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Abstract. The purpose of this paper is to introduce the null, conver-
gent, p-absolute convergent series and bounded sequence spaces of interval
valued fuzzy numbers c0(E2), c(E2), ℓp(E2) and ℓ∞(E2), respectively, con-
sisting of all sequences u = (uk) such that (uk) is a sequence of interval
valued fuzzy numbers. Also, we have shown that these spaces are com-
plete module spaces. The α−, β− and γ−duals of the module spaces of
IVFNs have been computed. In the final section, we have defined the in-
terval valued fuzzy matrix transformation as the way of traditional matrix
transformations.
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1. Introduction

As it is well known, the idea of fuzzy sets and fuzzy operations was first intro-
duced by A. L. Zadeh [19]. Since then many authors have discussed various aspects
of the theory and its applications such as fuzzy sequence spaces of fuzzy numbers.
But also, Nanda [14], Talo and Başar [15], Altınok et al. [1, 2, 3] and Hong et al.[8]
studied sequences space of fuzzy numbers and some properties of the sequence of
fuzzy numbers.

Well-known generalization of an ordinary fuzzy set is interval-valued fuzzy set
which is attributed to Gorzalczany [7] and Turksen [16]. They applied to the fields
of approximate inference, signal transmission and control, etc. Yao and Lin [18]
studied fuzzy shortest-path network problems, S. Jay Chen, S. Ming Chen [4, 5]
studied fuzzy risk analysis based on measures of similarity between interval-valued
fuzzy numbers and handling information filtering problems based on interval-valued
fuzzy numbers.
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In literature, one can reach many documents about interval valued fuzzy set
theory and its applications.

Recently, Chen [9] has introduced the distance between interval valued fuzzy sets
and defined interval valued fuzzy numbers. Also, Hong and Lee [8], Meenakshi and
Kaliraja [12] and Li [9] have studied different properties of interval valued fuzzy
numbers. In this article, the sequence spaces of the interval valued fuzzy numbers
were defined and some properties were researched.

2. Preliminaries

Throughout the paper, we denote the set of real numbers by R, unit closed and
bounded interval by I, that is, I = [0, 1] and [I] = {x = [xℓ, xr] : 0 ≤ xℓ ≤ xr ≤ 1}.
An interval number is a closed subset of real numbers [6]. Let’s denote the set of
all real valued interval numbers by Ei. Any element of Ei is denoted by x. That is
x = {x ∈ R : a ≤ x ≤ b}.

The set of all interval numbers Ei is a metric space with d [13] defined by

d(x, y) = max{|xℓ − yℓ|, |xr − yr|}.(2.1)

Moreover, it is known that Ei is a complete metric space. In the special case x = [a, a]
and y = [b, b], we obtain usual metric of the R with d(x, y) = |a− b|.

Let A be a fuzzy set in R which is characterized by a membership function uA :
R → [0, 1]. A fuzzy number (FN) is a function u from R to [0, 1], which satisfies the
following properties:

FN1. u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1,
FN2. u is fuzzy convex, i.e., for any x, y ∈ R and µ ∈ [0, 1], u [µx+ (1− µ)y] ≥

min{u(x), u(y)},
FN3. u is upper semi-continuous,
FN4. The closure of {x ∈ R : u(x) ≥ 0}, denoted by u0, is compact.
FN1, FN2, FN3 and FN4 imply that for each α ∈ [0, 1], the α-level set defined

by [u]α = {x ∈ R : u(x) > α} is in Ei, as well as the support u0, i.e., [u]α =
[uℓ(α), ur(α)] for each α ∈ [0, 1]. We denote the set of all fuzzy numbers by E1.

Define a map d : E1 ×E1 −→ R by d(u, v) = sup
0≤α≤1

d([u]α, [v]α). It is known that

E1 is a complete metric space with the metric d, [11].
Let u, v ∈ E1 and λ ∈ R. Then the operations addition and scalar multiplication

are defined on E1 in terms of α−level sets by

u+ v = w ⇔ [w]α = [u]α + [v]α and [λu]α = λ[u]α for all α ∈ [0, 1].

A sequence u = (uk) of fuzzy numbers is a function u from the set N, the set of all
positive integers, into E1, and fuzzy number uk denotes the value of the function at
k and is called the kth term of the sequence. Let c0(E

1), c(E1) and ℓ∞(E1) denote
of all null, convergent and bounded sequences of fuzzy numbers, respectively.

In [14], it is shown that c0(E
1), c(E1) and ℓ∞(E1) are complete metric spaces

with the metric D∞(u, v) = supk∈N d(uk, vk), where u = (uk), v = (vk) ∈ ℓ∞(E1)
(or c0(E

1), c(E1)).
Let X be an ordinary set and [I] = {[α1, α2] : α1, α2 ∈ [0, 1] and α1 ≤ α2}. The

the mapping u : X → [I], x → u(x) is called an interval valued fuzzy set on X, [17].
776
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The membership function of u is u(x) = [u−(x), u+(x)] for all x ∈ X. The functions
u− : X → [0, 1] and u+ : X → [0, 1] are called as upper fuzzy set and lower fuzzy
set, the functions u−(x) and u+(x) are the membership functions of the fuzzy sets
u− and u+, respectively.

Suppose that u(x) = [u−(x), u+(x)] is an interval valued fuzzy set on the set R.
If u− and u+ are fuzzy numbers on R and the inequality u−(x) ≤ u+(x) holds for
all x ∈ R then u is called as interval valued fuzzy number and we may write it for
brief (IVFN).

Let E2 denote all interval valued fuzzy numbers on R. For brief, here after, we
shall write u = [u−, u+] instead of u(x) = [u−(x), u+(x)].

Lemma 2.1 ([17]). u ∈ E2 if and only if u− and u+ are ordinary fuzzy numbers
with u− ≤ u+ for all x ∈ R.

Let’s suppose that u1, u2 ∈ E2 and λ ∈ R. Then the partial ordering relation and
some algebraic operations on E2 are defined as follows:

Ordering: u1 ≤ u2 ⇔ [u−
1 , u

+
1 ] ≤ [u−

2 , u
+
2 ] ⇔ u−

1 ≤ u−
2 and u+

1 ≤ u+
2 , Addition:

u1 + u2 = {v ∈ E1 : u−
1 + u−

2 ≤ v ≤ u+
1 + u+

2 }, Scalar multiplication: if λ ≥ 0 then
λu = {v ∈ E1 : λu− ≤ v ≤ λu+} and if λ < 0 then λu = {v ∈ E1 : λu+ ≤ v ≤
λu−}, Multiplication : u1u2 = {v ∈ E1 : min{u−

1 u
−
2 , u

−
1 u

+
2 , u

+
1 u

−
2 , u

+
1 u

+
2 } ≤ v ≤

max{u−
1 u

−
2 , u

−
1 u

+
2 , u

+
1 u

−
2 , u

+
1 u

+
2 }}.

Definition 2.2. Suppose that u = [u−, u+] ∈ E2. If u− = u+, then u is called
degenerate interval valued fuzzy number.

It can be easily seen that a degenerate interval valued fuzzy number is an ordinary
fuzzy number. Thus, we have the following proposition:

Proposition 2.3. The set of all fuzzy numbers E1 can be embedded in E2.

Definition 2.4. Let τ2 ⊂ E2 and let us consider function ||.|| : τ2 → R. The
function ||.|| is called module on the set τ2 if it has the following properties:

M1. ||u|| = θ ⇔ u = θ, where θ is zero element of the set E2,
M2. ||λu|| = |λ|||u||,
M3. ||u+ v|| ≤ ||u||+ ||v||.
If the function ||.|| : τ2 → R satisfy M1, M2 and M3 then τ2 is called module

sequence space of the IVFNs. And if τ2 is complete with respect to the module ||.||
then τ2 is called complete module sequence space of the IVFNs.

Let u, v ∈ E2 and we define

D(u, v) = max
{
d(u−, v−), d(u+, v+)

}
(2.2)

The module of the IVFN u is defined as the non negative real number D(u, θ) which
corresponds to the distance from u to θ.

In [9], it is shown that E2 is metric space metric spaces with the metric defined
by (2.2).

Lemma 2.5. Define the module

D(u, θ) = ||u||E2 = max
{
d(u−, 0), d(u+, 0)

}
,(2.3)

Then E2 is complete module space of the IVFNs with the module defined by (2.3).
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Proof. The conditions M1, M2, and M3 are clearly satisfied. To show that E2 is com-
plete in this module, suppose that

(un) = (u0, u1, u2, ..., un, ...) = ([u−
0 , u

+
0 ], [u

−
1 , u

+
1 ], ..., [u

−
n , u

+
n ], ...) be a fundamen-

tal(Cauchy) sequence in E2(see, [9]) for each n. Then we have

||un − um||E2 = max
{
d(u−

n , u
−
m), d(u+

n , u
+
m)
}
< ϵ.

Hence we obtain d(u−
n , u

−
m) < ϵ and d(u+

n , u
+
m) < ϵ. This shows that (u−

n ) and (u+
n )

are Cauchy sequence of fuzzy numbers in E1. However, E1 is complete and so (u−
n )

and (u+
n ) are convergent in E1 for all n ∈ N. Let us suppose that limn u

−
n = u−

0 and
limn u

+
n = u+

0 for each k ∈ N. Since d(u−
n , u

−
m) < ϵ and d(u+

n , u
+
m) < ϵ for all n,m ≥

k, limm→∞ d(u−
n , u

−
m) = d(u−

n , limm u−
m) = d(u−

n , u
−
0 ) < ϵ and limm→∞ d(u+

n , u
+
m) =

d(u+
n , limm u+

m) = d(u+
n , u

+
0 ) < ϵ. This means that u−

n → u−
0 as n → ∞ and u+

n → u+
0

as n → ∞ in E2, i.e., (un) → u0 as n → ∞. On the other hand, since

||u0||E2 = max
{
d(u−

0 , u
−
n − u−

n ), d(u
+
0 , u

+
n − u+

n )
}

= max
{
d(u−

0 − 0, u−
n − u−

n ), d(u
+
0 − 0, u+

n − u+
n )
}

≤ max
{
d(u−

0 , u
−
n ), d(u

+
0 , u

+
n )
}
+max

{
d(0, u−

n ), d(0, u
+
n )
}
< ∞

this shows that u0 ∈ E2 . □

Now, let us give the following new definitions:

Definition 2.6. A sequence space of IVFNs is subspace of w(E2), where w(E2) =
{(uk) = ([u−

k , u
+
k ])k∈N : u : N → E2, k → u(k) = [u−

k , u
+
k ] and u−

k , u
+
k ∈ E1}. If

(uk) ∈ w(E2) then (uk) is called a sequence of IVFNs.

Definition 2.7. A sequence (uk) ∈ w(E2) is said to be bounded if and only if there
exists two IVFNs m and M such that m ≤ uk ≤ M for all k ∈ N.

Definition 2.8. A sequence u = (uk) of IVFNs is said to be convergent to the IVFN

u0, written as limk uk = u0, if for every ϵ > 0 there exists a positive integer m such
that D(uk, u0) < ϵ for k ≥ m that is a sequence u = (uk) of IVFNs is said to be
convergent to the IVFN u0 if for each ϵ > 0 there exists a positive integer m such
that D(uk, u0) = sup

k
max

{
d(u−

k , u
−
0 ), d(u

+
k , u

+
0 )
}
< ϵ for all k ≥ m.

Definition 2.9. A sequence u = (uk) of IVFNs is said to be fundamental sequence
if for every ϵ > 0 there exists a positive integers n,m such that D(un, um) < ϵ for
n,m ≥ k.

Definition 2.10. Let λ(E2) be a sequence space of the IVFNs. If the function
||.|| : λ(E2) → R is satisfies M1, M2 and M3 then λ(E2) is called module sequence
space of the IVFNs. And if λ(E2) is complete with respect to a module then λ(E2)
is called complete module sequence space of the IVFNs.

Since the set of all close intervals on R is a quasivector space [10], the set w(E2)
can be regarded as a quasivector space. For u = (uk), v = (vk) and α, β ∈ R, the
following rules are clearly satisfied: (uk)+ (vk) = (vk)+ (uk); (uk)+ [(vk)+ (zk)] =
[(uk)+(vk)]+(zk); (uk)+(vk) = (uk)+(zk) implies (vk) = (zk); α[(uk)+(vk)] =
α(uk) + α(vk); (α + β)(uk) = α(uk) + β(uk), (where αβ ≥ 0); α(β(uk)) =
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(αβ)(uk); (uk) = [1, 1](uk). The zero element of w(E2) is the sequence θ = (θk) =
([θ−k , θ

+
k ]) all terms of which are zero interval valued fuzzy number, where θ−k = 0

and θ+k = 0.
The rest of this paper proceeds as follows:
In section 3, we have introduced the sequence spaces of IVFNs. In section 4,

we have stated and proved the theorems determining the α−, β− and γ−duals of
the sequence space IVFNs. Finally, in section 5, the classes (ℓ∞(E2) : ℓ∞(E2))
and (c0(E

2) : c0(E
2)) of infinite matrix of IVFNs are characterized. Now, we can

introduce sequence spaces of IVFNs.

3. The sequence spaces of Ivfns

Now, let us define the sequence spaces c0(E2), c(E2), cs(E2), bs(E2), ℓp(E2) and
ℓ∞(E2) as the set of all null sequences of IVFNs, the set of all convergent sequences
of IVFNs, the sets of all convergent series of IVFNs, the sets of all bounded series
of IVFNs, p-absolutely convergent series of the IVFNs and the set of all bounded
sequences of IVFNs, respectively, that is

c0(E
2) = {u = ([u−

k , u
+
k ]) ∈ w(E2) : lim

k
max

{
d(u−

k , 0), d(u
+
k , 0)

}
= θ},

c(E2) = {u = ([u−
k , u

+
k ]) ∈ w(E2) : lim

k
max

{
d(u−

k , u
−
0 ), d(u

+
k , u

+
0 )
}
= θ},

cs(E2) = {u = (uk) ∈ w(E2) : lim
n

max{d(
n∑

k=0

u−
k , u

−), d(
n∑

k=0

u+, u+)} = θ},

bs(E2) = {u = (uk) ∈ w(E1) : sup
n

max{d(
n∑

k=0

u−
k , 0), d(

n∑
k=0

u+, 0)} < ∞},

ℓp(E
2) = {u = (uk) ∈ w(E2) :

(∑
k

(max{d(u−
k , 0), d(u

+
k , 0)})

p

) 1
p

< ∞, 1 ≤ p < ∞},

ℓ∞(E2) = {u = ([u−
k , u

+
k ]) ∈ w(E2) : sup

k
max

{
d(u−

k , 0), d(u
+
k , 0)

}
< ∞}.

We may begin with the following results which are essential in the text.

Theorem 3.1. The spaces c0(E2), c(E2) and ℓ∞(E2) are complete module sequence
space of the IVFNs with the module defined by

||u||ℓ∞(E2) = sup
k

max
{
d(u−

k , 0), d(u
+
k , 0)

}
(3.1)

Proof. We shall only consider c(E2). It is very easy to see that, on c(E2), ||.|| is a
module defined by (3.1). To show that c(E2) is complete in this module, suppose
that (un

k ) = (un
0 , u

n
1 , u

n
2 , ...) be a fundamental sequence in c(E2) for each n. Then,

we have

||un
k − um

k ||ℓ∞(E2) = sup
k

max
{
d(un−

k , um−
k ), d(un+

k , um+
k )

}
< ϵ.

Hence we obtain d(un−
k , um−

k ) < ϵ and d(un+
k , um+

k ) < ϵ. This shows that (un−
k ) and

(un+
k ) are fundamental sequence of fuzzy numbers in E1. However, E1 is complete

and so (un−
k ) and (un+

k ) are convergent in E1 for all n ∈ N. Let us suppose that
779
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limn x
−n
k = u−

k and limn x
+n
k = u+

k for each k ∈ N. Since D(un
k , u

m
k ) < ϵ for all

n,m ≥ k,

lim
m→∞

d(un−
k , um−

k ) = d(un−
k , lim

m
um−
k ) = d(un−

k , u−
k ) < ϵ and

lim
m→∞

d(un+
k , um+

k ) = d(un+
k , lim

m
um+
k ) = d(un+

k , u+
k ) < ϵ.

This means that un−
k → u−

k and un+
k → u+

k as (n → ∞) that is (un
k ) → uk, (n → ∞)

in ℓ∞(E2). On the other hand, since

||uk − (un
k − un

k )||ℓ∞(E2) = sup
k

max
{
d(u−

k , u
n−
k − un−

k ), d(u+
k , u

n+
k − un+

k )
}

≤ sup
k

max
{
d(u−

k , u
n−
k ), d(u+

k , u
n+
k )
}

+ sup
k

max
{
d(0, un−

k ), d(0, un+
k )
}

≤ ||u− uk||ℓ∞(E2)
+ ||uk||ℓ∞(E2)

< ∞

this shows that (uk) ∈ ℓ∞(E2) . □

Proposition 3.2. The space ℓp(E
2) is complete module sequence spaces of the IVFNs

with respect to module

||u||ℓp(E2) =

(∑
k

(max{d(u−
k , 0), d(u

+
k , 0)})

p

) 1
p

< ∞, where p ≥ 1.

Proof. Clearly the space ℓp(E
2) is a module sequence space of the IVFNs with the

function ||u||ℓp(E2). Let us suppose that u = (ui) be a fundamental sequence in
ℓp(E

2), where (uk) = (u
(i)
0 , u

(i)
1 , u

(i)
2 , ...). Then, for any ϵ > 0 there exists an integer

n0 such that

||ui
k − uj

k||ℓp(E2) =

(∑
k

(max{d(ui−
k , uj−

k ), d(ui+
k , uj+

k )})p
) 1

p

≤ ϵ(3.2)

for i, j ≥ n0. It follows that for every k = 0, 1, 2, ... have d(ui−
k , uj−

k ) < ϵ and
d(ui+

k , uj+
k ) < ϵ This shows that the sequences (ui−

k ) = (u
(0−)
k , u

(1−)
k , u

(2−)
k , ...),

(ui+
k ) = (u

(0+)
k , u

(1+)
k , u

(2+)
k , ...) are fundamental sequence in ℓp(E

1). It converges
since the space ℓp(E

1) is complete [14]. Let us suppose that u
(i−)
k → u−

k and
u
(i+)
k → u+

k for i → ∞. Now using these limit points, define the sequences z− =

(u−
0 , u

−
1 , u

−
2 , ...), z+ = (u+

0 , u
+
1 , u

+
2 , ...) and we show that z−, z+ ∈ ℓp(E

1) and
z−k → z−, z+k → z+ . If we consider (3.2) then we have(

n∑
k=0

(max{d(ui−
k , uj−

k ), d(ui+
k , uj+

k )})p
) 1

p

≤ ϵ. From here, for i → ∞ and i ≥ n0,

we have

(
n∑

k=0

(max{d(u−
k , u

j−
k ), d(u+

k , u
j+
k )})p

) 1
p

≤ ϵ. If n → ∞ then we obtain
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(∑
k

(max{d(u−
k , u

j−
k , ), d(u+

k , u
j+
k )})p

) 1
p

≤ ϵ. This step shows that (u−
i − u−) ∈

ℓp(E
1) and (u+

i − u+) ∈ ℓp(E
1). Furthermore, for (u

(i)
k ) ∈ ℓp(E

2),

||u− (u
(i)
k − u

(i)
k )||ℓp(E2) =

(∑
k

(max{d(u−
k , u

j−
k − uj−

k ), d(u+
k , u

j+
k − uj+

k )})p
) 1

p

≤

(∑
k

(max{d(u−
k , u

j−
k ), d(u+

k , u
j+
k )})p

) 1
p

+

(∑
k

(max{d(θ−k , u
j−
k ), d(θ+k , u

j+
k )})p

) 1
p

≤ ||u− u
(i)
k ||ℓp(E2) + ||u(i)

k ||ℓp(E2) < ∞.

This step completes the proof. □

Theorem 3.3. The inclusions c0(E
2) ⊂ c(E2) ⊂ ℓ∞(E2) strictly hold.

Proof. The inclusion c0(E
2) ⊂ c(E2) is clear. To show the validity of the inclusion

relation c(E2) ⊂ ℓ∞(E2), let u ∈ c(E2) then;

lim
k

D([u−
k , u

+
k ], [u

−, u+]) = θ ⇒ lim
k

(
max{d(u−

k , u
−), d(u+

k , u
+)}
)
= θ

⇒ d(u−
k , u

−) < ϵ, d(u+
k , u

+) < ϵ

⇒ (u−
k ) ∈ c(E1), (u+

k ) ∈ c(E1).

Since c(E1) ⊂ ℓ∞(E1), we see that (u−
k ) ∈ ℓ∞(E1) and (u+

k ) ∈ ℓ∞(E1), that is
u = ([u−

k , u
+
k ]) ∈ ℓ∞(E2). Hence inclusion c(E2) ⊂ ℓ∞(E2) holds.

Consider the sequence (uk) of IVNFs defined by

uk =

 x+ 3, x ∈ [−3,−2]
−x− 1, x ∈ [−2,−1]

0, otherwise
,

 x+ 2, x ∈ [−2,−1]
−x, x ∈ [−1, 0]
0, otherwise

 , if k = 2n, n ∈ N,

and

uk =

 x, x ∈ [−3,−2]
−x+ 1, x ∈ [−2,−1]

0, otherwise
,

 x− 1, x ∈ [−2,−1]
−x+ 2, x ∈ [−1, 0]

0, otherwise

 , if k = 2n+ 1, n ∈ N.

Since

lim
k

uk =



 x+ 3, x ∈ [−3,−2]
−x− 1, x ∈ [−2,−1]

0, otherwise
,

 x+ 2, x ∈ [−2,−1]
−x, x ∈ [−1, 0]
0, otherwise

 , if k = 2n, n ∈ N, x, x ∈ [−3,−2]
−x+ 1, x ∈ [−2,−1]

0, otherwise
,

 x− 1, x ∈ [−2,−1]
−x+ 2, x ∈ [−1, 0]

0, otherwise

 , if k = 2n+ 1, n ∈ N

the sequence (uk) is not convergent sequence of IVFNs, i.e., (uk) /∈ c(E2) but (uk) ∈
ℓ∞(E2). That is to say that the inclusion c(E2) ⊂ ℓ∞(E2) strictly holds. □
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Theorem 3.4. The spaces c0(E
1), c(E1) and ℓ∞(E1) consisting of the null, con-

vergent and bounded sequences of fuzzy numbers are subsets of the spaces c0(E
2),

c(E2) and ℓ∞(E2), respectively.
Proof. Since every element of c0(E1)(or c(E1), ℓ∞(E1)) is a degenerate sequences
IVFNs by Definition 2.2 and Proposition 2.3, the proof is clear. □
Theorem 3.5. For any (uk), (vk) ∈ w(E2), if (uk) → u0 and (vk) → u0 then we
have

(1) uk + vk → u0 + v0, as k → ∞.
(2) uk − vk → u0 − v0, as k → ∞.
(3) ukvk → u0v0, as k → ∞.

Proof. Since the proof can also be obtained in a similar way for (2) and (3) we will
only deal with (1). Let us suppose that limk uk = u and limk vk = v. From defini-
tion (2.8) we have D(uk, u) = sup

k
max

{
d(u−

k , u
−), d(u+

k , u
+)
}
<

ε

2
and D(vk, v) =

sup
k

max
{
d(v−k , v

−), d(v+k , v
+)
}
<

ε

2
for all k ≥ m.

D(uk + vk, u+ v) = sup
k

max
{
d(u−

k + v−k , u
− + v−), d(u+

k + v+k , u
+ + v+)

}
≤ sup

k
max

{
d(u−

k , u
−) + d(v−k , v

−), d(u+
k , u

+) + d(v+k , v
+)
}

≤ sup
k

max
{
d(u−

k , u
−), d(u+

k , u
+)
}
+ sup

k
max

{
d(v−k , v

−), d(v+k , v
+)
}

<
ε

2
+

ε

2
= ε.

This step completes proof. □
Definition 3.6. A sequence space λ(E2) is said to be symmetric if, when u in
λ(E2), then v is in λ(E2) when the coordinates of v are those of u, but in a different
order.
Theorem 3.7. The spaces c0(E

2) and c(E2) are symmetric spaces.
Proof. Since the proof can also be obtained in a similar way for c0(E

2) we consider
only c(E2). Let us consider the sequence (uk) in c(E2) defined by

(uk) =





k
2k−1x, x ∈ [0, 2k−1

k ]

1, x ∈ [ 2k−1
k , 2k+1

k ]
− k

2k+1 (x− 4), x ∈ [ 2k+1
k , 4]

0, otherwise

,


k

2k−1x− 1, x ∈ [1, 3k−1
k ]

1, x ∈ [ 3k−1
k , 3k+1

k ]
− k

2k+1 (x− 5), x ∈ [ 3k+1
k , 5]

0, otherwise


 ,

Clearly we see that

lim
k

uk = lim
k




k
2k−1x, x ∈ [0, 2k−1

k ]

1, x ∈ [ 2k−1
k , 2k+1

k ]
− k

2k+1 (x− 4), x ∈ [ 2k+1
k , 4]

0, otherwise

,


k

2k−1x− 1, x ∈ [1, 3k−1
k ]

1, x ∈ [ 3k−1
k , 3k+1

k ]
− k

2k+1 (x− 5), x ∈ [ 3k+1
k , 5]

0, otherwise


=


1
2x, x ∈ [0, 2]

−1
2 (x− 4), x ∈ [2, 4]

0, otherwise
,


1
2x− 1, x ∈ [1, 3]

−1
2 (x− 5), x ∈ [3, 5]

0, otherwise

 .
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Let (vk) be a rearrangement of (uk) which is defined by (vk) = (u1, u3, u2, u4, u5, u7, u6, u8, ...).
Then

lim
k

vk =


1
2x, x ∈ [0, 2]

−1
2 (x− 4), x ∈ [2, 4]

0, otherwise
,


1
2x− 1, x ∈ [1, 3]

− 1
2 (x− 5), x ∈ [3, 5]

0, otherwise

 ,

i.e the sequences (uk) and (vk) have the same limit points. Therefore, from definition
3.6, we see that c(E2) is symmetric space. □

Let us give a theorem about the metric defined by (3.1).

Theorem 3.8. If u, v, w, r ∈ c(E2), (or c0(E
2), ℓ∞(E2)) and ρ ∈ R then the

following cases hold:
(1) D(u+ w, v + w) ≤ D(u,w) +D(w, v),
(2) D(ρu, ρv) = |ρ|D,
(3) D(u+ v, w + z) ≤ D(u,w) +D(v, z) and
(4) D(uv, θ) = D(u, θ)D(v, θ).

Proof. We will consider only (3) since the proof of others are similar to this one.

D(u+ v, w + z) = sup
k

max
{
d(u−

k + v−k , w
−
k + z−k ), d(u+

k + v+k , w
+
k + z+k )

}
≤ sup

k
max

{
(d(u−

k , w
−
k ), d(u

+
k , w

+
k )) + (d(v−k , z

−
k ), d(v+k , z

+
k ))
}

≤ sup
k

max
{
(d(u−

k , w
−
k ), d(u

+
k , w

+
k ))
}
+ sup

k
max

{
(d(v−k , z

−
k ), d(v+k , z

+
k ))
}

= D(u,w) +D(v, z).

□

4. The duals of the sequence spaces of the IVFNs

In this section, by using techniques in [15], we have stated and proved the theorems
determining the α−, β− and γ−duals of the spaces λ(E2) .

For the sequence spaces λ(E2) and µ(E2), define the set S(λ(E2), µ(E2)) by

S(λ(E2), µ(E2)) =
{
z = (zk) ∈ w(E2) : (xkzk) ∈ µ(E2) for all x = (xk) ∈ λ(E2)

}
.

(4.1)

With the notation of (4.1), the α−, β− and γ−duals of a sequence space λ(E2), which
are respectively denoted by λα(E2), λβ(E2) and λγ(E2) are defined by λα(E2) =
S(λ(E2) , ℓ1(E2)), λβ(E2) = S(λ(E2), cs(E2)) and λγ(E2) = S(λ(E2), bs(E2)).

Definition 4.1. Let us suppose that λ(E2), µ(E2) are sets of the sequences of IVFNs
and λ(E2) ⊂ µ(E2). Then λ(E2) is called cofinal in µ(E2) if for (uk) ∈ λ(E2) there
is (vk) ∈ µ(E2) such that D(uk, θ) ≤ D(vk, θ) for all k ∈ N.

If λ(E2) is cofinal in µ(E2) then λα(E2) = µα(E2); the converse of this assertion
is not true.

Now, we may give results concerning the α-, β- and γ-duals of the sets c0(E
2),

c(E2) and ℓ∞(E2).
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Theorem 4.2. The α-dual of the set ℓ∞(E2) of sequence spaces IVFNs is the set
ℓ1(E

2).

Proof. Let (uk) ∈ ℓα∞(E2). If we consider (vk) = ([1, 1]) ∈ ℓ∞(E2) then the series∑
k

max{d(u−
k v

−
k , 0), d(u

+
k v

+
k , 0)} =

∑
k

max{d(u−
k , 0), d(u

+
k , 0)} converges, that is

to say that (uk) ∈ ℓ1(E
2). Therefore we have

ℓα∞(E2) ⊆ ℓ1(E
2).(4.2)

Conversely, let us suppose that (uk) ∈ ℓ∞(E2) and (vk) ∈ ℓ1(E
2). Then there

exists a K > θ such that K = supk max
{
d(u−

k , 0), d(u
+
k , 0)

}
< ∞. From here we

have

∑
k

max{d(u−
k v

−
k , 0), d(u

+
k v

+
k , 0)} =

∑
k

max{d(u−
k , 0), d(u

+
k , 0)}

∑
k

max{d(v−k , 0), d(v
+
k , 0)}

≤ K
∑
k

max{d(v−k , 0), d(v
+
k , 0)} = K||v||ℓ∞(E2) < ∞

which gives that

ℓ1(E
2) ⊆ ℓα∞(E2).(4.3)

From (4.2) and (4.3) we see that ℓ1(E
2) = ℓα∞(E2).

□
Theorem 4.3. The interval valued fuzzy sequence spaces c0(E

2), c(E2) are cofinal
in ℓ∞(E2).

Proof. Denote any of the spaces c0(E
2) and c(E2) by λ(E2), and suppose that

D(uk, θ) ≤ D(vk, θ) holds for some (vk) ∈ µ(E2). Then we can easily see that
supk D(uk, θ) ≤ supk D(vk, θ), limk D(uk, θ) ≤ supk D(vk, θ) which lead us to the
desired results. □
Theorem 4.4. The α-dual of the sets c0(E

2) and c(E2) of sequence spaces IVFNs
are the set ℓ1(E2).

Proof. Since the sets c0(E
2) and c(E2) are cofinal in ℓ∞(E2) (see, Theorem 4.3),

the proof is clear. □
Theorem 4.5. The β-dual of the sets c(E2) and ℓ∞(E2) of sequence spaces IVFNs
are the set ℓ1(E2).

Proof. We give the proof only for the set ℓ∞(E2). Let (uk) ∈ ℓ1(E
2) and (vk) ∈

ℓ∞(E2). Then there exists a M > θ such that M = supk max
{
d(v−k , 0), d(v

+
k , 0)

}
<

∞. Since (vk) ∈ ℓ∞(E2), we have following equality:∑
k

max{d(u−
k v

−
k , 0), d(u

+
k v

+
k , 0)} =

∑
k

max{d(u−
k , 0)d(v

−
k , 0), d(u

+
k , 0)d(v

+
k , 0)}

≤
∑
k

max{M1d(u
−
k , 0),M2d(u

+
k , 0)}

≤ M
∑
k

max{d(u−
k , 0), d(u

+
k , 0)} = ||u||∈ℓ1(E2),
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where M = max{M1,M2}.
From here, we have ℓ1(E

2) ⊆ ℓβ∞(E2).
Finally, we will show that the inclusion ℓβ∞(E2) ⊆ ℓ1(E

2) holds. Let us suppose
that (vk) ∈ ℓβ∞(E2). Then we have

∑
k max{d(u−

k v
−
k , 0), d(u

+
k v

+
k , 0)} < ∞ for all

(uk) ∈ ℓ∞(E2). This holds for the sequence (uk) = ([1, 1]) ∈ ℓ∞(E2). Then, since
u−
ℓk = u+

ℓk = −1 and u−
rk = u+

rk = 1, we can write∑
k

max{d(u−
k v

−
k , 0), d(u

+
k v

+
k , 0)}

=
∑
k

max{ sup
α∈[0,1]

d(u−
k (α)v

−
k (α), 0(α)), sup

α∈[0,1]

d(u+
k (α)v

+
k (α), 0(α))}

≤
∑
k

max{ sup
α∈[0,1]

{max{|v−ℓk(α)|, |v
−
rk(α)|}}, sup

α∈[0,1]

{max{|v+ℓk(α)|, |v
+
rk(α)|}}}

= ||v||ℓ1(E2).

This shows that v ∈ ℓ1(E
2). □

Corollary 4.6. The γ-dual of the set ℓ∞(E2) of sequence spaces IVFNs is the set
ℓ1(E

2).

5. Matrix transformations on sequence spaces of IVFNs

Let λ(E2) and µ(E2) be two sequence spaces of IVFNs and A = (ank) be an
infinite matrix of IVFNs ank and u = (uk) ∈ λ(E2), where n, k ∈ N = {0, 1, 2, . . .}.
Then, we can say that A defines a matrix mapping from λ(E2) to µ(E2), and we
denote it by writing A : λ(E2) → µ(E2), if for every sequence u = (uk) ∈ λ(E2) the
sequence Au = {(Au)n} , the A-transform of u, is in µ(E2), where

An(u) =
∑
k

ankuk =
∑

k[a
−
nk, a

+
nk][u

−
k , u

+
k ] =

∑
k[min{R},max{R}],(5.1)

R = {a−nku
−
k , a

−
nku

+
k , a

+
nku

−
k , a

+
nku

+
k } and a−nk, u

−
k , u

+
k , a

+
nk ∈ E1. For simplicity in

notation, here and in what follows, the summation without limits runs from 0 to ∞.
By (λ(E2) : µ(E2)), we denote the class of matrices A such that A : λ(E2) → µ(E2).
Thus, A ∈ (λ(E2) : µ(E2)) if and only if the series on the right side of (5.1) converges
for each n ∈ N and every u ∈ λ(E2), we have Au = {(Au)n}n∈N ∈ µ(E2) for all
u ∈ λ(E2).

When does A ∈ (ℓ∞(E2) : ℓ∞(E2))? In the following theorem the necessary
and sufficient condition i s obtained For this question, the necessary and sufficient
condition is given by following theorem:

Theorem 5.1. A = ([a−nk, a
+
nk]) ∈ (ℓ∞(E2) : ℓ∞(E2)) if and only if

||A|| = sup
n

∑
k

max{d(a−nk, 0), d(a
+
nk, 0)} < ∞.(5.2)
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Proof. Let us suppose that (5.2) holds and u ∈ ℓ∞(E2). Then,

||Au||ℓ∞(E2) = sup
n

max{d(
∑
k

a−nku
−
k , 0), d(

∑
k

a+nku
+
k , 0)}

≤ sup
n

∑
k

max{d(a−nk, 0), d(a
+
nk, 0)max{d(u−

k , 0), d(u
+
k , 0)}

≤ M ||u||ℓ∞(E2) < ∞,

that is Au ∈ ℓ∞(E2).
Conversely, let us suppose that A = ([a−nk, a

+
nk]) ∈ (ℓ∞(E2) : ℓ∞(E2)) and u ∈

ℓ∞(E2). Then, since Au ∈ ℓ∞(E2) exists, the series
∑

k[a
−
nk, a

+
nk][u

−
k , u

+
k ] converges

for each fixed n ∈ N. and hence A ∈ ℓβ∞(E2). This holds for the sequence (uk) =
([−1, 1]) ∈ ℓ∞(E2). Then, since u−

ℓk(α) = u+
ℓk(α) = −1 and u−

rk(α) = u+
rk(α) = 1 we

can write

||Au||ℓ∞(E2) = sup
n

max{d(
∑
k

a−nku
−
k , 0), d(

∑
k

a+nku
+
k , 0)}

≤ sup
n

∑
k

max{d(a−nk, 0), d(a
+
nk, 0)max{d(u−

k , 0), d(u
+
k , 0)} < ∞

which means that (5.2) holds. □

Example 5.2. Now let us show that there exists a matrix A = ([a−nk, a
+
nk]) which

satisfies condition of the Theorem 5.1. Define the matrix A = ([a−nk, a
+
nk]) by

a−nk =

{
u−
k , n = k
0, otherwise

with u−
k (x) =


1 + (k + 1)x, − 1

k+1 ≤ x ≤ 0

1− (k + 1)x, 0 ≤ x ≤ 1
k+1

0, otherwise

( see, [15])

and

a+nk =

{
u+
k , n = k
0, otherwise

with u+
k (x) =


(k + 1)x− k, 1− 1

k+1 ≤ x ≤ 1

−kx+ k + 1, 1 ≤ x ≤ k+2
k+1

0, otherwise
for all k, n ∈ N. Since

d(a−nk, 0) =

{
1

n+1 , k = n

0, otherwise
and d(a+nk, 0) =

{
1− 1

n+1 + 2
n+1 , k = n

0, otherwise
,

we have supn
∑

k max{d(a−nk, 0), d(a
+
nk, 0)} < ∞.

Theorem 5.3. Let limn max{d(a−nk, 0), d(a
+
nk, 0)} = 0, (k fixed) and suppose (5.2)

holds. Then A = (ank) defines a bounded operator on c0(E
2) into itself, where

ank ∈ E2 for all n, k ∈ N .

Proof. Let u = (uk) ∈ c0(E
2). If u = (uk) = ([0

−
, 0

+
]) = θ then, An(u) =∑

k ankuk =
∑

k[a
−
nk, a

+
nk][u

−, u+] =
∑

k[a
−
nk, a

+
nk][0

−
, 0

+
] = θ, for all n ∈ N. Hence
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A(u) ∈ c0(E
2). Now we suppose that u ̸= θ. Then,

||An(u)||c0(E2) = ||
∑
k

ankuk||c0(E2) = ||
N∑

k=1

ankuk +
∑

k≥N+1

ankuk||c0(E2)

≤
N∑

k=1

||ankuk||c0(E2) +
∑

k≥N+1

||ankuk||c0(E2)

=
N∑

k=1

max
{
d(a−nku

−
k , 0), d(a

+
nku

+
k , 0)

}
+

∑
k≥N+1

max
{
d(a−nku

−
k , 0), d(a

+
nku

+
k , 0)

}
=

N∑
k=1

max
{
d(a−nk, 0)d(u

−
k , 0), d(a

+
nk, 0)d(u

+
k , 0)

}
+

∑
k≥N+1

max
{
d(a−nk, 0)d(u

−
k , 0), d(a

+
nk, 0)d(u

+
k , 0)

}
≤

N∑
k=1

max
{
d(a−nk, 0), d(a

+
nk, 0)

}
max

{
d(u−

k , 0), d(u
+
k , 0)

}
+

∑
k≥N+1

max
{
d(a−nk, 0), d(a

+
nk, 0)

}
max

{
d(u−

k , 0), d(u
+
k , 0)

}
.

Since u ∈ c0(E
2), we take k > N so large that max

{
d(u−

k , 0), d(u
+
k , 0)

}
< ϵ

2M and
from

limn max{d(a−nk, 0), d(a
+
nk, 0)} = 0 ( k fixed) we take n so large that

N∑
k=1

max{d(a−nk, 0), d(a
+
nk, 0)} ≤ ϵ

2max
{
d(u−

k , 0), d(u
+
k , 0)

} .
Hence, we have shown that Au ∈ c0(E

2). Finally, we will show that A is bounded:

||Au||c0(E2) = sup
n

max{d(
∑
k

a−nku
−
k , 0), d(

∑
k

a+nku
+
k , 0)}

≤ sup
n

∑
k

max{d(a−nk, 0), d(a
+
nk, 0)}{d(u

−
k , 0), d(u

+
k , 0)}

≤ sup
n

∑
k

max{d(a−nk, 0), d(a
+
nk, 0)}max{d(u−

k , 0), d(u
+
k , 0)}

= M ||u||c0(E2).

□

The above-mentioned theorem shows that a certain type of matrix of IVFNs defines
a linear operator on c0(E

2) into itself.
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