Annals of Fuzzy Mathematics and Informatics Volume 10, No. 5, (November 2015), pp. 755–764 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

$\lambda-$ Closed maps in intuitionistic fuzzy topological spaces

P. RAJARAJESWARI, G. BAGYALAKSHMI

Received 30 October 2014; Revised 6 February 2015; Accepted 19 March 2015

ABSTRACT. In this paper we introduce the concept intuitionistic fuzzy λ -open maps and intuitionistic fuzzy λ -closed maps in intuitionistic fuzzy topological space and study some of their properties.

2010 AMS Classification: AMS subject classification (2000): 54A40, 03F55

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy λ -closed maps, intuitionistic fuzzy λ -open maps .

Corresponding Author: G. Bagyalakshmi (g_bagyalakshmi@yahoo.com)

1. INTRODUCTION

The concept of fuzzy set (FS) and fuzzy operations were first introduced by L.A Zadeh in 1965, in his classical paper [15]. Subsequently several authors have applied varies basic concepts from general topology to fuzzy sets and developed the theory of fuzzy topological space. After the introduction of fuzzy topology by Chang [2] in 1968, there have been several generalization of notions of fuzzy sets and fuzzy topology. The idea of "intuitionistic fuzzy sets" was introduced by Atanassov [1] as a generalization of fuzzy set in 1983. Coker [3] introduced the notion of intuitionistic fuzzy topology in 1997. This approach provides a wide field for investigation in the area of fuzzy topology and its application. The aim of this paper is to introduce intuitionistic fuzzy λ -closed maps and studied some of their properties.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, where the function $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ denotes the degree of membership $\mu_A(x)$ and the degree of non membership $\nu_A(x)$ of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Definition 2.2 ([1]). Let A and B be intuitionistic fuzzy sets of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, and form $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$. Then

- (a) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle / x \in X \}$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle | x \in X \}$
- (e) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle | x \in X \}.$

The intuitionistic fuzzy sets $\underline{0} = \{\langle x, 0, 1 \rangle / x \in X\}$ and $\underline{1} = \{\langle x, 1, 0 \rangle / x \in X\}$ are respectively the empty set and whole set of X.

Definition 2.3 ([5]).) An intuitionistic fuzzy topology (IFT) on X is a family of IFS which satisfying the following axioms.

- (i) $0, 1 \in \tau$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- (iii) $\cup G_i \in \tau$ for any family $\{Gi/i \in I\} \subseteq \tau$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS) and each intuitionistic fuzzy set in τ is known as an intuitionistic fuzzy open set (IFOS) in X. The complement A of an IFOS in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS) in (X, τ) .

Definition 2.4 ([3]). Let (X, τ) be an intuitionistic fuzzy topology and $A = \{\langle x, \mu_A(x), \nu_B(x) \rangle : x \in X\}$, be an intuitionistic fuzzy set in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by $int(A) = \cup \{G/G \text{ is an intuitionistic fuzzy open set in X and } G \subseteq A\}$ $cl(A) = \cap \{K/K \text{ in an intuitionistic fuzzy closed set in X and } A \subseteq K\}$

Definition 2.5 ([10]). Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (i) intuitionistic fuzzy open mapping (IF open mapping) if f(A) is an IFOS in Y for every IFOS A in X.
- (ii) intuitionistic fuzzy closed mapping (IF open mapping) if f(A) is an IFCS in Y for every IFCS A in X.

Remark 2.6. For any intuitionistic fuzzy set A in (X, τ) , we have

- (i) $cl(A^c) = [int(A)]^c$,
- (ii) $int(A^c) = [cl(A)]^c$,
- (iii) A is an intuitionistic fuzzy closed set in $X \Leftrightarrow cl(A) = A$
- (iv) A is an intuitionistic fuzzy open in $X \Leftrightarrow int(A) = A$

Definition 2.7 ([6]). An intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \nu_B(x) \rangle : x \in X\}$ in an intuitionistic fuzzy topology space (X, τ) is said to be

- (i) intuitionistic fuzzy semi closed if $int(cl(A)) \subseteq A$.
- (ii) intuitionistic fuzzy pre closed if $cl(int(A)) \subseteq A$.

Definition 2.8 ([5]). Let X and Y are nonempty sets and $f: X \to Y$ is a function

(a) If $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle : y \in Y\}$ is an intuitionistic fuzzy set in Y, then the pre image of B under f denoted by $f^{-1}(B)$ is defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B(x)), f^{-1}(\nu_B(x)) \rangle : x \in X\}$

(b) If $A = \{\langle x, \mu_A(x), \nu_B(x) \rangle : x \in X\}$ is an intuitionistic fuzzy set in X, the image of A under f denoted by f(A) is the intuitionistic fuzzy set in Y defined by $f(A) = \{\langle y, f(\mu_A(y)), f(\nu_A(y)) \rangle : y \in Y\}$ where $f(\nu_A) = 1 - f(1 - \nu_A)$.

Definition 2.9 ([8]). An intutionistic fuzzy set A of an intuitionistic topology space (X, τ) is called an

- (i) intuitionistic fuzzy λ -closed set (IF λ -CS) if $A \supseteq cl(U)$ whenever $A \supseteq U$ and U is intuitionistic fuzzy open set in X.
- (ii) intuitionistic fuzzy λ -open set (IF λ -OS) if the complement A^c is an intuitionistic fuzzy λ -closed set in A.

Definition 2.10. An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) called

- (i) intuitionistic fuzzy generalized closed set [13](intuitionistic fuzzy g-closed) is $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic fuzzy semi open
- (ii) intuitionistic fuzzy g-open set [12], if the complement of an intuitionistic fuzzy g-closed set is called intuitionistic fuzzy g-open set.
- (iii) intuitionistic fuzzy semi open (resp. intuitionistic fuzzy semi closed) [6] if there exists an intuitionistic fuzzy open (resp. intuitionistic fuzzy closed) such that $U \subseteq A \subseteq cl(U)$ (resp. $int(U) \subseteq A \subseteq U$).

Definition 2.11. An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) s called

- (i) an intuitionistic fuzzy w-closed [12] if $cl(A) \subseteq O$ whenever $A \subseteq O$ and O is intuitionistic fuzzy semi open in (X, τ) .
- (ii) an intuitionistic fuzzy generalized α -closed set [7] (IF α -CS) if $\alpha cl(A) \subseteq O$ whenever $A \subseteq O$ and O is IF α -OS in (X, τ)
- (iii) an intuitionistic fuzzy α -generalized closed set [11] (IF α -GCS) if $\alpha cl(A) \subseteq O$ whenever $A \subseteq O$ and O is IFOS in (X, τ)
- (iv) an intuitionistic fuzzy regular closed set [4] (IFRCS in short) if A = cl(int(A)).
- (v) an intuitionistic fuzzy regular open set [4] (IFROS in short) if A = int(cl(A)).

Definition 2.12 ([9]). A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be intutionistic fuzzy λ -continuous if the inverse image of every intutionistic fuzzy closed set of Y is intutionistic fuzzy λ -closed in X.

Definition 2.13 ([10]). A topological space (X, τ) is called intuitionistic fuzzy $\lambda - T_{1/2}$ space (IF $\lambda - T_{1/2}$ space in short) if every intuitionistic fuzzy λ -closed set is intuitionistic fuzzy closed in X.

Definition 2.14. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (i) an intuitionistic fuzzy w-closed [13] if image of every intuitionistic fuzzy closed set of X is intuitionistic fuzzy w-closed set in Y
- (ii) an intuitionistic fuzzy regular closed [14] if image of every intuitionistic fuzzy closed set of X is intuitionistic fuzzy regular closed set in Y
- (iii) an intuitionistic fuzzy generalized α -closed [7] if image of every intuitionistic fuzzy closed set of X is intuitionistic fuzzy generalized α -closed set in Y

(iv) an intuitionistic fuzzy α -generalized closed [11] if image of every intuitionistic fuzzy closed set of X is intuitionistic fuzzy α -generalized closed set in Y

Definition 2.15 ([9]). Let A be an IFS in an IFTS (X, τ) . Then the intuitionistic fuzzy λ -interior and intuitionistic fuzzy λ -closure of A are defined as follows $\lambda - int(A) = \bigcup \{G/G \text{ is an IF } \lambda - OS \text{ in } X \text{ and } G \subseteq A \}$ $\lambda - cl(A) = \cap \{K/K \text{ is an IF } \lambda - CS \text{ in } X \text{ and } A \subseteq K \}$

3. Intuitionistic fuzzy λ -closed mappings

Definition 3.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be intuitionistic fuzzy λ -closed map (IF λ -closed map) if f(V) is λ -closed in (Y, σ) for every closed set V in (X, τ) .

Theorem 3.2. Every IF closed map is an IF- λ closed map but not conversely.

Proof. Let $f : X \to Y$ be an IF closed map. Let A be an IFCS in X. Then f(A) is an IFCS in Y. Since every IFCS is an IF λ -CS, f(A) is an IF λ -CS in Y [9]. Hence, f is an IF λ -closed map.

Remark 3.3. The converse of above theorem need not be true as seen from the following example.

Example 3.4. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and intutionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.2, 0.8 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.3, 0.6 \rangle\}.$ Let $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.8, 0.2 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.8, 0.2 \rangle\}$ is not closed set in Y. Hence, f is intuitionistic fuzzy λ -closed mapping in Y but not intuitionistic fuzzy closed in Y.

Theorem 3.5. Let $f : X \to Y$ be an IF λ -closed map where Y is an IF $\lambda - T_{1/2}$ space, then f is an IF closed map if every IF λ -CS is an IFCS in Y.

Proof. Let f be an IF λ -closed map. Then for every IFCS A in X, f(A) is an IF λ -CS in Y. Since Y is an IF $\lambda - T_{1/2}$ space, f(A) is an IF λ -CS in Y and by hypothesis f(A) is an IFCS in Y. Hence, f is an IF closed map.

Theorem 3.6. Every IF pre closed map is IF λ -closed map.

Proof. Let $f : X \to Y$ be an IF pre closed map. Let A be an IFCS in X. By assumption, f(A) is an IF pre closed set in Y. Since every IF pre closed set is an IF λ -CS [6] f(A) is an IF λ -CS in Y. Hence, f is an IF λ -closed map.

Remark 3.7. The converse of above theorem need not be true as seen from the following example.

Example 3.8. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and intutionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.4 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.2 \rangle\}.$ Let $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.4, 0.5 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.4, 0.5 \rangle\}$ is IF λ -closed set in Y. But not IF pre closed set in Y. Hence, f is intuitionistic fuzzy λ -closed map but not intuitionistic fuzzy pre closed map.

Remark 3.9. IF λ -closed map and IF w-closed map are independent to each other as seen from the following example.

Example 3.10. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and intutionistic fuzzy sets U and V are defined as follows: $U = \{ \langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.4 \rangle \}, V = \{ \langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.2 \rangle \}.$ Let $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define a map $f: (X,\tau) \to (Y,\sigma)$ by f(a) = u and f(b) = v. Then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.4, 0.5 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.4, 0.5 \rangle\}$ is intuitionistic fuzzy IF λ -closed set but not IF w-closed set. Hence, f is intuitionistic fuzzy λ -closed mapping but not intuitionistic fuzzy w-closed mapping.

Example 3.11. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and intutionistic fuzzy sets U and V are defined as follows: $U = \{ \langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.5 \rangle \}, V = \{ \langle u, 0.5, 0.5 \rangle, \langle v, 0.4, 0.6 \rangle \}.$ Let $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define a map $f: (X,\tau) \to (Y,\sigma)$ by f(a) = u and f(b) = v. Then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.5 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.5 \rangle\}$ is IF w-closed set but not IF λ -closed set. Hence, f is intuitionistic fuzzy w-closed mapping but not intuitionistic fuzzy λ -closed mapping.

Remark 3.12. Intuitionistic fuzzy q-closed mappings and intuitionistic fuzzy λ -closed mappings are independent as seen from the following examples.

Example 3.13. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and intutionistic fuzzy sets U and V are defined as follows: $U = \{ \langle a, 0.5, 0.5 \rangle, \langle b, 0.6, 0.3 \rangle \}, V = \{ \langle u, 0.5, 0.5 \rangle, \langle v, 0.2, 0.6 \rangle \}.$ Let $\tau = \{0, \underline{1}, U\}$ and $\sigma = \{0, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define a map $f: (X,\tau) \to (Y,\sigma)$ by f(a) = u and f(b) =v. Then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.3, 0.6 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.3, 0.6 \rangle\}$ is intuitionistic fuzzy q-closed set but not intuitionistic fuzzy λ -closed set. Hence, f is intuitionistic fuzzy g-closed mapping and not intuitionistic fuzzy λ - mapping.

Example 3.14. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and intutionistic fuzzy sets U and V are defined as follows: $U = \{ \langle a, 0.5, 0.5 \rangle, \langle b, 0.4, 0.5 \rangle \}, V = \{ \langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.2 \rangle \}.$ Let $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define a map $f: (X,\tau) \to (Y,\sigma)$ by f(a) = u and f(b) =v. Then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.4 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.4 \rangle\}$ is intuitionistic fuzzy λ -closed set but not intuitionistic fuzzy g-closed set. Hence, f is intuitionistic fuzzy λ – mapping and not intuitionistic fuzzy g-closed mapping.

Remark 3.15. The concept of intuitionistic fuzzy λ -closed mappings and intuitionistic fuzzy semi closed mappings are independent as seen from the following examples.

Example 3.16. Let $X = \{a, b\}$ and $Y = \{u, v\}$ and intutionistic fuzzy sets U and V are defined as follows: $U = \{ \langle a, 0.5, 0.5 \rangle, \langle b, 0.3, 0.5 \rangle \}, V = \{ \langle u, 0.5, 0.5 \rangle, \langle v, 0.1, 0.9 \rangle \}.$ Let $\tau = \{0, 1, U\}$ and $\sigma = \{0, 1, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define a map $f: (X,\tau) \to (Y,\sigma)$ by f(a) = u and f(b) = v. Then 759

the mapping $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.4 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.4 \rangle\}$ is intuitionistic fuzzy semi closed set and not intuitionistic fuzzy λ -closed set. Hence, f is intuitionstic fuzzy semi closed mapping but not intuitionistic fuzzy λ -closed.

Example 3.17. Let $X = \{a, b\}$, $Y = \{u, v\}$ and intuitionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.2 \rangle\}$, $V = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.4 \rangle\}$. Let $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y then $f(U) = f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.2, 0.5 \rangle\}) = \{(\langle u, 0.5, 0.5 \rangle, \langle v, 0.2, 0.5 \rangle)\}$ is intuitionistic fuzzy λ -closed set but not intuitionistic fuzzy semi closed set. Hence f is intuitionistic fuzzy λ -closed mapping but not intuitionistic fuzzy semi closed mapping.

Remark 3.18. The concept of intuitionistic fuzzy λ -closed mappings and intuitionistic fuzzy semi pre closed mappings are independent as seen from the following examples.

Example 3.19. Let $X = \{a, b\}, Y = \{u, v\}$ and intuitionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.3 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.3 \rangle\}$. Let $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v then $f(U) = f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.3 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.5, 0.3 \rangle\}$ is intuitionistic fuzzy λ -closed set but not intuitionistic fuzzy semi pre-closed set. Then f is intuitionistic fuzzy λ -closed mapping but not intuitionistic fuzzy semi pre closed mapping.

Example 3.20. Let $X = \{a, b\}, Y = \{u, v\}$ and intuitionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.4, 0.6 \rangle\}, V = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.1, 0.9 \rangle\}$. Let $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.6, 0.4 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.6, 0.4 \rangle\}$ is intuitionistic fuzzy semi pre closed mapping but not intuitionistic fuzzy λ -closed mapping.

Remark 3.21. IFG α -closed mapping and IF λ -closed mappings are independent to each other.

Example 3.22. Let $X = \{a, b\}, Y = \{u, v\}$ and intuitionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.4, 0.6 \rangle, \langle b, 0.3, 0.7 \rangle\}, V = \{\langle u, 0.2, 0.8 \rangle, \langle v, 0.3, 0.7 \rangle\}$. Let $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v then $f(\{\langle a, 0.6, 0.4 \rangle, \langle b, 0.7, 0.3 \rangle\}) = \{\langle a, 0.6, 0.4 \rangle, \langle b, 0.7, 0.3 \rangle\}$ is IFG α -closed set but not IF-closed set. Hence f is intuitionistic fuzzy λ mapping, but not intuitionistic fuzzy IFG α -closed mapping.

Example 3.23. Let $X = \{a, b\}, Y = \{u, v\}$ and intuitionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.1, 0.9 \rangle, \langle b, 0.3, 0.7 \rangle\}, V = \{\langle a, 0.8, 0.2 \rangle, \langle b, 0.8, 0.1 \rangle\}$. Let $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v then $f(\{\langle a, 0.9, 0.1 \rangle, \langle b, 0.7, 0.3 \rangle\}) = \{\langle a, 0.9, 0.1 \rangle, \langle b, 0.7, 0.3 \rangle\}$ is IF λ -closed set in Y but not IFG α -closed set. Hence f is intuitionistic fuzzy λ mapping, but not intuitionistic fuzzy IFG α -closed mapping.

Remark 3.24. If IF α G-closed mapping and IF λ -closed mapping are independent to each other as seen from the following example:

Example 3.25. Let $X = \{a, b\}, Y = \{u, v\}$ and intuitionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.6, 0.4 \rangle, \langle b, 0.7, 0.2 \rangle\}, V = \{\langle u, 0.2, 0.6 \rangle, \langle b, 0.2, 0.7 \rangle\}$. Let $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v then $f(\{\langle a, 0.4, 0.6 \rangle, \langle b, 0.2, 0.7 \rangle\}) = \{\langle a, 0.4, 0.6 \rangle, \langle b, 0.2, 0.7 \rangle\}$ is α G-closed set in Y but not λ -closed set in Y. Hence f is intuitionistic fuzzy IFG α -closed mapping, but not IF λ -closed mapping.

Example 3.26. Let $X = \{a, b\}, Y = \{u, v\}$ and intuitionistic fuzzy sets U and V are defined as follows: $U = \{\langle a, 0.1, 0.5 \rangle, \langle b, 0.2, 0.6 \rangle\}, V = \{\langle u, 0.2, 0.4 \rangle, \langle b, 0.3, 0.5 \rangle\}$. Let $\tau = \{\underline{0}, \underline{1}, U\}$ and $\sigma = \{\underline{0}, \underline{1}, V\}$ be intuitionistic fuzzy topologies on X and Y respectively. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v then $f(\{\langle a, 0.5, 0.1 \rangle, \langle b, 0.6, 0.2 \rangle\}) = \{\langle a, 0.5, 0.1 \rangle, \langle b, 0.6, 0.2 \rangle\}$ is λ -closed set Y but not α G-closed set in Y. Hence f is intuitionistic fuzzy λ -closed mapping, but not intuitionistic fuzzy α G-closed mappings.

Remark 3.27. From above examples and remarks we get following diagram of implications.

In this Diagram $A \to B$ means that A implies B. $A \not\leftarrow B$ means that B does not implies A.

 $A \not\leftrightarrow B$ means that A and B are independent to each other.

Theorem 3.28. Let $f: X \to Y$ be a mapping. Then the following are equivalent if Y is an $IF\lambda - T_{\frac{1}{2}}$ space.

(i) f is an IFλ-closed map.
(ii) λ - cl(f(A)) ⊆ f(cl(A)) for each IFS A of X.

Proof. (i) \Rightarrow (ii) Let A be an IFS in X. Then cl(A) is an IFCS in X. (i) implies that f(cl(A)) is an IF λ -CS in Y. Since Y is an IF $\lambda - T_{\frac{1}{2}}$ space, f(cl(A)) is an IFCS in Y. Therefore $\lambda - cl(f(cl(A))) = f(cl(A))$. Now $\lambda - cl(f(A)) \subseteq \lambda - cl(f(cl(A))) = f(cl(A))$. Hence $\lambda - cl(f(A)) \subseteq f(cl(A))$ for each IFS A of X.

(ii) \Rightarrow (i) Let A be any IFCS in X. Then cl(A) = A. (ii) implies that $\lambda - cl(f(A)) \subseteq f(cl(A)) = f(A)$. But $f(A) \subseteq \lambda - cl(f(A))$. Therefore $\lambda - cl(f(A)) = f(A)$. This implies f(A) is an IF λ -CS in Y. Since every IF λ -CS is an IFCS, f(A) is an IF λ -CS in Y. Hence f is an IF λ -closed map.

Theorem 3.29. Let $f: X \to Y$ be a bijection. Then the following are equivalent if Y is an $IF\lambda - T_{\frac{1}{2}}$ space.

- (i) f is an $IF\lambda$ -closed map.
- (ii) $\lambda cl(f(A)) \subseteq f(cl(A))$ for each IFS A of X.
- (iii) $f^{-1}(\lambda cl(B)) \subseteq cl(f^{-1}(B))$ for every IFS B of Y.

Proof. (i) \Rightarrow (ii) is obvious from theorem 3.15.

(ii) \Rightarrow (iii) Let *B* be an IFS in *Y*. Then $f^{-1}(B)$ is an IFS in *X*. Since *f* is onto, $\lambda \cdot cl(B) = \lambda - cl(f(f^{-1}(B)))$ and (ii) implies $\lambda - cl(f(f^{-1}(B))) \subseteq f(cl(f^{-1}(B)))$. Therefore $\lambda - cl(B) \subseteq f(cl(f^{-1}(B)))$. Now $f^{-1}(\lambda - cl(B)) \subseteq f^{-1}(f(cl(f^{-1}(B))))$. Since *f* is one to one $f^{-1}(\lambda - cl(B)) \subseteq cl(f^{-1}(B))$.

(iii) \Rightarrow (ii) Let A be any IFS of X. Then f(A) is an IFS of Y. Since f is one to one, (iii) implies that $f^{-1}(\lambda - cl(f(A))) \subseteq cl(f^{-1}(A)) = cl(A)$. Therefore $f(f^{-1}(\lambda - cl(f(A)))) \subseteq f(cl(A))$. Since f is onto, $\lambda - cl(f(A)) = f(f^{-1}(\lambda - cl(f(A)))) \subseteq f(cl(A))$.

Theorem 3.30. Let $f : X \to Y$ be an $IF\lambda$ -closed map. Then for every IFS A of X, f(cl(A)) is an $IF \lambda - CS$ in Y.

Proof. Let A be any IFS in X. Then cl(A) is an IFCS in X. By hypothesis, f(cl(A)) is an IF λ -CS in X.

Theorem 3.31. Let $f : X \to Y$ be an $IF\lambda$ -closed map where Y is an $IF\lambda - T_{\frac{1}{2}}$ space. Then f is a IF regular closed map if every $IF\lambda - CS$ is an IFRCS in Y.

Proof. Let A be an IFRCS in X. Since every IFRCS is an IFCS [5], A is an IFCS in X. By hypothesis f(A) is an IF λ -CS in Y. Since Y is an IF $\lambda - T_{\frac{1}{2}}$ space, f(A) is an IF λ -CS in Y and hence is an IFCS in Y, by hypothesis. This implies that f(A) is an IF regular closed map.

Theorem 3.32. If every IFS is an IFCS, then an $IF\lambda$ -closed mapping is an $IF\lambda$ -continuous mapping.

Proof. Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IFS in X. Therefore $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IF λ -CS, $f^{-1}(A)$ is an IF λ -CS in X. This implies that f is an IF λ -continuous mapping.

Theorem 3.33. A mapping $f : X \to Y$ is an $IF\lambda$ -closed mapping if and only if for every IFS B of Y and for every IFOS U containing $f^{-1}(B)$, there is an $IF\lambda$ -OS A of Y such that $B \subseteq A$ and $f^{-1}(A) \subseteq U$. *Proof.* Necessity: Let B be any IFS in Y. Let U be an IFOS in X such that $f^{-1}(B) \subseteq U$, then U^c is an IFCS in X. By hypothesis $f(U^c)$ is an IF λ -CS in Y. Let $A = (f(U^c))^c$, then A is an IF λ -OS in Y and $B \subseteq A$. Now $f^{-1}(A) = f^{-1}(f(U^c))^c = (f^{-1}(f(U^c)))^c \subseteq U$.

Sufficiency: Let A be an IFCS in X, then A^c is an IFOS in X and $f^{-1}(f(A^c))^c \subseteq A^c$. By hypothesis, there exists an IF λ -OS B in Y such that $f(A^c) \subseteq B$ and $f^{-1}(B) \subseteq A^c$. Therefore $A \subseteq (f^{-1}(B))^c$. Hence $B^c \subseteq f(A) \subseteq f(f^{-1}(B))^c \subseteq B^c$. This implies that $f(A) = B^c$. Since B^c is an IF λ -CS in Y, f(A) is an IF λ -CS in Y. Hence f is an IF λ -closed mapping.

Theorem 3.34. If $f : X \to Y$ is an IF closed map and $g : Y \to Z$ is an $IF\lambda$ -closed map, then $g \circ f$ is an $IF\lambda$ -closed map.

Proof. Let A be an IFCS in X, then f(A) is an IFCS in Y, since f is an IF closed map. Since g is an IF λ -closed map, g(f(A)) is an IF λ -CS in Z. Therefore $g \circ f$ is an IF λ -closed map.

Remark 3.35. The composition of two IF closed maps are not IF closed map as seen from the following example.

Example 3.36. Let $X = \{a, b\}, Y = \{c, d\}$ and $Z = \{u, v\}$ and intuitionistic fuzzy sets U, V and W are defined as follows: $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.2 \rangle\}, V = \{\langle c, 0.5, 0.5 \rangle, \langle d, 0.5, 0.4 \rangle\}$ and $W = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.6, 0.4 \rangle\}$ Let $\tau = \{\underline{0}, \underline{1}, U\}, \sigma = \{\underline{0}, \underline{1}, V\}$ and $\delta = \{\underline{0}, \underline{1}, W\}$ be intuitionistic fuzzy topologies on X, Y and Z respectively. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c and f(b) = d and $g : (Y, \sigma) \to (Z, \delta)$ by g(c) = u and g(d) = v then $f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.2, 0.5 \rangle\}) = \{\langle c, 0.5, 0.5 \rangle, \langle d, 0.2, 0.5 \rangle\}$ is λ -closed set in (Y, σ) and hence f is λ -closed map in (Y, σ) and $g(\{\langle c, 0.5, 0.5 \rangle, \langle d, 0.2, 0.5 \rangle, \langle d, 0.5, 0.4 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle b, 0.5, 0.4 \rangle\}$ is λ -closed set in (Z, δ) and hence g is λ -closed map. But their composition $g \circ f : X \to Z$ is not λ -closed map in (Z, δ) . Since $g(f(U)) = g(f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.2, 0.5 \rangle\})) = g(\{\langle c, 0.5, 0.5 \rangle, \langle d, 0.2, 0.5 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.2, 0.5 \rangle\}$ is not λ -closed set in (Z, δ) . Since $g(f(U)) = g(f(\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.2, 0.5 \rangle\})) = g(\{\langle c, 0.5, 0.5 \rangle, \langle d, 0.2, 0.5 \rangle\}) = \{\langle u, 0.5, 0.5 \rangle, \langle v, 0.2, 0.5 \rangle\}$ is not λ -closed set in (Z, δ) . Therefore $g \circ f$ is not an intuitionistic fuzzy λ -closed mapping.

Theorem 3.37. Let $f: X \to Y$ be a bijective map where Y is an $IF\lambda - T_{\frac{1}{2}}$ space. Then the following are equivalent.

(i) f is an $IF\lambda$ -closed map.

(ii) f(B) is an $IF\lambda - OS$ in Y for every IFOS B in X.

Proof. (i) \Leftrightarrow (ii) is obvious.

Definition 3.38. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be intuitionistic fuzzy λ -open map (IF λ -open map) if f(V) is λ -open set in (Y, σ) for every closed set in X.

4. Conclusions

In this paper we have introduced intuitionistic fuzzy λ -open mappings, intuitionistic fuzzy λ -closed mappings and studied some of their properties.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems 88 (1997) 81–89.
- [4] H. Gurcay, Es. A. Haydar and D. Coker, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997) 365–378.
- [5] J. K. Jeon, Y. B. Jun, and J. H. Park, Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences 19 (2005) 3091–3101.
- [6] R. Santhi and D. Jayanthi, Intuitionistic fuzzy generalized semi-preclosed sets (accepted).
- [7] P. Rajarajeswari and G. Bagyalakshmi, λ-closed sets in intuitionistic fuzzy topological space, International Journal of Computer Applications 34 (2011) 25–27.
- [8] P. Rajarajeswari and G. Bagyalakshmi, λ-continuous in intuitionistic fuzzy topological space, International Journal of Applied Information Systems 1 (2012) 6–9.
- [9] P. Rajarajeswari and G. Bagyalakshmi, Application of λ-continuous in intuitionistic fuzzy topological space, International Journal of Computer Applications 94 (2014) 39–43.
- [10] R. Santhi and K. Sakthivel, Alpha generalized closed mappings in intuitionistic fuzzy topological spaces, Far East Journal of Mathematical Sciences 43 (2010) 265–275.
- [11] R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semi continuous Mappings, Advances in Theoretical and Applied Mathematics 5 (2010) 11–20.
- [12] S. S. Thakur and R. Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau Studii Si Cetari Stiintifice 6 (2006) 257–272.
- [13] M. Thirumalaiswamy and K. M. Arifmohammed, Semipre generalized closed mappings in intuitionistic fuzzy topological spaces, International Journal of Mathematics Trends and Technology 4 (1) (2013) 1–5.
- [14] Y. B. Jun and S.-Z. Song, Intuitionistic fuzzy semi-pre open sets and intuitionistic fuzzy semipre continuous mappings, Journal of Applied Mathematics and Computing 19 (2005) 464–474.
- [15] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

P. RAJESWARI (p.rajeswari29@gmail.com)

Department of Mathematics, Chikkanna Government Arts College, Tiruppur - 641 602, Tamil Nadu, India

<u>G. BAGYALAKSHMI</u> (g_bagyalakshmi@yahoo.com)

Department of Mathematics, AJK College of Arts and Science, Coimbatore - 641 105, Tamil Nadu, India