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Abstract. In this paper, existence and uniqueness theorems for non-
linear fuzzy fractional Fredholm integro-differential equations are investi-
gated. We interpret Fredholm integro-differential equations under frac-
tional generalized Hukuhara derivatives in the Caputo sense, and for this
interpretation, we prove existence results in two type of differentiability.
Moreover, two examples are given to illustrate the usefulness of our main
results.

2010 AMS Classification: 34A07, 34A08

Keywords: Generalized Hukuhara differentiability; Caputo generalized Hukuhara
derivative; Nonlinear fuzzy fractional Fredholm integro-differential equation; Fixed
point theorem; Method of successive iteration.

Corresponding Author: A. Armand (atefeh.armand@ymail.com)

1. Introduction

In this work, we study the existence and uniqueness of solutions for the following
nonlinear fuzzy fractional integro-differential equations with fuzzy initial condition{

(gHDq
∗u)(t) = f(t, u(t),Ku(t)) , t ∈ J = [a, b]

u(t0) = u0 ∈ RF
(1.1)

where 0 < q ≤ 1 is a real number and the operator gHDq
∗ denote the Caputo

fractional generalized derivative of order q , f : J × RF × RF× → RF is bounded
continuous function which satisfies some assumptions that will be specified later,
and

(1.2) Ku(t) =

∫ b

a

k(t, s, u(s))ds

with K : J × J → R.
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The study of fuzzy Riemann- Liouville fractional differential equations has been
initiated as an independent subject in conjunction with fuzzy valued analysis [1,
4, 16] and fuzzy Caputo fractional differential equations [3] . Sadia Arshad et al
in [7] prove some results on the existence and uniqueness of solutions of Riemann-
Liouville fuzzy fractional differential equations and in [8] study the existence and
uniqueness of the solution for a class of fractional differential equation with fuzzy
initial value. Two new uniqueness results for fuzzy fractional differential equations
involving Riemann-Liouville generalized Hukuhara differentiability have been inves-
tigated in [5] with the Nagumo-type condition and the Krasnoselskii-Krein-type
condition. In [3] the existence and uniqueness of the solution for a class of fuzzy
Caputo fractional differential equation with initial value have been studied.

Alikhani et al in [2] prove the existence and uniqueness results for fuzzy fractional
integral and integro-differential equations involving Riemann-Liouville differential
operators .
In this paper the nonlinear fuzzy fractional Fredholm integro-differential equation
under generalized fuzzy Caputo derivative is introduced. Also we study the prob-
lems of existence and uniqueness of the solutions of this set of equations.

2. Preliminaries

In this section, we recall some basic concepts which are used throughout the
paper.

Definition 2.1. A fuzzy number is a function such as u : R −→ [0, 1] satisfying the
following properties:

1. u is normal, i. e. ∃t0 ∈ R with u(t0) = 1,
2. u is a convex fuzzy set i. e. u((1− λ)t1 + λt2) ≥ min{u(t1), u(t2)}, ∀t1, t2 ∈

R, λ ∈ [0, 1],
3. u is upper semi-continuous on R,
4. {t ∈ R : u(t) > 0} is compact, where A denotes the closure of A.

The set of all fuzzy real numbers is denoted by RF .

For 0 < α ≤ 1 the α-level set u(α) of a fuzzy number u is the subset of points t ∈ R
with membership grade u(t) of at least α, that is u(α) = {t ∈ R|u(t) ≥ α} = [u−

α , u
+
α ]

and u(0) = {t ∈ R|u(t) > 0}. Then from (1) to (4), it follows that if u belongs to
RF then the α-level set u(α) is a closed interval for all α ∈ [0, 1]. For arbitrary
u, v ∈ RF and k ∈ R, k > 0 the addition and scalar multiplication are defined by
u⊕ v = u(α) + v(α) , k ⊙ u = [ku−

α , ku
+
α ] respectively.

Definition 2.2. The Hausdorff distance between fuzzy numbers is given by D :
RF × RF −→ R+ ∪ {0} as in [9, 11, 15]

d(u, v) = sup
α∈[0, 1]

dH

(
u(α), v(α)

)
= sup

α∈[0, 1]

max
{
|u−

α − v−α |, |u+
α − v+α |

}
where dH is the Hausdorff metric. The metric space (RF , d) is complete, separable
and locally compact and the following properties from [13] for metric d are valid:
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1. d(u⊕ w, v ⊕ w) = d(u, v), ∀u, v, w ∈ RF ;
2. d(λu, λv) = |λ|d(u, v), ∀λ ∈ R, u, v ∈ RF ;
3. d(u⊕ v, w ⊕ z) ≤ d(u, w) + d(v, z) ∀u, v, w, z ∈ RF ;
4. d(u⊖ v, w⊖ z) ≤ d(u, w)+ d(v, z) as long as u⊖ v and w⊖ z exist, where

u, v, w, z ∈ RF .

Definition 2.3 ([9]). Let u, v ∈ RF . If there exists w ∈ RF such that u = v + w,
then w is called the Hukuhara difference of u and v, and it is denoted by u⊖ v.

Definition 2.4 ([10]). The generalized Hukuhara difference of two fuzzy number
u, v ∈ RF is defined as follows

u⊖gH v = w ⇐⇒
{

(i ) u = v + w ,
or (ii) v = u + (-1) w .

Please note that α-level representation of fuzzy-valued function f : [a, b] → RF
expressed by fα(t) = [f−

α (t), f+
α (t)], t ∈ [a, b], 0 ≤ α ≤ 1.

Definition 2.5 ([10]). The generalized Hukuhara derivative of a fuzzy-valued func-
tion f : (a, b) −→ RF at t0 is defined as

f
′

gH(t0) = lim
h→0

f(t0 + h) ⊖gH f(t0)

h
,

if (f)
′

gH(t0) ∈ RF , we say that f is generalized Hukuhara differentiable (gH-differentiable

) at t0.
Also we say that f is [ (i) -gH]-differentiable at t0 if

(2.1) (f
′

gH)α(t0) = [(f−
α )

′
(t0), (f

+
α )

′
(t0)], 0 ≤ α ≤ 1,

and that f is [ (ii) -gH]-differentiable at t0 if

(2.2) (f
′

gH)α(t0) = [(f+
α )

′
(t0), (f

−
α )

′
(t0)], 0 ≤ α ≤ 1.

Definition 2.6 ([17]). We say that a point t0 ∈ (a, b), is a switching point for the
differentiability of f , if in any neighborhood V of t0 there exist points t1 < t0 < t2
such that
type (I) at t1 (2.1) holds while (2.2) does not hold and at t2 (2.2) holds and (2.1)
does not hold, or
type (II) at t1 (2.2) holds while (2.1) does not hold and at t2 (2.1) holds and (2.2)
does not hold.

Definition 2.7 ([6]). A fuzzy-valued function f : [a, b] → RF is said to be con-
tinuous at t0 ∈ [a, b] if for each ϵ > 0 there is δ > 0 such that d(f(t), f(t0)) < ϵ,
whenever t ∈ [a, b] and |t− t0| < δ. We say that f is fuzzy continuous on [a, b] if f
is continuous at each t0 ∈ [a, b].

Definition 2.8 ([12])). Let f : [a, b] → RF , for each partition P = {t0, t1, ..., tn} of
[a, b] and for arbitrary ξi ∈ [ti−1, ti], 1 ≤ i ≤ n, suppose Rp =

∑n
i=1 f(ξi)(ti − ti−1),

and ∆ := max{|ti − ti−1|, 1 ≤ i ≤ n}. The definite Riemann integral of f(t) over [a,
b] is ∫ b

a

f(t)dt = lim
∆→0

Rp,
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provided that this limit exists in the metric d.
Note that if the fuzzy function f(t) is continuous in the metric d, Lebesgue integral
and Riemann integral yield the same value, and also(∫ b

a

f(t)dt

)
α

=

[ ∫ b

a

f−
α (t)dt,

∫ b

a

f+
α (t)dt

]
, 0 ≤ α ≤ 1,

Definition 2.9 ([14]). Consider f : [a, b] → R, fractional derivative of f(t) in the
Caputo sense is defined as
(2.3)

(Dq
∗f)(t) = (Im−qDmf)(t) =

1

Γ(q)

∫ t

a

(t−s)(q−m−1)f (m)(s)ds q−1 < m ≤ q , m ∈ N , s > a

where D stand for classic derivative .

Throughout this paper, we consider the notations AF[a, b] for the space of fuzzy-
valued functions from [a, b] into RF that are absolutely continuous on [a, b]. Also,
CF[a, b] denote the set of fuzzy-valued function which are fuzzy continuous on all
of [a, b] such that the continuity is one-sided at endpoints a, b. Also, we denote
the space of all Lebesgue integrable fuzzy-valued functions on the bounded interval
[a, b] ⊂ R by LF[a, b].

Definition 2.10 ([16]). Let f ∈ LF[a, b] . The fuzzy Riemann-Liouville integral of
fuzzy-valued function f is defined as following:

(2.4) (Iqaf)(t) =
1

Γ(q)

∫ t

a

f(s)ds

(t− s)1−q
, a < s < t, 0 < q ≤ 1.

Definition 2.11 ([3]). Let f ∈ AF[a, b]. The fractional generalized Hukuhara Ca-
puto derivative of fuzzy-valued function f is defined as following:
(2.5)

( gHDq
∗f)(t) = I1−q

a (f ′
gH)(t) =

1

Γ(1− q)

∫ t

a

(f ′
gH)(s)ds

(t− s)q
, a < s < t, 0 < q ≤ 1

Also we say that f is cf [(i)− gH]-differentiable at t0 if

(2.6) (gHDq
∗f)α(t0) = [(Dq

∗f
−
α )(t0), (D

q
∗f

+
α )(t0)], 0 ≤ α ≤ 1

and that f is cf [(ii)− gH]-differentiable at t0 if

(2.7) (gHDq
∗f)α(t0) = [(Dq

∗f
+
α )(t0), (D

q
∗f

−
α )(t0)], 0 ≤ α ≤ 1

Definition 2.12 ([3]). We say that a point t0 ∈ (a, b) is a switching point for the
differentiability of f , if in any neighborhood V of t0 there exist points t1 < t0 < t2
such that
type (I) at t1 (2.6) hold while (2.7 ) does not hold and at t2 (2.7) holds and (2.6)
does not hold, or
type (II) at t1 (2.7) hold while (2.6 ) does not hold and at t2 (2.6) holds and (2.7)
does not hold.
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3. Fuzzy fractional integro-differential equations of Fredholm type

In this section, we give the main results on the existence of solution of Eq.(1.1).
For this purpose, we need the following Lemma and assumptions:

Lemma 3.1 ([3]). Let f : [a, b] → RF be a fuzzy-valued function such that f ∈
AF[a, b],

Iqa(gHDq
∗f)(t) = f(t)⊖gH f(a)

Lemma 3.2. The initial value problem (1.1) is equivalent to one of the following
integral equations:

u(t) = u0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s),Ku(s))ds

if u(t) be cf [(i)− gH]-differentiable,

u(t) = u0 ⊖
−1

Γ(q)

∫ t

a

(t− s)q−1f(s, u(s),Ku(s))ds

if u(t) be cf [(ii)− gH]-differentiable, and

u(t) =

{
u0 +

1
Γ(q)

∫ t

a
(t− s)q−1f(s, u(s),Ku(s))ds, t ∈ [a, c];

u0 ⊖ −1
Γ(q)

∫ t

c
(t− s)q−1f(s, u(s),Ku(s))ds, t ∈ [c, b].

if there exists a point c ∈ (a, b) such that u(t) is cf [(i)− gH]-differentiable on [a, c]
and cf [(ii)− gH]-differentiable on [c, b] and f(c, u(c),Ku(c)) ∈ R.

Proof. By using of Definition 2.10 and Eq.(1.1) , we have

Iqt0((gHDq
∗u)(t)) = Iqt0(f(t, u(t),Ku(t)))

So Lemma 3.1 concludes that

u(t)⊖gH u0 =
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s),Ku(s))ds

Let u(t) be cf [(i)− gH]-differentiable, then

u(t) = u0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s),Ku(s))ds(3.1)

and, if u(t) be cf [(ii)− gH]-differentiable,

u(t) = u0 ⊖
−1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s),Ku(s))ds(3.2)

Now consider the type of cf [gH]-differentiability switches at c ∈ (a, b) of type (I).
Then on interval [a, c) the solution of (1.1), u(t), is as Eq.(3.1) and on [c, b] as Eq.
(3.2). □

Now we make the following assumptions:
(A1). f : J×RF ×RF× → RF is continuous and there exist real positive functions
L1, L2 such that

d(f(t, x1, y1), f(t, x2, y2)) ≤ L1(t)d(x1, x2) + L2(t)d(y1, y2)
793
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for all x1, x2, y1, y2 ∈ CF[a, b].
(A2). k : J × J × RF → RF is continuous and there exist real positive functions
K∗ such that

d(k(t, s, x1), k(t, s, x2)) ≤ K∗d(x1, x2)

for all x1, x2 ∈ CF[a, b].
(A3). There exist a number v such that λ ≤ v < 1 , t ∈ J

λ = IqaL(1 +K∗)
and
IqaL = supt∈J{IqaL1, I

q
aL2}

Theorem 3.3. Assume that the hypotheses (A1), (A2) holds. Then the initial value
problem (1.1) has a unique solution which is cf [(i)−gH]-differentiable on J , provided
that λ < 1, where λ is given in (A3).

Proof. Suppose that u(t) is cf [(i) − gH]-differentiable and u0 ∈ RF be fixed. We
want to prove that the mapping F : CF[a, b] → CF[a, b] defined by

(Fu)(t) = u0 +
1

Γ(q)

∫ t

a
(t− s)q−1f(s, u(s),Ku(s))ds , t ∈ [a, b]

is a contraction. For this, let u, v ∈ CF[a, b] by means of (A1) and the properties of
distance (2.2), we show that

d(Fu(t), Fv(t)) ≤ 1

Γ(q)

∫ t

a

| (t− s)q−1 | d(f(s, u(s),Ku(s)), f(s, v(s),Kv(s)))ds

≤ 1

Γ(q)

∫ t

a

| (t− s)q−1 | [L1d(u, v) + L2d(Ku,Kv)]ds

≤ 1

Γ(q)

∫ t

a

| (t− s)q−1 | .L1.d(u, v)ds+
1

Γ(q)

∫ t

a

| (t− s)q−1 | .L2.d(Ku,Kv)ds

≤ IqaL1.d(u, v) + IqaL2K
∗.d(u, v)

≤ IqaL(1 +K∗).d(u, v)

< d(u, v)

There fore, F is a contraction mapping on CF[a, b] and has a fixed point Fu(t) = u(t).
Hence the initial value problem (1.1) has unique cf [(i)− gH]-differentiable solution.

Theorem 3.4. Assume that the Eq.(1.1) satisfies the conditions (A1), (A2). Then
there exists a unique solution u(t) of (1.1) on [a, b] and the successive iterations

u0(t) = u0

un+1(t) = u0 ⊖
−1

Γ(q)

∫ t

a

(t− s)q−1f(s, un(s),Kun(s))ds(3.3)

are convergence to u(t) which is cf [(ii)−gH]-differentiable on J , provided that λ < 1,
where λ is given in (A3).
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Proof. First we prove that the sequence {un} (3.3) is a cauchy sequence in CF[a, b].
For this purpose, we have

d(u1, u0) = d
(
u0 ⊖

−1

Γ(q)

∫ t

a

(t− s)q−1f(s, u0(s),Ku0(s))ds, u0

)
≤ 1

Γ(q)

∫ t

a

| (t− s)q−1 | d(f(s, u0(s),Ku0(s)), 0̃)ds

≤ IqaM

where M = supt∈J d(f(t, u,Ku), 0̃).
Using properties of Definition 2.2 and Lipschitz continuity of f , gives

d(un+1, un) ≤ 1

Γ(q)

∫ t

a

| (t− s)q−1 | d(f(s, un(s),Kun(s)), f(s, un−1(s),Kun−1(s)))ds

≤ 1

Γ(q)

∫ t

a

| (t− s)q−1 | L1.d(un, un−1)ds+
1

Γ(q)

∫ t

a

| (t− s)q−1 | L2.d(Kun,Kun−1)ds

≤ IqaL(1 +K∗).d(un, un−1) ≤ λd(un, un−1) ≤ λnd(u1, u0) ≤ λnIqaM

Since λ < 1 the sequence {un} is a cauchy sequence in CF[a, b]. Therefore there exist
u ∈ CF[a, b] such that {un} converges to u. So we must show that u is a solution of
the problem (1.1).

d(u(t) +
−1

Γ(q)

∫ t

a

(t− s)q−1f(s, u(s),Ku(s))ds, u0)

= d(u(t) +
−1

Γ(q)

∫ t

a

(t− s)q−1f(s, u(s),Ku(s))ds, un+1(t) +
−1

Γ(q)

∫ t

a

(t− s)q−1f(s, un(s),Kun(s))ds)

≤ d(u(t), un+1) +
1

Γ(q)

∫ t

a

| (t− s)q−1 | L1.d(u(s), un)ds+
1

Γ(q)

∫ t

a

| (t− s)q−1 | L2.d(Ku(s),Kun)ds

≤ d(u(t), un+1) + IqaL(1 +K∗).d(u(t), un)

The right-hand side tends to zero as n → ∞. Therefore, we conclude that

u(t) +
−1

Γ(q)

∫ t

a

(t− s)q−1f(s, u(s),Ku(s))ds = u0

Now Lemma 3.2 implies that u is a solution of the problem (1.1) .

To prove the uniqueness, assume that v(t) is a solution of problem (1.1) on J ,
i.e.

v(t) = u0 ⊖
−1

Γ(q)

∫ t

a

(t− s)q−1f(s, v(s),Kv(s))ds

Using the recurrence formula for un(t), we obtain
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d(v(t), un(t)) ≤ 1

Γ(q)

∫ t

a

| (t− s)q−1 | d(f(s, v(s),Kv(s)), f(s, un−1(s),Kun−1(s)))ds

≤ IqaL(1 +K∗).d(v, un−1) ≤ λd(v, un−1)(3.4)

Hence we have

d(v(t), un(t)) < λd(v, un−1)

By setting δn = d(v(t), un(t)), the Eq.(3.4) leads to

δn ≤ λδn−1 n ≥ 1

and finally

δn ≤ λnδ0 n ≥ 1

condition (A3) guarantees that δn → 0 as n → ∞, that is

v(t) = lim
n→∞

un(t) = u(t), t ∈ J

4. Examples

In this section, two examples are given to illustrate the efficiency of our main
results.

Example 4.1. Consider the fractional integro-differential equation with fuzzy initial
value  (gHDq

∗u)(t) = f(t) + 1
2u(t) +

1
3

1∫
0

stu(s)ds , t ∈ [0, 1]

u(0) = (0.52, 1, 1.23) ∈ RF

(4.1)

with the exact solution u∗ : [0, 1] → RF that given by

u∗
α(t) = [u∗−

α (t), u∗+
α (t)] = [(0.52 + 0.48α)et, (1.23− 0.23α))et], α ∈ [0, 1]

where f(t) is chosen accordingly. Since the solution of problem (4.1) is cf [(i)−gH]-
differentiable on [0, 1], by Theorem 3.4 we have

d(Fu(t), Fv(t)) ≤ 1

Γ(q)

∫ t

0

(t− s)
q−1

d(
1

2
u(t) +

1

3

1∫
0

stu(s)ds,
1

2
v(t) +

1

3

1∫
0

stv(s)ds)ds

≤ 1

Γ(q)

∫ t

0

(t− s)
q−1

[
1

2
d(u, v) +

1

3
d(

1∫
0

stu(s)ds,

1∫
0

stv(s)ds)]ds

≤ 1

Γ(q)

∫ t

0

1

2
(t− s)

q−1
.d(u, v)ds+

1

Γ(q)

∫ t

a

1

3
(t− s)

q−1
.d(

1∫
0

stu(s)ds,

1∫
0

stv(s)ds)ds

≤ Iq0 (
1

2
).H(u, v) + Iq0 (

1

3
).H(u, v) ≤ Iq0 (

5

6
).H(u, v)

So, Theorem 3.4 implies that Γ(q + 1) > 0.833, hence for all 0 < q < 1, problem
(4.1) has unique solution on [0, 1].
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Example 4.2. Consider the following fractional integro-differential equation (gHDq
∗u)(t) = f(t) + (0.1t)u(t) + 0.01

2∫
1

estu(s)ds , t ∈ [1, 2]

u(0) = (0.23, 1, 1.84) ∈ RF

(4.2)

The exact solution is
u∗(t) = −(0.23, 1, 1.84)t2

that can be expressed by

u∗
α(t) = [(−1.84 + 0.84α))t2, (−0.23− 0.77α)t2], α ∈ [0, 1] t ∈ [1, 2]

where f(t) is chosen accordingly. As regards the solution of problem (4.2) is cf [(ii)−
gH]-differentiable on[1, 2], by Theorem 3.4 we must be have 2−qΓ(q + 1) > 0.74.
Therefore problem (4.2) for fractional derivative of order 0 < q < 0.2735, has a
unique solution on the interval [1, 2].

5. Conclusions

Following the ideas recently developed in [3],in this paper, we presented the exis-
tence and uniqueness theorems for fractional Fredholm integro-differential equations
under generalized fuzzy Caputo Hukuhara differentiability with fuzzy initial condi-
tions.

For future works, we will study the numerical methods for solving nonlinear fuzzy
fractional integro-differential equations.
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