) = inf{t > 0 : D(x, y, t) >
α

α+ t
} =

−(x ∧ y) +
√
(x ∧ y)2 + 4α|x− y|

2

is an s-metric on X. Moreover, d(x, y) ≤
√
α|x− y| = s(x, y) for all x, y ∈ X,

where s is a mapping s : X2 → [0,∞) defined by s(x, y) =
√
α|x− y|, i.e. (X, d)

is a D-induced s-metric space of (ϕ, t, α) and ϕα is an onto mapping. By Corol-
lary 4.16, (X,D, ∗) is complete if and only if (X, d) is complete. Therefore, it
suffice to show that (X, d) is not complete. But {xn}n∈N is d-Cauchy sequence
⇐⇒ limn,m d(xn, xm) = 0

⇐⇒ limn,m
−(xn∧xm)+

√
(xn∧xm)2+4α|xn−xm|

2 = 0
⇐⇒ limn,m α|xn − xm| = 0 ⇐⇒ {xn}n∈N is s-Cauchy sequence. Since (X, s) is not
complete metric space, it follows that (X, d) is not complete s-metric space. Thus
(X,D, ∗) is not complete fuzzy metric space. Hence (i) of the theorem is proved.

To prove (ii), we observe that a sequence {xn} is D-Cauchy iff it is s-Cauchy.
Since s is metric on X, it has a completion. By Corollary 3.18, D has a completion.
Hence By Proposition 4.9, d = τs . Since (X, d) is a D-induced s-metric space of
(ϕ, t, α) and ϕα is an onto mapping for every fixed α ∈ (0, 1), by Theorem 5.10,
we have τD = τd. Therefore, (X, τD) is metrizable. Thus, (iii) of the theorem is
proved. □
Theorem 6.2. Let X = (0,∞), a ∗ b = ab, a, b ∈ [0, 1], and
D : X2 × (0,∞) −→ (0, 1] defined by D(x, y, t) = x∧y

x∨y . Then

(i) (D, τD) is metrizable topological space;
(ii) (X,D, ∗) is a complete fuzzy metric space.
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Proof. One can easily verify that (X,D, ∗) is a fuzzy metric space.
(i): Define γ : X × X × [0,∞) −→ [0,∞) and ϕ : [0,∞) × (0, 1) −→ (0, 1] by
γ(x, y, t) = t

min(x,y) and ϕ(t, α) = α
α+t respectively. Clearly, (ϕ, γ) ∈ Φ × Γ and

both ϕα and γx,y are onto mappings for every fixed (x, y, α) ∈ X ×X × (0, 1) with

ϕα(γx,y(t)) =
min(x,y)α

min(x,y)α+t for all x, y ∈ X and t ≥ 0. A mapping

d : X ×X −→ [0,∞) defined by

d(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))}

= inf{t > 0 :
min(x, y)

max(x, y)
>

min(x, y)α

min(x, y)α+ t
}

= α(max(x, y)−min(x, y)) = α|x− y|

is metric on X. Since (X, d) is an D-induced metric of (ϕ, γ, α) and both ϕα(γx,y) is
an onto mappings for every fixed (x, y, α) ∈ X×X×(0, 1), by Theorem 5.5 τD = τd.
That is, (X, τD) is metrizable topological space.

(ii): Define γ : X ×X × [0,∞) −→ [0,∞) and ϕ : [0,∞)× (0, 1) −→ (0, 1] by
γ(x, y, t) = t and ϕ(t, α) = α

α+t respectively. Clearly, (ϕ, γ) ∈ Φ × Γ and ϕα(γx,y)

is an onto mapping for every fixed (x, y, α) ∈ X × X × (0, 1) with ϕα(γx,y(t)) =
ϕα(t) = α

α+t for all x, y ∈ X and t ≥ 0. since Te ≤ ∗ ≤ TD, by Theorem 4.13, a

mapping d : X ×X −→ [0,∞) defined by

d(x, y) = inf{t > 0 : D(x, y, t) > ϕα(γx,y(t))}

= inf{t > 0 :
min(x, y)

max(x, y)
>

α

α+ t
}

=
α(max(x, y)−min(x, y))

min(x, y)
=

α|x− y|
min(x, y)

is an s-metric on X i.e. (X, d) is a D-induced s-metric space of (ϕ, t, α). Since ϕα
is onto mapping for evert fixed α ∈ (0, 1), by Corollary 4.16, (X,D, ∗) is complete if
and only if (X, d) is complete. Therefore, it suffice to show that (X, d) is complete.

Now, we observe that, any null sequence {xn}n∈N ⊂ X with respect to usual
metric on R is not d-Cauchy. For if a null sequence {xn}n∈N ⊂ X with respect to
usual metric on R is a d-Cauchy, then given ϵ > 0, there exists n0 ∈ N such that

(6.1) d(xn, xm) < ϵ, ∀ n,m ≥ n0

Since {xn}n∈N ⊂ X and limn xn = 0, there exists a decreasing sub-sequence
{xnj}nj∈N of {xn}n∈N such that limnj xnj = 0. Hence for n0 as in (6.1), we have

(6.2) d(xj , xi) < ϵ, ∀ nj ≥ ni ≥ n0

By fixing ni0 in (6.2), we have, ∀ nj ≥ ni0 ≥ n0

d(xnj , xni0
) < ϵ =⇒

α|xnj
−xni0

|
xnj

∧xni0

=⇒
α|xnj

−xni0
|

xnj
=⇒ α|1−

xni0

xnj
|

=⇒ limnj α|1 −
xni0

xnj
| = ∞ (since xni0

̸= 0 is fixed and limnj xnj = 0). This

contradicts to both (6.1) and (6.2). Hence, given ϵ > 0, there is no n0 ∈ N satisfying
(6.1). Therefore, every null sequence in X with respect to usual metric on R is not
d-Cauchy sequence. If {xn}n∈N ⊂ X be a d-Cauchy sequence, then given ϵ > 0,
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there exists n0 ∈ N such that d(xn, xm) < ϵ =⇒ α|xn−xm|
xn∧xm

< ϵ, ∀ n,m ≥ n0, i.e.

(6.3) α|xn − xm| < ϵ(xn ∧ xm), ∀ n,m ≥ n0.

Since {xn}n∈N ⊂ X is a d-Cauchy sequence, form first part we have, xm ∧ xn ̸=
0 ∀ n,m ≥ n0. Thus,

(6.4)
αϵ

xn ∧ xm
> 0, ∀ n,m ≥ n0

By replacing ϵ in (6.3) by αϵ
xn∧xm

in (6.4), we obtain that, ∀ n,m ≥ no,

α|xn−xm| < αϵ
xn∧xm

(xn∧xm) =⇒ |xn−xm| < ϵ, ∀ n,m ≥ n0. That is {xn}n∈N ⊂ X

is a Cauchy sequence in (R, | |). Since (R, | |) is complete, limn xn = x ∈ R. Since
limn xn ̸= 0 (by first part of the proof) and {xn}n∈N ⊂ X, limn xn = x > 0, it
follows that limn xn = x ∈ X. Therefore, (X, d) is a complete s-metric space. Thus,
(X,D, ∗) is a complete fuzzy metric space. □

Note: Theorem 6.2 (ii) has been proved by V.Gregori et al. [6] using an other
method.

7. Conclusion

In this paper, we derived a metric ( or s-metric) form a fuzzy metric in a sense
of A. George and P. Veeramani [4], where the infimum of an induced interval is
used to evaluate distance between two points. It is proved that every fuzzy-metric
space (X,D, ∗) with its continuous t-norm ∗ between τe(= Einstein product) and
τm(= minimum) induces at least an s-metric space (X, d).

The topological properties such as the compactness and metrizabilty (fuzzy metriz-
abilty) of a fuzzy metric induced topological space (X, τD) are investigated using its
D-induced metric induced topological space (X, τd) or D-induced s-metric induced
topological space (X, τd). Similarly, we investigated the completeness and comple-
tion of a fuzzy metric space (X,D, ∗) using the completion and completeness of its
corresponding D-induced metric space (X, d) or D-induced s-metric space (X, d).

Since every fuzzy-metric space (X,D, ∗) with continuous t-norm ∗ between Te and
Tm induces at least an an s-metric space (X, d), the completeness and completion(
respectively,compactness and metrizablity) of (X,D, ∗)( respectively, of (X, τD)) can
be treated form the perspective of its D-induced metric (or s-metric). we believe
that this result will be helpful to study and characterize fuzzy-metric using its cor-
responding D-induced metric or D-induced s-metric and to apply it to fixed point
theory in fuzzy settings.

Similar results can be obtained for fuzzy metric space in a sense of I. Kramosil
and J. Michalek [11].
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